Articles | Volume 24, issue 2
https://doi.org/10.5194/nhess-24-583-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-583-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a dynamic earthquake risk framework for Switzerland
Maren Böse
CORRESPONDING AUTHOR
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Laurentiu Danciu
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Athanasios Papadopoulos
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
John Clinton
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Carlo Cauzzi
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Irina Dallo
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Leila Mizrahi
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Tobias Diehl
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Paolo Bergamo
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Yves Reuland
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Andreas Fichtner
Seismology and Wave Physics (SWP), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Philippe Roth
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Florian Haslinger
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Frédérick Massin
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Nadja Valenzuela
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Nikola Blagojević
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Lukas Bodenmann
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Eleni Chatzi
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Donat Fäh
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Franziska Glueer
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Marta Han
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Lukas Heiniger
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Paulina Janusz
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Dario Jozinović
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Philipp Kästli
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Federica Lanza
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Timothy Lee
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Panagiotis Martakis
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Michèle Marti
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Men-Andrin Meier
Seismology and Geodynamics (SEG), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Banu Mena Cabrera
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Maria Mesimeri
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Anne Obermann
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Pilar Sanchez-Pastor
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Luca Scarabello
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Nicolas Schmid
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Anastasiia Shynkarenko
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Bozidar Stojadinović
Institute of Structural Engineering (IBK), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Domenico Giardini
Seismology and Geodynamics (SEG), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Stefan Wiemer
Swiss Seismological Service (SED), ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Related authors
No articles found.
Shiba Subedi, Nadja Valenzuela, Priyanka Dhami, Maren Böse, György Hetényi, Lauriane Chardot, Lok Bijaya Adhikari, Mukunda Bhattarai, Rabindra Prasad Dhakal, Sarah Houghton, and Bishal Nath Upreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4131, https://doi.org/10.5194/egusphere-2025-4131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
An interactive exhibition in Pokhara, Nepal, held on the tenth anniversary of the 2015 earthquake, helped school students understand why earthquakes occur and how to protect themselves. After taking part, most felt more confident and prepared, and many planned to share safety tips with their families and friends. This ripple effect shows how hands-on learning can spread awareness, inspire action, and help entire communities build resilience for future earthquakes.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
Solid Earth, 16, 333–350, https://doi.org/10.5194/se-16-333-2025, https://doi.org/10.5194/se-16-333-2025, 2025
Short summary
Short summary
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the Bedretto Lab, Switzerland. The P and S1 waves show a clear trend of faster velocities in the NE–SW direction and slower velocities perpendicular to it, indicating a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress, but also the orientation of fractures is expected to influence the velocities.
Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi
Wind Energ. Sci., 10, 857–885, https://doi.org/10.5194/wes-10-857-2025, https://doi.org/10.5194/wes-10-857-2025, 2025
Short summary
Short summary
This work employs deep neural networks to identify damage in the mooring system of a floating offshore wind turbine using measurements from the platform response. We account for the effect of uncertainty caused by the existence of multiple solutions using a Gaussian mixture model to describe the damage condition estimates. The results reveal the capability of the methodology to discover the uncertainty in the assessment, which increases as the instrumentation system becomes more limited.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Marta Han, Leila Mizrahi, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 25, 991–1012, https://doi.org/10.5194/nhess-25-991-2025, https://doi.org/10.5194/nhess-25-991-2025, 2025
Short summary
Short summary
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a 7-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Philip Imanuel Franz, Imad Abdallah, Gregory Duthé, Julien Deparday, Ali Jafarabadi, Alexander Popp, Sarah Barber, and Eleni Chatzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-26, https://doi.org/10.5194/wes-2025-26, 2025
Revised manuscript accepted for WES
Short summary
Short summary
New designs of large wind turbine blades have become increasingly flexible, and thus need cost-efficient monitoring solutions. Hence, we investigate if aerodynamic pressure measurements from a low-cost sensing system can be used to detect structural damage. Our research is based on a wind tunnel study, emulating a simplified wind turbine blade under various conditions. We show that using a convolutional neural network-based method, structural damage can indeed be detected and its severity rated.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matthew C. Gerstenberger
Nat. Hazards Earth Syst. Sci., 25, 1–12, https://doi.org/10.5194/nhess-25-1-2025, https://doi.org/10.5194/nhess-25-1-2025, 2025
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024, https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary
Short summary
Our study near EastGRIP camp in Greenland shows varying firn properties by direction (crucial for studying ice stream stability, structure, surface mass balance, and past climate conditions). We used dispersion curve analysis of Love and Rayleigh waves to show firn is nonuniform along and across the flow of an ice stream due to wind patterns, seasonal variability, and the proximity to the edge of the ice stream. This method better informs firn structure, advancing ice stream understanding.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Yuriy Marykovskiy, Thomas Clark, Justin Day, Marcus Wiens, Charles Henderson, Julian Quick, Imad Abdallah, Anna Maria Sempreviva, Jean-Paul Calbimonte, Eleni Chatzi, and Sarah Barber
Wind Energ. Sci., 9, 883–917, https://doi.org/10.5194/wes-9-883-2024, https://doi.org/10.5194/wes-9-883-2024, 2024
Short summary
Short summary
This paper delves into the crucial task of transforming raw data into actionable knowledge which can be used by advanced artificial intelligence systems – a challenge that spans various domains, industries, and scientific fields amid their digital transformation journey. This article underscores the significance of cross-industry collaboration and learning, drawing insights from sectors leading in digitalisation, and provides strategic guidance for further development in this area.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Lukas Bodenmann, Jack W. Baker, and Božidar Stojadinović
Nat. Hazards Earth Syst. Sci., 23, 2387–2402, https://doi.org/10.5194/nhess-23-2387-2023, https://doi.org/10.5194/nhess-23-2387-2023, 2023
Short summary
Short summary
Understanding spatial patterns in earthquake-induced ground motions is key for assessing the seismic risk of distributed infrastructure systems. To study such patterns, we propose a novel model that accounts for spatial proximity, as well as site and path effects, and estimate its parameters from past earthquake data by explicitly quantifying the inherent uncertainties.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Christophe Lienert, Franziska Angly Bieri, Irina Dallo, and Michèle Marti
Abstr. Int. Cartogr. Assoc., 5, 154, https://doi.org/10.5194/ica-abs-5-154-2022, https://doi.org/10.5194/ica-abs-5-154-2022, 2022
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398, https://doi.org/10.5194/wes-7-1383-2022, https://doi.org/10.5194/wes-7-1383-2022, 2022
Short summary
Short summary
Aerodynamic and acoustic field measurements on operating large-scale wind turbines are key for the further reduction in the costs of wind energy. In this work, a novel cost-effective MEMS (micro-electromechanical systems)-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy to install, low power and self-sustaining is designed and tested.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
Mario Arroyo-Solórzano, Diego Castro-Rojas, Frédérick Massin, Lepolt Linkimer, Ivonne Arroyo, and Robin Yani
Solid Earth, 12, 2127–2144, https://doi.org/10.5194/se-12-2127-2021, https://doi.org/10.5194/se-12-2127-2021, 2021
Short summary
Short summary
We present the first seismic noise variation levels during COVID-19 in Central America using 10 seismometers. We study the impact of the seismic noise reduction on the detectability of earthquakes and on the felt reports. Our results show maximum values (~50 % decrease) at seismic stations near airports and densely inhabited cities. The decrease in seismic noise improved earthquake locations and reports. Seismic noise could also be useful to verify compliance with lockdown measures.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Cited articles
Ajo-Franklin, J., Dou, S., Lindsey, N., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., and Li, X.: Distributed acoustic sensing using dark fiber for near-surface characterisation and broadband seismic event detection, Sci. Rep., 9, 1328, https://doi.org/10.1038/s41598-018-36675-8, 2019.
Al Atik, L., Abrahamson, N., Bommer, J. J., Scherbaum, F., Cotton, F., and Kuehn, N.: The Variability of Ground-Motion Prediction Models and Its Components, Seismol. Res. Lett., 81, 794–801, https://doi.org/10.1785/gssrl.81.5.794, 2010.
Allen, R. M., Gasparini, P., Kamigaichi, O., and Böse, M.: The status of earthquake early warning around the world: an introductory overview, Seismol. Res. Lett., 80, 682–693, https://doi.org/10.1785/gssrl.80.5.682, 2009.
Armbruster, D., Mesimeri, M., Kästli, P., Diehl, T., Massin, F., and Wiemer, S.: SCDetect: Near real-time computationally efficient waveform cross-correlation based earthquake detection during intense earthquake sequences, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12443, https://doi.org/10.5194/egusphere-egu22-12443, 2022.
Bayliss, K., Naylor, M., Kamranzad, F., and Main, I.: Pseudo-prospective testing of 5-year earthquake forecasts for California using inlabru, Nat. Hazards Earth Syst. Sci., 22, 3231–3246, https://doi.org/10.5194/nhess-22-3231-2022, 2022.
Bear, M. and Kradolfer, U.: An automatic phase picker for local and teleseismic events, Bull. Seismol. Soc. Am., 77, 1437–1445, 1987.
Bergamo, P., Hammer, C., and Fäh, D.: Correspondence between Site Amplification and Topographical, Geological Parameters: Collation of Data from Swiss and Japanese Stations, and Neural Networks-Based Prediction of Local Response, Bull. Seismol. Soc. Am., 112, 1008–1030, 2021.
Bergamo, P., Fäh, D., Panzera, F., Cauzzi, C., Glueer, F., Perron, V., Wiemer, S.: A site amplification model for Switzerland based on site-condition indicators and incorporating local response as measured at seismic stations, Bull. Earthq. Eng., 21, 5831–5865, https://doi.org/10.1007/s10518-023-01766-z, 2023.
Blagojević, N., Hefti, F., Henken, J., Didier, M., and Stojadinović, B.: Quantifying disaster resilience of a community with interdependent civil infrastructure systems, Struct. Infrastruct. Eng., 19, 1696–1710, https://doi.org/10.1080/15732479.2022.2052912, 2022.
Bodenmann, L., Reuland, Y., and Stojadinović, B.: Dynamic post-earthquake updating of regional damage estimates using Gaussian processes, Reliabil. Eng. Syst. Safe., 234, 109201, https://doi.org/10.1016/j.ress.2023.109201, 2023.
Bogris, A., Nikas, T., Simos, C., Simos, I., Lentas, K., Melis, N. S., Fichtner, A., Bowden, D., Smolinski, K., Mesaritakis, C., and Chochliournos, I.: Sensitive seismic sensors based on microwave frequency fiber interferometry in commercially deployed cables, Sci. Rep., 12, 14000, https://doi.org/10.1038/s41598-022-18130-x, 2022.
Böse, M., Heaton, T. H., and Hauksson, E.: Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes, Geophys. J. Int., 191, 803–812, https://doi.org/10.1111/j.1365-246X.2012.05657.x, 2012.
Böse, M., Papadopoulos, A. N., Danciu, L., Clinton, J. F., and Wiemer, S.: Loss-Based Performance Assessment and Seismic Network Optimization for Earthquake Early Warning, Bull. Seismol. Soc. Am., 112, 1662–1677, https://doi.org/10.1785/0120210298, 2022.
Blagojević, N. and Stojadinović, B.: pyrecodes: an open-source library for regional recovery simulation and disaster resilience assessment of the built environment (v0.1.0), Chair of Structural Dynamics and Earthquake Engineering, ETH Zurich, Zurich, https://doi.org/10.5905/ethz-1007-700, 2023.
Burjánek, J., Gischig, V., Moore, J. R., and Fäh, D.: Ambient vibration characterization and monitoring of a rock slope close to collapse, Geophys. J. Int., 212, 297–310, 2018.
Cattania, C., Werner, M. J., Marzocchi, W., Hainzl, S., Rhoades, D., Gerstenberger, M., Liukis, M., Savran, W., Christophersen, A., and Helmstetter, A.: The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence, Seismol. Res. Lett., 89, 1238–1250, 2018.
Cauzzi, C. and Clinton, J.: A High- and Low-Noise Model for High-Quality Strong-Motion Accelerometer Stations, Earthq. Spectra, 29, 85–102, https://doi.org/10.1193/1.4000107, 2013.
Cauzzi, C., Edwards, B., Fäh, D., Clinton, J., Wiemer, S., Kästli, P., Cua, G., and Giardini, D.: New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps, Geophys. J. Int., 200, 421-438, https://doi.org/10.1093/gji/ggu404, 2015.
Cauzzi, C., Behr, Y., Le Guenan, T., Douglas, J., Auclair, S., Woessner, J., Clinton, J., and Wiemer, S.: Earthquake early warning and operational earthquake forecasting as real-time hazard information to mitigate seismic risk at nuclear facilities, Bull. Earthq. Eng., 14, 2495–2512, https://doi.org/10.1007/s10518-016-9864-0, 2016a.
Cauzzi, C., Sleeman, R., Clinton, J., Ballesta, J. D., Galanis, O., and Kästli, P.: Introducing the European Rapid Raw Strong-Motion Database, Seismol. Res. Lett., 87, 977–986, https://doi.org/10.1785/0220150271, 2016b.
Cauzzi, C., Clinton, J., Faenza, L., Heimers, S., Koymans, M. R., Lauciani, V., Luzi, L., Michelini, A., Puglia, R., and Russo, E.: Introducing a European integrated ShakeMap system, Seismol. Res. Lett., 89, 926, https://doi.org/10.1785/0220180082, 2018a.
Cauzzi, C., Fäh, D., Wald, D. J., Clinton, J., Losey, S., and Wiemer, S.: ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations, Nat. Hazards, 92, 1211–1235, https://doi.org/10.1007/s11069-018-3248-5, 2018b.
Cauzzi, C. V., Clinton, J., Kaestli, P., Fäh, D., Bergamo, P., Böse, M., Haslinger, F., and Wiemer, S.: Swiss Shakemap at Fifteen: Distinctive Local Features and International Outreach, in: Seismological Society of America Annual Meeting (SSA 2022), Seismol. Res. Lett., 93, 1315–1316, https://doi.org/10.1785/0220220087, 2022.
Chiaraluce, L., Festa, G., Bernard, P., Caracausi, A., Carluccio, I., Clinton, J., Stefano, R., Elia, L., Evangelidis, C., Ergintav, S., Jianu, O., Kaviris, G., Marmureanu, A., Sebela, S., and Sokos, E.: The Near Fault Observatory community in Europe: a new resource for faulting and hazard studies, Ann. Geophys., 65, DM316, https://doi.org/10.4401/ag-8778, 2022.
Clinton, J., Cauzzi, C., Fäh, D., Michel, C., Zweifel, P., Olivieri, M., Cua, G., Haslinger, F., and Giardini, D.: The current state of strong motion monitoring in Switzerland, in: Earthquake Data in Engineering Seismology. Geotechnical, Geological, and Earthquake Engineering, vol. 14, edited by: Akkar, S., Gülkan, P., and van Eck, T., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-0152-6_15, 2011.
Console, R. and Di Giovambattista, R.: Local earthquake relative location by digital records, Phys. Earth Planet. Inter., 47I, 43–49, https://doi.org/10.1016/0031-9201(87)90065-3, 1987.
Cremen, G. and Galasso, C.: Earthquake early warning: Recent advances and perspectives, Earth-Sci. Rev., 205, 103184, https://doi.org/10.1016/j.earscirev.2020.103184, 2020.
Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G., and Danciu, L.: European seismic risk model (ESRM20), EFEHR Technical Report, 2, EFEHR, https://doi.org/10.3929/ethz-b-000590388, 2021.
Cua, G. B.: Creating the Virtual Seismologist: Developments in Ground Motion Characterization and Seismic Early Warning, PhD dissertation, California Institute of Technology, https://doi.org/10.7907/M926-J956, 2005.
Dahmen, N. L., Clinton, J. F., Meier, M. A., Stähler, S. C., Ceylan, S., Kim, D., Stott, A. E., and Giardini, D.: MarsQuakeNet: A more complete marsquake catalog obtained by deep learning techniques, J. Geophys. Res.-Planets, 127, e2022JE007503, https://doi.org/10.1029/2022JE007503, 2022.
Dallo, I., Marti, M., Clinton, J., Böse, M., Massin, F., and Zaugg, S.: Earthquake early warning in countries where damaging earthquakes only occur every 50 to 150 years – The societal perspective, Int. J. Disast. Risk Reduct., 83, 103441, https://doi.org/10.1016/j.ijdrr.2022.103441, 2022a.
Dallo, I., Stauffacher, M., and Marti, M.: Actionable and understandable? Evidence-based recommendations for the design of (multi-)hazard warning messages, Int. J. Disast. Risk Reduct., 74, 102917, https://doi.org/10.1016/j.ijdrr.2022.102917, 2022b.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, ETH Zurich, Zurich, https://doi.org/10.12686/a15, 2021.
Danciu, L., Weatherill, G., Rovida, A., Basili, R., Bard, P.-Y., Beauval, C., Nandan, S., Pagani, M., Crowley, H., Sesetyan, K., Villanova, S., Reyes, C., Marti, M., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 European Seismic Hazard Model: Milestones and Lessons Learned, in: Progresses in European Earthquake Engineering and Seismology, ECEES 2022, Springer Proceedings in Earth and Environmental Sciences, Cham, https://doi.org/10.1007/978-3-031-15104-0_1, 2022.
Diehl, T., Husen, S., Kissling, E., and Deichmann, N.: High-resolution 3-D P-wave model of the Alpine crust, Geophys. J. Int., 179, 1133–1147, https://doi.org/10.1111/j.1365-246X.2009.04331.x, 2009.
Diehl, T., Kraft, T., Kissling, E., and Wiemer, S.: The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity, J. Geophys. Res.-Solid, 122, 7272–7290, https://doi.org/10.1002/2017JB014473, 2017.
Diehl, T., Kissling, E., Herwegh, M., and Schmid, S.: Improving Absolute Hypocenter Accuracy with 3-D Pg and Sg Body-Wave Inversion Procedures and Application to Earthquakes in the Central Alps Region, J. Geophys. Res.-Solid, 126, e2021JB022155, https://doi.org/10.1029/2021jb022155, 2021a.
Diehl, T., Clinton, J., Cauzzi, C., Kraft, T., Kaestli, P., Deichmann, N., Massin, F., Grigoli, F., Molinari, I., and Böse, M.: Earthquakes in Switzerland and surrounding regions during 2017 and 2018, Swiss J. Geosci., 106, 543–558, https://doi.org/10.1007/s00015-013-0154-4, 2021b.
Diehl, T., Madritsch, H., Schnellmann, M., Spillmann, T., Brockmann, E., and Wiemer, S.: Seismotectonic evidence for present-day transtensional reactivation of the slowly deforming Hegau-Bodensee Graben in the northern foreland of the Central Alps, Tectonophysics, 846, 229659, https://doi.org/10.1016/j.tecto.2022.229659, 2023.
Dryhurst, S., Mulder, F., Dallo, I., Kerr, J. R., McBride, S. K., Fallou, L., and Becker, J. S.: Fighting misinformation in seismology: Expert opinion on earthquake facts vs. fiction, Front. Earth Sci., 10, 937055, https://doi.org/10.3389/feart.2022.937055, 2022.
Edwards, B., Allmann, B., Fäh, D., and Clinton, J.: Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude, Geophys. J. Int., 183, 407–420, https://doi.org/10.1111/j.1365-246X.2010.04743.x, 2010.
Edwards, B., Michel, C., Poggi, V., and Fäh, D.: Determination of Site Amplification from Regional Seismicity: Application to the Swiss National Seismic Networks, Seismol. Res. Lett., 84, 611–621, 2013.
Edwards, B., Kraft, T., Cauzzi, C., Kastli, P., and Wiemer, S.: Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland, Geophys. J. Int., 201, 1022–1039, https://doi.org/10.1093/gji/ggv059, 2015.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap, Geophys. J. Int., 180, 1138–1152, 2010.
Faenza, L. and Michelini, A.: Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy, Geophys. J. Int., 186, 1415–1430, 2011.
Fäh, D., and Huggenberger, P.: INTERREG III Projekt: Erdbebenmikrozonierung am südlichen Oberrhein, Zusammenfassung, ETH Zurich, https://doi.org/10.3929/ethz-a-006412199, 2006.
Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., Allmann, B., Bethmann, F., Wössner, J., Gassner-Stamm, G., Fritsche, S., and Eberhard, D.: ECOS-09 Earthquake Catalogue of Switzerland Release 2011 Report and Database, Public catalogue, 17.4.2011, Report SED/RISK/R/001/20110417, Swiss Seismological Service ETH Zurich, http://www.seismo.ethz.ch/static/ecos-09/ECOS-2009_Report_final_WEB.pdf (last access: February 2024), 2011.
Fäh, D., Moore, J. R., Burjanek, J., Iosifescu, I., Dalguer, L., Dupray, F., Michel, C., Woessner, J., Villiger, A., Laue, J., Marshall,I., Gischig, V., Loew, S., Marin, A., Gassner, G., Alvarez, S., Balderer, W., Kästli, P., Giardini, D., Iosifescu, C., Hurni, L., Lestuzzi, P., Karbassi, A., Baumann, C., Geiger, A., Ferrari, A., Laloui, L., Clinton, J., and Deichmann, N.: Coupled seismogenic geohazards in Alpine regions, Bollettino di geofisica teorica ed applicata, 53, 485–508, https://doi.org/10.4430/bgta0048, 2012.
Fritsche, S., Fäh, D., and Schwarz-Zanetti, G.: Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects, Swiss J. Geosci., 105, 1–18, 2012.
Giardini, D.: The global seismic hazard assessment program (GSHAP) – 1992/1999, Ann. Geophys., 42, https://doi.org/10.4401/ag-3780, 1999.
Giardini, D., Wiemer, S., Fäh, D., and Deichmann, N.: Seismic hazard assessment of Switzerland, 2004, Publication Series of the Swiss Seismological Service, ETH Zurich, Zurich, 91 pp., http://www.seismo.ethz.ch/export/sites/sedsite/knowledge/.galleries/pdf_knowledge/SUIhaz2015_final-report_16072016_2.pdf_2063069299.pdf (last access: February 2024), 2004.
Giardini, D., Danciu, L., Erdik, M., Sesetyan, K., Demircioglu Tümsa, M. B., Akkar, S., Gülen, L., and Zare, M.: Seismic hazard map of the Middle East, Bull. Earthquake. Eng., 16, 3567–3570, https://doi.org/10.1007/s10518-018-0347-3, 2018.
Glueer, F., Häusler, M., Gischig, V., and Fäh, D.: Coseismic Stability Assessment of a Damaged Underground Ammunition Storage Chamber Through Ambient Vibration Recordings and Numerical Modelling, Front. Earth Sci., 9, 773155, https://doi.org/10.3389/feart.2021.773155, 2021.
Grigoli, F., Scarabello, L., Böse, M., Weber, B., Wiemer, S., and Clinton, J. F.: Pick- and waveform-based techniques for real-time detection of induced seismicity, Geophys. J. Int., 213, 868–884, https://doi.org/10.1093/gji/ggy019, 2018.
Guarini, M. R., Battisti, F., and Chiovitti, A.: A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes, Sustainability, 10, 507, https://doi.org/10.3390/su10020507, 2018.
Hammer, C., Ohrnberger, M., and Fäh, D.: Classifying seismic waveforms from scratch: a case study in the alpine environment, Geophys. J. Int., 192, 425–439, https://doi.org/10.1093/gji/ggs036, 2013.
Harte, D. S.: Evaluation of earthquake stochastic models based on their real-time forecasts: a case study of Kaikoura 2016, Geophys. J. Int., 217, 1894–1914, 2019.
Haslinger, F., Basili, R., Bossu, R., Cauzzi, C., Cotton, F., Crowley, H., Custodio, S., Danciu, L., Locati, M., Michelini, A., Molinari, I., Ottemöller, L., and Parolai, S.: Coordinated and interoperable seismological data and product services in Europe: the EPOS thematic core service for seismology, Ann. Geophys., 65, DM213, https://doi.org/10.4401/ag-8767, 2022.
Häusler, M., Gischig, V., Thöny, R., Glueer, F., and Donat, F.: Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland), Geophys. J. Int., 229, 299–310, 2022.
Hengl, T., Heuvelink, G. B. M., and Rossiter, D. G.: About regression-kriging: From equations to case studies, Computers & Geosciences, 33(10), 1301–1315, 2007.
Hermann, M., Zechar, J. D., and Wiemer, S.: Communicating time-varying seismic risk during an earthquake sequence, Seismol. Res. Lett., 87, 301–312, https://doi.org/10.1785/0220150168, 2016.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., and Fuchs, F.: The AlpArray seismic network: a large-scale European experiment to image the Alpine Orogen, Surv. Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018.
Hillers, G., Husen, S., Obermann, A., Planès, T., Larose, E., and Campillo, M.: Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation, Geophysics, 80, KS51–KS68, 2015.
Hobiger, M., Bergamo, P., Imperatori, W., Panzera, F., Lontsi, A. M., Perron, V., C., M., J., B., and Fäh, D.: Site Characterization of Swiss Strong-Motion Stations: The Benefit of Advanced Processing Algorithms, Bull. Seismol. Soc. Am., 111, 1713–1739, 2021.
Husen, S., Kissling, E., Deichmann, N., Wiemer, S., Giardini, D., and Baer, M.: Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland, J. Geophys. Res.-Solid, 108, 2077, https://doi.org/10.1029/2002JB001778, 2003.
Janusz, P., Bonilla, L. F., and Fäh, D.: URBASIS Deliverable: A case study on non-linear soil response in urban areas, ETC Zurich, Zurich, https://doi.org/10.3929/ethz-b-000575536, 2022.
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., and Krawczyk, C. M.: Fibre optic distributed acoustic sensing of volcanic events, Nat. Commun., 13, 1753, https://doi.org/10.1038/s41467-022-29184-w, 2022.
Jozinović, D., Massin, F., Böse, M., and Clinton, J.: Combining earthquake early warning solutions from different algorithms: application to Switzerland, in: 2023 SSA Annual Meeting, 17–20 April 2023, San Juan, Puerto Rico, abstract 9451, 2023.
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., and Fichtner, A.: Distributed Acoustic Sensing in volcano-glacial environments – Mount Meager, British Columbia, J. Geophys. Res., 126, e2021JB022358, https://doi.org/10.1029/2021JB022358, 2021.
Kleinbrod, U., Burjánek, J., and Fäh, D.: Ambient vibration classification of unstable rock slopes: A systematic approach, Eng. Geol., 249, 198–217, 2019.
Kremer, K., Fabbri, S. C., Evers, F. M., Schweizer, N., and Wirth, S. B.: Traces of a prehistoric and potentially tsunamigenic mass movement in the sediments of Lake Thun (Switzerland), Swiss J. Geosci., 115, 1–20, 2022.
Lagomarsino, S. and Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, Bull. Earthq. Eng., 4, 415–443, https://doi.org/10.1007/s10518-006-9024-z, 2006.
Lagomarsino, S., Cattari, S., and Ottonelli, D.: The heuristic vulnerability model: fragility curves for masonry buildings, Bull. Earthq. Eng., 19, 3129–3163, https://doi.org/10.1007/s10518-021-01063-7, 2021.
Lanza, F., Diehl, T., Deichmann, N., Kraft, T., Nussbaum, C., Schefer, S., and Wiemer, S.: The Saint-Ursanne earthquakes of 2000 revisited: evidence for active shallow thrust-faulting in the Jura fold-and-thrust belt, Swiss J. Geosci., 115, 1–24, https://doi.org/10.1186/s00015-021-00400-x, 2022.
Lestuzzi, P., Podestà, S., Luchini, C., Garofano, A., Kazantzidou-Firtinidou, D., and Bozzano, C.: Validation and improvement of Risk-UE LM2 capacity curves for URM buildings with stiff floors and RC shear walls buildings, Bull. Earthq. Eng., 15, 1111–1134, https://doi.org/10.1007/s10518-016-9981-9, 2017.
Lee, T.: The transition between Western and Central Alps: New seismotectonic insights from high-resolution earthquake catalogs and tomography, PhD thesis, Diss. No. 29073, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000613262, 2023.
Lee, T., Diehl, T., Kissling, E., and Wiemer, S.: New insights into the Rhône–Simplon fault system (Swiss Alps) from a consistent earthquake catalogue covering 35 yr, Geophys. J. Int., 232, 1568–1589, https://doi.org/10.1093/gji/ggac407, 2023.
Lindsey, N., Rademacher, H., and Ajo-Franklin, J.: On the broadband instrument response of fiber-optic (DAS) arrays, J. Geophys. Res., 125, e2019JB018145, https://doi.org/10.1029/2019JB018145, 2020.
Lomax, A., Virieux, J., Volant, P., and Berge, C.: Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in: Advances in Seismic Event Location, edited by: Thurber, C. H. and Rabinowitz, N., Kluwer, Amsterdam, 101–134, 2000.
Maranò, S., Reller, C., Loeliger, H.-A., and Fäh, D.: Seismic waves estimation and wave field decomposition: Application to ambient vibrations, Geophys. J. Int., 191, 175–188, 2012.
Marra, G., Clivati, C., Luckett, R., Tampellini, A., Kronjäger, J., Wright, L., Mura, A., Levi, F., Robinson, S., Xuereb, A., Baptie, B., and Calonico, D.: Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables, Science, 361, 486–490, 2018.
Martakis, P., Movsessian, A., Reuland, Y., Pai, S. G., Quqa, S., Garcia Cava, D., Tcherniak, D., and Chatzi, E.: A semi-supervised interpretable machine learning framework for sensor fault detection, Smart Struct. Syst. Int. J., 29, 251–266, 2022.
Martakis, P., Reuland, Y., Stavridis, A., and Chatzi, E.: Fusing damage-sensitive features and domain adaptation towards robust damage classification in real buildings, Soil Dynam. Earthq. Eng., 166, 107739, https://doi.org/10.1016/j.soildyn.2022.107739 2023.
Marti, M., Stauffacher, M., and Wiemer, S.: Anecdotal evidence is an insufficient basis for designing earthquake preparedness campaigns, Seismol. Res. Lett., 91, 1929–1935, https://doi.org/10.1785/0220200010, 2020.
Marti, M., Dallo, I., Roth, P., Papadopoulos, A. N., and Zaugg, S.: Illustrating the impact of earthquakes: Evidence-based and user-centered recommendations on how to design earthquake scenarios and rapid impact assessments, Int. J. Disast. Risk Reduct., 90, 103674, https://doi.org/10.1016/j.ijdrr.2023.103674, 2023.
Marzocchi, W., Lombardi, A. M., and Casarotti, E.: The establishment of an operational earthquake forecasting system in Italy, Seismol. Res. Lett., 85, 961–969, 2014.
Massin, F., Clinton, J., and Böse, M.: Status of Earthquake Early Warning in Switzerland, Front. Earth Sci., 9, 707654, https://doi.org/10.3389/feart.2021.707654, 2021.
Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Andrews, J., Hauksson, E., and Yue, Y.: Reliable real-time seismic signal/noise discrimination with machine learning, J. Geophys. Res.-Solid, 124, 788–800, https://doi.org/10.1029/2018JB016661, 2019.
Mesimeri, M., Armbruster, D., Kästli, P., Scarabello, L., Diehl, T., Clinton, J., and Wiemer, S.: SCDetect: A SeisComP Module for Real‐Time Waveform Cross‐Correlation‐Based Earthquake Detection, Seismol. Res. Lett., https://doi.org/10.1785/0220230164, in press, 2024.
Michel, C., Edwards, B., Poggi, V., Burjánek, J., and Fäh, D.: Assessment of Site Effects in Alpine Regions through Systematic Site Characterization of Seismic Stations, Bull. Seismol. Soc. Am., 104, 2809–2826, 2014.
Michel, C., Fäh, D., Edwards, B., and Cauzzi, C. V.: Site amplification at the city scale in Basel (Switzerland) from geophysical site characterization and spectral modelling of recorded earthquakes, Phys. Chem. Earth, 98, 27–40, 2017.
Michelini, A., Faenza, L., Cauzzi, C., Lauciani, V., Clinton, J., Kästli, P., Haslinger, F., Wiemer, S., Melis, N., Theodoulidis, N., Böse, M., Weatherill, G., Cotton, F., and Giardini, D.: ShakeMap-EU: an update on the shakemap service in Europe, EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023, EGU23-5937, https://doi.org/10.5194/egusphere-egu23-5937, 2023.
Mitchell-Wallace, K., Jones, M., Hillier, J., and Foote, M.: Natural catastrophe risk management and modelling, in: Natural catastrophe risk management and modelling: A practitioner's Guide, 1st Edn., John Wiley & Sons, Hoboken, NJ, https://doi.org/10.1002/9781118906057, 2017.
Mizrahi, L.: Towards Next Generation Time-Dependent Earthquake Forecasting, Doctoral dissertation, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000584646, 2022.
Mizrahi, L., Irina, D., and Kuratle, L. D.: D3.5 Development, Testing, and Communicating Earthquake Fore-casts: Current Practices and Expert Recommendations, https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/637239/3/Supplement_Developingtestingandcommunicatingearthquakeforecasts.pdf (last access: February 2024), 2023.
Molinari, I., Obermann, A., Kissling, E., Hetényi, G., Boschi, L., and AlpArray-Easi Working: 3D crustal structure of the Eastern Alpine region from ambient noise tomography, Results Geophys. Sci., 1–4, 100006, https://doi.org/10.1016/j.ringps.2020.100006, 2020.
Mousavi, S. M. and Beroza, G. C.: Deep-learning seismology, Science, 377, eabm4470, https://doi.org/10.1126/science.abm4470, 2022.
Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.): Seismic ambient noise, Cambridge University Press, ISBN 9781108271745, 2019.
Nandan, S., Kamer, Y., Ouillon, G., Hiemer, S., and Sornette, D.: Global models for short-term earthquake forecasting and predictive skill assessment, Eur. Phys. J. Spec. Top., 230, 425–449, 2021.
Nievas, C., Crowley, C., Reuland, Y., Weatherill, G., Baltzopoulos, G., Bayliss, K., Chatzi, E., Chioccarelli, E., Gueìguen, P., Iervolino, I., Marzocchi, W., Naylor, M., Orlacchio, M., Pejovic, J., Popovic, N., Serafini, F., Serdar, N.: RISE deliverable 6.1: Integration of RISE Innovations in the Fields of OELF, RLA and SHM, http://static.seismo.ethz.ch/rise/deliverables/Deliverable_6.1.pdf (last access: February 2024), 2023.
Obermann, A., Planès, T., Larose, E., and Campillo, M.: Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise, J. Geophys. Res.-Solid, 118, 6285–6294, 2013.
Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., Chen, J. H., and Liu, Q. Y.: Seismic noise correlations to image structural and mechanical changes associated with the Mw 7.9 2008 Wenchuan earthquake, J. Geophys. Res.-Solid, 119, 3155–3168, 2014.
Obermann, A., Lupi, M., Mordret, A., Jakobsdóttir, S. S., and Miller, S. A.: 3D-ambient noise Rayleigh wave tomography of Snæfellsjjökull volcano, Iceland, J. Volancol. Geoth. Res., 317, 42–52, https://doi.org/10.1016/j.jvolgeores.2016.02.013, 2016.
Obermann Kraft, T., Larose, E., and Wiemer, S.: Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland), J. Geophys. Res.-Solid, 120, 4301–4316, 2015.
Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27, https://doi.org/10.1080/01621459.1988.10478560v, 1988.
Ogata, Y., Katsura, K., Falcone, G., Nanjo, K., and Zhuang, J.: Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude, Bull. Seismol. Soc. Am., 103, 1692–1708, 2013.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., and Panzeri, L.: OpenQuake engine: An open hazard (and risk) software for the global earthquake model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014.
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., and Fichtner, A.: Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves, Bull. the Seismol. Soc. Am., 111, 1–10, 2021.
Paitz, P., Lindner, N., Edme, P., Huguenin, P., Hohl, M., Sovilla, B., Walter, F., and Fichtner, A.: Phenomenology of avalanche recordings from distributed acoustic sensing, J. Geophys. Res., 128, e2022JF007011, https://doi.org/10.1029/2022JF007011, 2023.
Panzera, F., Bergamo, P., and Fäh, D.: Canonical Correlation Analysis Based on Site- Response Proxies to Predict Site- Specific Amplification Functions in Switzerland, Bull. Seismol. Soc. Am., 111, 1905–1920, 2021.
Panzera, F., Alber, J., Imperatori, W., Bergamo, P., and Fäh, D.: Reconstructing a 3D model from geophysical data for local amplification modelling: The study case of the upper Rhone valley, Switzerland, Soil Dynam. Earthq. Eng., 155, 107163, https://doi.org/10.1016/j.soildyn.2022.107163, 2022.
Papadopoulos, A. N., Böse, M., Danciu, L., Clinton, J., and Wiemer, S.: A framework to quantify the effectiveness of earthquake early warning in mitigating seismic risk, Earthq. Spectra, 39, 938–961, https://doi.org/10.1177/87552930231153424, 2023a.
Papadopoulos, A. N., Roth, P., Danciu, L., Bergamo, P., Panzera, F., Fäh, D., Cauzzi, C., Duvernay, B., Khodaverdian, A., Lestuzzi, P., Odabaşi, Ö., Fagà, E., Bazzurro, P., Marti, M., Valenzuela, N., Dallo, I., Schmid, N., Kästli, P., Haslinger, F., and Wiemer, S.: The Earthquake Risk Model of Switzerland ERM-CH23, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1504, 2023b.
Perron, V., Bergamo, P., and Fäh D.: Site Amplification at High Spatial Resolution from Combined Ambient Noise and Earthquake Recordings in Sion, Switzerland, Seismol. Res. Lett., 93, 2281–2298, 2022.
Poggi, V., Edward, B., and Fäh, D.: A comparative analysis of site-specific response spectral amplification models, Phys. Chem. Earth, 98, 16–26, https://doi.org/10.1016/j.pce.2016.09.001, 2017.
Racine, R., Cauzzi, C., Clinton, J., Roman, R.,. Cauzzi, C. V., Clinton, J. F., Fäh, D., Edwards, B., Diehl, T., Heimers, S., Deichmann, N., Kästli, P., Haslinger, F., and Wiemer, S.: Updated determination of earthquake magnitudes at the Swiss Seismological Service, EGU General Assembly 2020, 4–8 May 2020, online, https://doi.org/10.5194/egusphere-egu2020-8273, 2020.
Reuland, Y., Martakis, P., and Chatzi, E.: Damage-sensitive features for rapid damage assessment in a seismic context, in: 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 30 June–2 July 2021, Porto, Portugal, 613–619, 2021.
Reuland, Y., Martakis, P., and Chatzi, E.: A Comparative Study of Damage-Sensitive Features for Rapid Data-Driven Seismic Structural Health Monitoring, Appl. Sci., 13, 2708, https://doi.org/10.3390/app13042708, 2023a.
Reuland, Y., Khodaverdian, A., Crowley, H., Nievas, C., Martakis, P., and Chatzi, E.: Monitoring-Driven Post-earthquake Building Damage Tagging, in: Experimental Vibration Analysis for Civil Engineering Structures, EVACES 2023, Lecture Notes in Civil Engineering, vol. 433, edited by: Limongelli, M. P., Giordano, P. F., Quqa, S., Gentile, C., and Cigada, A., Springer, Cham, https://doi.org/10.1007/978-3-031-39117-0_56, 2023b.
Roten, D., Fäh, D., and Bonilla, L. F.: Quantification of cyclic mobility parameters in liquefiable soils from inversion of vertical array records, Bull. Seismol. Soc. Am., 104, 3115–3138, 2014.
Sägesser, R. and Mayer-Rosa, D: Erdbebengefährdung in der Schweiz, Schweizerische Bauzeitung Heft 7, https://www.e-periodica.ch/digbib/view?pid=sbz-002:1978:96::78#1074 (last access: February 2024), 1978.
Sánchez-Pastor, P., Obermann, A., Schimmel, M., Weemstra, C., Verdel, A., and Jousset, P.: Short-and long-term variations in the Reykjanes geothermal reservoir from seismic noise interferometry, Geophys. Res. Lett., 46, 5788–5798, https://doi.org/10.1029/2019GL082352, 2019.
Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., Field, E., and Michael, A.: Pseudoprospective Evaluation of UCERF3‐ETAS Forecasts during the 2019 Ridgecrest Sequence, Bull. Seismol. Soc. Am., 110, 1799–1817, https://doi.org/10.1785/0120200026, 2020.
Scarabello, L. and Diehl, T.: swiss-seismological-service/scrtdd, Zenodo [code], https://doi.org/10.5281/zenodo.5337361, 2021.
Scarabello, L., Diehl, T., Kästli, P., Clinton, J., and Wiemer, S.: Towards Real-Time Double-Difference Hypocenter Relocation of Natural and Induced Seismicity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13058, https://doi.org/10.5194/egusphere-egu2020-13058, 2020.
Schorlemmer, D., Euchner, F., Kästli, P., Saul, J., and Group, Q. W.: QuakeML: status of the XML-based seismological data exchange format, Ann. Geophys., 54, 59–65, https://doi.org/10.4401/ag-4874, 2011.
SED – Swiss Seismological Service At ETH Zurich: National Seismic Networks of Switzerland, Other/Seismic Network, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/CH, 1983.
SED – Swiss Seismological Service At ETH Zurich: Temporary deployments in Switzerland associated with glacier monitoring, Other, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/4D, 1985.
SED – Swiss Seismological Service At ETH Zurich: Temporary deployments in Switzerland associated with aftershocks and other seismic sequences, Other, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/8D, 2005.
SED – Swiss Seismological Service at ETH Zurich: GEOBEST Baseline Seismic Monitoring Networks for Deep Geothermal Energy Projects in Switzerland, Other/Seismic network, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/G2, 2006.
SED – Swiss Seismological Service At ETH Zurich: Temporary deployments in Switzerland associated with landslides; ETH Zurich. Other. https://doi.org/10.12686/SED/NETWORKS/XP, 2012.
SED – Swiss Seismological Service at ETH Zurich: The Site Characterization Database for Seismic Stations in Switzerland, Federal Institute of Technology, Zurich, https://doi.org/10.12686/sed-stationcharacterizationdb, 2015.
SED – Swiss Seismological Service at ETH Zurich: Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) Seismic Network, Switzerland, Other/Seismic network, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/8R, 2018a.
SED – Swiss Seismological Service At ETH Zurich: Stations deployed for Risk Model Switzerland, Other, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/XY, 2018b.
SED – Swiss Seismological Service at ETH Zurich: Temporary Deployments operated by industry partners of the Swiss Seismological Serrvice, typically associated with geothermal monitoring projects, Other/Seismic Network, ETH Zurich, Zurich, https://doi.org/10.12686/SED/NETWORKS/5A, 2021.
Shynkarenko, A., Kremer, K., Stegmann, S., Bergamo, P., Lontsi, A. M., Roesner, A., Hammerschmidt, S., Kopf, A., and Fäh, D.: Geotechnical characterization and stability analysis of subaqueous slopes in Lake Lucerne (Switzerland), Nat. Hazards, 113, 475–505, 2022.
SIA 261: Norm 261, Einwirkungen auf Tragwerke, SIA – Schweizerischer Ingenieur- und Architektenverein, Zurich, http://shop.sia.ch/normenwerk/architekt/sia 261/d/2020/D/Product (last access: February 2023), 2020.
Silva, V., Amo-Oduro, D., Calderon, A., Costa, C., Dabbeek, J., Despotaki, V., Martins, L., Pagani, M., Rao, A., and Simionato, M.: Development of a global seismic risk model, Earthq. Spectra, 36, 372–394, 2020.
Spica, Z., Perton, M., Martin, E., Beroza, G., and Biondi, B.: Urban seismic site characterization by fiber-optic seismology, J. Geophys. Res., 125, e2019JB018656, https://doi.org/10.1029/2019JB018656, 2020.
Spica, Z. J., Castellanos, J. C., Viens, L., Nishida, K., Akuhara, T., Shinohara, M., and Yamada, T.: Subsurface imaging with ocean-bottom distributed acoustic sensing and water phases reverberations, Geophys. Res. Lett., 49, e2021GL095287, https://doi.org/10.1029/2021GL095287, 2022.
Strader, A., Schneider, M., and Schorlemmer, D.: Prospective and retrospective evaluation of five-year earthquake forecast models for California, Geophys. J. Int., 211, 239–251, 2017.
Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., and Stammler, K.: EIDA: The European integrated data archive and service infrastructure within ORFEUS, Seismol. Soc. Am., 92, 1788–1795, 2021.
Strupler, M., Hilbe, M., Kremer, K., Danciu, L., Anselmetti, F. S., Strasser, M., and Wiemer, S.: Subaqueous landslide-triggered tsunami hazard for Lake Zurich, Switzerland, Swiss J. Geosci., 111, 353–371, 2018.
Toledo, T., Obermann, A., Verdel, A., Martins, J. E., Jousset, P., Mortensen, A. K., Erbas, K., and Krawczyk, C. M.: Ambient seismic noise monitoring and imaging at the Theistareykir geothermal field (Iceland), J. Volcanol. Geoth. Res., 429, 107590, https://doi.org/10.1016/j.jvolgeores.2022.107590, 2022.
Valenzuela Rodríguez, N.: Die aktuelle Erdbebensituation der Schweiz visualisieren – Eine Analyse der Erdbebenkarte der MeteoSchweiz-App hinsichtlich ihrer Verständlichkeit und ihres Verbesserungspotenzials, MS thesis, ZHAW – Zurich University of Applied Sciences, Zurich, https://www.polybox.ethz.ch/index.php/s/vaBmjfUr0AgaVtS (last access: February 2024), 2021.
Van der Elst, N. J., Hardebeck, J. L., Michael, A. J., McBride, S. K., and Vanacore, E.: Prospective and retrospective evaluation of the US Geological Survey Public aftershock forecast for the 2019–2021 Southwest Puerto Rico Earthquake and aftershocks, Seismol. Soc. Am., 93, 620–640, 2022.
Van Stiphout, T., Wiemer, S., and Marzocchi, W.: Are short-term evacuations warranted? Case of the 2009 L'Aquila earthquake, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2009GL042352, 2010.
Waldhauser, F.: Near-real-time double-difference event location using long-term seismic archives, with application to Northern California, Bull. Seismol. Soc. Am., 99, 2736–2748, https://doi.org/10.1785/0120080294, 2009.
Waldhauser, F. and Ellsworth, W.: A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California, Bull. Seismol. Soc. Am., 90, 1353–1368, https://doi.org/10.1785/0120000006, 2000.
Walter, F., Gräff, D., Lindner, N., Paitz, P., Köpfli, M., Chmiel, M., and Fichtner, A.: Distributed Acoustic Sensing of microseismic sources and wave propagation in glaciated terrain, Nat. Commun., 11, 2436, https://doi.org/10.1038/s41467-020-15824-6, 2020.
Wiemer, S., Danciu, L., Edwards, B., Marti, M., Fäh, D., Hiemer, S., Wössner, J., Cauzzi, C., Kästli, P., and Kremer, K.: Seismic Hazard Model 2015 for Switzerland (SUIhaz2015), ETH Zurich, Zurich, https://doi.org/10.12686/a2, 2016.
Wiemer, S., Papadopoulos, A., Roth, P., Danciu, L., Bergamo, P., Fäh, D., Duvernay, B., Khodaverdian, A., Lestuzzi, P., Odabaşi, Ö., Fagà, E., Bazzuro, P., Cauzzi, C., Hammer, C., Panzera, F., Perron, V., Marti, M., N., V., Dallo, I., Zaugg, S., Fulda, D., Kästli, P., Schmid, N., and Haslinger, F.: Earthquake Risk Model of Switzerland (ERM-CH23), Swiss Seismological Service, ETH Zurich, Zurich, https://doi.org/10.12686/a20, 2023.
Woessner, J., Hainzl, S., Marzocchi, W., Werner, M. J., Lombardi, A. M., Catalli, F., Enescu, B., Cocco, M., Gerstenberger, M. C., and Wiemer, S.: A retrospective comparative forecast test on the 1992 Landers sequence, J. Geophys. Res.-Solid, 116, B05305, https://doi.org/10.1029/2010JB007846, 2011.
Woessner, J., Danciu, L., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A., Sesetyan, K., and Stucchi, M.: The 2013 European Seismic Hazard Model: key components and results, Bull. Earthq. Eng., 13, 3553–3596, https://doi.org/10.1007/s10518-015-9795-1, 2015.
Worden, C. B., Thompson, E. M., Hearne, M., and Wald, D. J.: ShakeMap Manual Online: technical manual, user's guide, and software guide, US Geological Survey, https://doi.org/10.5066/F7D21VPQ, 2020.
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change...
Special issue
Altmetrics
Final-revised paper
Preprint