Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3945-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-24-3945-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Laurentiu Danciu
Swiss Seismological Service, ETH Zurich, Zurich, Switzerland
Céline Beauval
ISTerre, IRD, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Univ. Gustave Eiffel, Grenoble, France
Karin Sesetyan
Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, 34684 Istanbul, Türkiye
Susana Pires Vilanova
Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
Shota Adamia
Institute of Geophysics, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
Pierre Arroucau
Electricité de France, TEGG, Aix-en-Provence, France
Jure Atanackov
Geological Survey of Slovenia, Ljubljana, Slovenia
Stéphane Baize
Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
Carolina Canora
Universidad Autónoma de Madrid, Facultad de Ciencias, Dpto. Geología y Geoquímica, 28049 Madrid, Spain
Riccardo Caputo
Department of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy
Michele Matteo Cosimo Carafa
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Edward Marc Cushing
Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
Susana Custódio
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Mine Betul Demircioglu Tumsa
Turkish Earthquake Foundation, Istanbul, Türkiye
João C. Duarte
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Athanassios Ganas
National Observatory of Athens (NOA), Athens, Greece
Julián García-Mayordomo
Instituto Geológico y Minero de España (IGME-CSIC), 28760 Madrid, Spain
Laura Gómez de la Peña
Institut de Ciències del Mar-CSIC, Barcelona, Spain
Eulàlia Gràcia
Institut de Ciències del Mar-CSIC, Barcelona, Spain
Petra Jamšek Rupnik
Geological Survey of Slovenia, Ljubljana, Slovenia
Hervé Jomard
Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
Vanja Kastelic
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Francesco Emanuele Maesano
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Raquel Martín-Banda
Instituto Geológico y Minero de España (IGME-CSIC), 28760 Madrid, Spain
Sara Martínez-Loriente
Institut de Ciències del Mar-CSIC, Barcelona, Spain
Marta Neres
Instituto Português do Mar e da Atmosfera, 1749-077 Lisboa, Portugal
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Hector Perea
Institut de Ciències del Mar-CSIC, Barcelona, Spain
Barbara Šket Motnikar
Slovenian Environment Agency, Ljubljana, Slovenia
Mara Monica Tiberti
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Nino Tsereteli
Institute of Geophysics, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
Varvara Tsironi
National Observatory of Athens (NOA), Athens, Greece
Roberto Vallone
Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
Kris Vanneste
Royal Observatory of Belgium, Brussels, Belgium
Polona Zupančič
Slovenian Environment Agency, Ljubljana, Slovenia
Domenico Giardini
Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Related authors
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Enrico Baglione, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Roberto Basili, Beatriz Brizuela, Roberto Tonini, Manuela Volpe, Hafize Basak Bayraktar, and Alessandro Amato
Nat. Hazards Earth Syst. Sci., 21, 3713–3730, https://doi.org/10.5194/nhess-21-3713-2021, https://doi.org/10.5194/nhess-21-3713-2021, 2021
Short summary
Short summary
We investigated the seismic fault structure and the rupture characteristics of the MW 6.6, 2 May 2020, Cretan Passage earthquake through tsunami data inverse modelling. Our results suggest a shallow crustal event with a reverse mechanism within the accretionary wedge rather than on the Hellenic Arc subduction interface. The study identifies two possible ruptures: a steeply sloping reverse splay fault and a back-thrust rupture dipping south, with a more prominent dip angle.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Océane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci., 25, 1881–1900, https://doi.org/10.5194/nhess-25-1881-2025, https://doi.org/10.5194/nhess-25-1881-2025, 2025
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge, and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, the inclusion of volcanic seismicity, and a complete revision of the subduction interface zoning.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
Solid Earth, 16, 333–350, https://doi.org/10.5194/se-16-333-2025, https://doi.org/10.5194/se-16-333-2025, 2025
Short summary
Short summary
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the Bedretto Lab, Switzerland. The P and S1 waves show a clear trend of faster velocities in the NE–SW direction and slower velocities perpendicular to it, indicating a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress, but also the orientation of fractures is expected to influence the velocities.
Antonio J. Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-4126, https://doi.org/10.5194/egusphere-2024-4126, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for the Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matthew C. Gerstenberger
Nat. Hazards Earth Syst. Sci., 25, 1–12, https://doi.org/10.5194/nhess-25-1-2025, https://doi.org/10.5194/nhess-25-1-2025, 2025
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Sarah El Kadri, Celine Beauval, Marlene Brax, and Yann Klinger
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-184, https://doi.org/10.5194/nhess-2024-184, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Seismic hazard evaluation is required for establishing earthquake-resistant building codes. Our aim is to improve the quantification of seismic hazard in the Levant by including our knowledge on how faults may be interconnected. We build an earthquake forecast by redistributing the energy stored in the fault system over all possible earthquake ruptures. This interconnected fault model leads to seismic hazard maps where hazard is as high on secondary fault branches as on main branches.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
Nat. Hazards Earth Syst. Sci., 24, 3401–3421, https://doi.org/10.5194/nhess-24-3401-2024, https://doi.org/10.5194/nhess-24-3401-2024, 2024
Short summary
Short summary
This study identifies a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modeling we found that this was an earthquake of magnitude 6.3 to 7.0 on a fault near the city of Coyhaique.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024, https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
Short summary
ShellSet is a combination of well-known geoscience software packages. It features a simple user interface and is optimised through the addition of a grid search input option (automatically searching for optimal models within a defined N-dimensional parameter space) and the ability to run multiple models in parallel. We show that for each number of models tested there is a performance benefit to parallel running, while two examples demonstrate a use case by improving an existing global model.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Mathilde Banjan, Christian Crouzet, Hervé Jomard, Pierre Sabatier, David Marsan, and Erwan Messager
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-83, https://doi.org/10.5194/nhess-2024-83, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This research shows how lake sediments reveal seismic activity history over extended periods, surpassing historical records. Sediment analysis from Lake Aiguebelette in the Western Alps found 32 layers likely caused by earthquakes over the Holocene. Robust dating methods correlated these layers with known historical earthquakes. Results suggest Lake Aiguebelette's sediment records mainly reflect local seismic events, enhancing understanding of earthquake recurrence and regional seismic history.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Paola Sbarra, Pierfrancesco Burrato, Valerio De Rubeis, Patrizia Tosi, Gianluca Valensise, Roberto Vallone, and Paola Vannoli
Nat. Hazards Earth Syst. Sci., 23, 1007–1028, https://doi.org/10.5194/nhess-23-1007-2023, https://doi.org/10.5194/nhess-23-1007-2023, 2023
Short summary
Short summary
Earthquakes are fundamental for understanding how the earth works and for assessing seismic risk. We can easily measure the magnitude and depth of today's earthquakes, but can we also do it for pre-instrumental ones? We did it by analyzing the decay of earthquake effects (on buildings, people, and objects) with epicentral distance. Our results may help derive data that would be impossible to obtain otherwise, for any country where the earthquake history extends for centuries, such as Italy.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Margarida Ramalho, Luis Matias, Marta Neres, Michele M. C. Carafa, Alexandra Carvalho, and Paula Teves-Costa
Nat. Hazards Earth Syst. Sci., 22, 117–138, https://doi.org/10.5194/nhess-22-117-2022, https://doi.org/10.5194/nhess-22-117-2022, 2022
Short summary
Short summary
Probabilistic seismic hazard assessment (PSHA) is the most common tool used to decide on the acceptable seismic risk by society and mitigation measures. In slowly deforming regions, such Iberia, the earthquake generation models (EGMs) for PSHA suffer from great uncertainty. In this work we propose two sanity tests to be applied to EGMs, comparing the EGM moment release with constrains derived from GNSS observations or neotectonic modelling. Similar tests should be part of other region studies.
Enrico Baglione, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Roberto Basili, Beatriz Brizuela, Roberto Tonini, Manuela Volpe, Hafize Basak Bayraktar, and Alessandro Amato
Nat. Hazards Earth Syst. Sci., 21, 3713–3730, https://doi.org/10.5194/nhess-21-3713-2021, https://doi.org/10.5194/nhess-21-3713-2021, 2021
Short summary
Short summary
We investigated the seismic fault structure and the rupture characteristics of the MW 6.6, 2 May 2020, Cretan Passage earthquake through tsunami data inverse modelling. Our results suggest a shallow crustal event with a reverse mechanism within the accretionary wedge rather than on the Hellenic Arc subduction interface. The study identifies two possible ruptures: a steeply sloping reverse splay fault and a back-thrust rupture dipping south, with a more prominent dip angle.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Marguerite Mathey, Christian Sue, Colin Pagani, Stéphane Baize, Andrea Walpersdorf, Thomas Bodin, Laurent Husson, Estelle Hannouz, and Bertrand Potin
Solid Earth, 12, 1661–1681, https://doi.org/10.5194/se-12-1661-2021, https://doi.org/10.5194/se-12-1661-2021, 2021
Short summary
Short summary
This work features the highest-resolution seismic stress and strain fields available at the present time for the analysis of the active crustal deformation of the Western Alps. In this paper, we address a large dataset of newly computed focal mechanisms from a statistical standpoint, which allows us to suggest a joint control from far-field forces and from buoyancy forces on the present-day deformation of the Western Alps.
Alessandro Tibaldi, Federico Pasquaré Mariotto, Paolo Oppizzi, Fabio Luca Bonali, Nino Tsereteli, Levan Mebonia, and Johni Chania
Earth Syst. Sci. Data, 13, 3321–3335, https://doi.org/10.5194/essd-13-3321-2021, https://doi.org/10.5194/essd-13-3321-2021, 2021
Short summary
Short summary
Under a NATO project, we installed a monitoring system at the Khoko landslide facing the Enguri artificial reservoir (Greater Caucasus). During 2016–2019, we compare slope deformation with meteorological factors and variations in the water level of the reservoir. Our results indicate that the landslide displacements appear to be controlled by variations in hydraulic load and partially by rainfall.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Cited articles
Aki, K. and Richards, P. G.: Quantitative seismology: Theory and methods, W. H. Freeman & Co, San Francisco, 557 pp., ISBN 978-0-7167-1059-2, ISBN 978-0-7167-1058-5, 1980.
Akoglu, A. M., Cakir, Z., Meghraoui, M., Belabbes, S., El Alami, S. O., Ergintav, S., and Akyüz, H. S.: The 1994–2004 Al Hoceima (Morocco) earthquake sequence: Conjugate fault ruptures deduced from InSAR, Earth Planet. Sc. Lett., 252, 467–480, https://doi.org/10.1016/j.epsl.2006.10.010, 2006.
Allen, T. I. and Hayes, G. P.: Alternative Rupture-Scaling Relationships for Subduction Interface and Other Offshore Environments, Bull. Seismol. Soc. Am., 107, 1240–1253, https://doi.org/10.1785/0120160255, 2017.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA, https://doi.org/10.7289/V5C8276M, 2009.
Árnadóttir, T., Geirsson, H., and Jiang, W.: Crustal deformation in Iceland: Plate spreading and earthquake deformation, Jökull, 58, 59–74, 2008.
Arroucau, P., Custódio, S., Civiero, C., Silveira, G., Dias, N., Díaz, J., Villaseñor, A., and Bodin, T.: PRISM3D: a 3-D reference seismic model for Iberia and adjacent areas, Geophys. J. Int., 225, 789–810, https://doi.org/10.1093/gji/ggab005, 2021.
Atanackov, J., Jamšek Rupnik, P., Jež, J., Celarc, B., Novak, M., Milanič, B., Markelj, A., Bavec, M., and Kastelic, V.: Database of Active Faults in Slovenia: Compiling a New Active Fault Database at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains, Front. Earth Sci., 9, 604388, https://doi.org/10.3389/feart.2021.604388, 2021.
Atanackov, J., Jamšek Rupnik, P., Zupančič, P., Šket Motnikar, B., Živčić, M., Čarman, M., Milanič, B., Kastelic, V., Rajh, G., and Gosar, A.: Seismogenic fault and area sources for probabilistic seismic hazard model in Slovenia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940100, 2022.
Bailo, D., Paciello, R., Michalek, J., Cocco, M., Freda, C., Jeffery, K., and Atakan, K.: The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets, Sci. Data, 10, 784, https://doi.org/10.1038/s41597-023-02697-9, 2023.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M. M., and Boschi, E.: The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology, Tectonophysics, 453, 20–43, https://doi.org/10.1016/j.tecto.2007.04.014, 2008.
Basili, R., Kastelic, V., Demircioglu, M. B., Garcia Moreno, D., Nemser, E. S., Petricca, P., Sboras, S. P., Besana-Ostman, G. M., Cabral, J., Camelbeeck, T., Caputo, R., Danciu, L., Domac, H., Fonseca, J. F. de B. D., García-Mayordomo, J., Giardini, D., Glavatovic, B., Gulen, L., Ince, Y., Pavlides, S., Sesetyan, K., Tarabusi, G., Tiberti, M. M., Utkucu, M., Valensise, G., Vanneste, K., Vilanova, S. P., and Wössner, J.: The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE, INGV – Istituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.6092/INGV.IT-SHARE-EDSF, 2013.
Basili, R., Brizuela, B., Herrero, A., Iqbal, S., Lorito, S., Maesano, F. E., Murphy, S., Perfetti, P., Romano, F., Scala, A., Selva, J., Taroni, M., Tiberti, M. M., Thio, H. K., Tonini, R., Volpe, M., Glimsdal, S., Harbitz, C. B., Løvholt, F., Baptista, M. A., Carrilho, F., Matias, L. M., Omira, R., Babeyko, A., Hoechner, A., Gürbüz, M., Pekcan, O., Yalçıner, A., Canals, M., Lastras, G., Agalos, A., Papadopoulos, G., Triantafyllou, I., Benchekroun, S., Agrebi Jaouadi, H., Ben Abdallah, S., Bouallegue, A., Hamdi, H., Oueslati, F., Amato, A., Armigliato, A., Behrens, J., Davies, G., Di Bucci, D., Dolce, M., Geist, E., Gonzalez Vida, J. M., González, M., Macías Sánchez, J., Meletti, C., Ozer Sozdinler, C., Pagani, M., Parsons, T., Polet, J., Power, W., Sørensen, M., and Zaytsev, A.: The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18), Front. Earth Sci., 8, 616594, https://doi.org/10.3389/feart.2020.616594, 2021.
Basili, R., Danciu, L., Beauval, C., Sesetyan, K., Vilanova, S. P., Adamia, S., Arroucau, P., Atanackov, J., Baize, S., Canora, C., Caputo, R., Carafa, M. M. C., Cushing, M. E., Custódio, S., Demircioglu Tumsa, M. B., Duarte, J. C., Ganas, A., García-Mayordomo, J., Gómez de la Peña, L., Gràcia, E., Jamšek Rupnik, P., Jomard, H., Kastelic, V., Maesano, F. E., Martín-Banda, R., Martínez-Loriente, S., Neres, M., Perea, H., Sket-Motnikar, B., Tiberti, M. M., Tsereteli, N., Tsironi, V., Vallone, R., Vanneste, K., and Zupančič, P.: European Fault-Source Model 2020 (EFSM20): online data on fault geometry and activity parameters, Seismofaults.eu [data set], https://doi.org/10.13127/EFSM20, 2022.
Bayat, F., Kowsari, M., and Halldorsson, B.: A new 3-D finite-fault model of the Southwest Iceland bookshelf transform zone, Geophys. J. Int., 231, 1618–1633, https://doi.org/10.1093/gji/ggac272, 2022.
Becker, D. and Meier, T.: Seismic Slip Deficit in the Southwestern Forearc of the Hellenic Subduction Zone, Bull. Seismol. Soc. Am., 100, 325–342, https://doi.org/10.1785/0120090156, 2010.
Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., and Leeder, M. R.: Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece, Basin Res., 21, 824–855, https://doi.org/10.1111/j.1365-2117.2009.00401.x, 2009.
Bergerat, F., Angelier, J., and Villemin, T.: Fault systems and stress patterns on emerged oceanic ridges: a case study in Iceland, Tectonophysics, 179, 183–197, https://doi.org/10.1016/0040-1951(90)90290-O, 1990.
Bilek, S. L. and Lay, T.: Rigidity variations with depth along interplate megathrust faults in subduction zones, Nature, 400, 443–446, https://doi.org/10.1038/22739, 1999.
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophy. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003.
Borque, M. J., Sánchez-Alzola, A., Martin-Rojas, I., Alfaro, P., Molina, S., Rosa-Cintas, S., Rodríguez-Caderot, G., Lacy, C., García-Armenteros, J. A., Avilés, M., Herrera-Olmo, A., García-Tortosa, F. J., Estévez, A., and Gil, A. J.: How Much Nubia-Eurasia Convergence Is Accommodated by the NE End of the Eastern Betic Shear Zone (SE Spain)? Constraints From GPS Velocities, Tectonics, 38, 1824–1839, https://doi.org/10.1029/2018TC004970, 2019.
Briole, P., Ganas, A., Elias, P., and Dimitrov, D.: The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model, Geophys. J. Int., 226, 468–492, https://doi.org/10.1093/gji/ggab089, 2021.
Calais, E., Camelbeeck, T., Stein, S., Liu, M., and Craig, T. J.: A new paradigm for large earthquakes in stable continental plate interiors, Geophys. Res. Lett., 43, 10621–10637, https://doi.org/10.1002/2016GL070815, 2016.
Canora, C., Vilanova, S. P., Besana-Ostman, G. M., Carvalho, J., Heleno, S., and Fonseca, J.: The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment, Tectonophysics, 660, 117–131, https://doi.org/10.1016/j.tecto.2015.08.026, 2015.
Caputo, R. and Pavlides, S.: Greek Database of Seismogenic Sources (GreDaSS): A compilation of potential seismogenic sources (Mw>5.5) in the Aegean Region, GreDaSS [data set], https://doi.org/10.15160/UNIFE/GREDASS/0200, 2013.
Carafa, M. M. C., Kastelic, V., Bird, P., Maesano, F. E., and Valensise, G.: A “Geodetic Gap” in the Calabrian Arc: Evidence for a Locked Subduction Megathrust?, Geophys. Res. Lett., 45, 1794–1804, https://doi.org/10.1002/2017gl076554, 2018.
Civiero, C., Strak, V., Custódio, S., Silveira, G., Rawlinson, N., Arroucau, P., and Corela, C.: A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography, Earth Planet. Sc. Lett., 499, 157–172, https://doi.org/10.1016/j.epsl.2018.07.024, 2018.
Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalçın, H., Utkucu, M., Khan, M. A., Sayab, M., Hessami, K., Rovida, A. N., Stucchi, M., Burg, J.-P., Karakhanian, A., Babayan, H., Avanesyan, M., Mammadli, T., Al-Qaryouti, M., Kalafat, D., Varazanashvili, O., Erdik, M., and Giardini, D.: The 2014 Earthquake Model of the Middle East: seismogenic sources, Bull. Earthq. Eng., 16, 3465–3496, https://doi.org/10.1007/s10518-017-0096-8, 2018.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, EFEHR Technical Report 001, v1.0.0, EFEHR, https://doi.org/10.12686/a15, 2021.
Danciu, L., Weatherill, G., Rovida, A., Basili, R., Bard, P.-Y., Beauval, C., Nandan, S., Pagani, M., Crowley, H., Sesetyan, K., Villanova, S., Reyes, C., Marti, M., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 European Seismic Hazard Model: Milestones and Lessons Learned, in: Progresses in European Earthquake Engineering and Seismology, edited by: Vacareanu, R. and Ionescu, C., Springer International Publishing, Cham, 3–25, https://doi.org/10.1007/978-3-031-15104-0_1, 2022.
Davies, J. H.: Global map of solid Earth surface heat flow: Global Surface Heat Flow Map, Geochem. Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013.
Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., Drouet, S., Douglas, J., Basili, R., Sandikkaya, M. A., Segou, M., Faccioli, E., and Theodoulidis, N.: Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe, J. Seismol., 16, 451–473, https://doi.org/10.1007/s10950-012-9281-z, 2012.
Demircioğlu, M. B., Şeşetyan, K., Duman, T. Y., Çan, T., Tekin, S., and Ergintav, S.: A probabilistic seismic hazard assessment for the Turkish territory: part II – fault source and background seismicity model, Bull. Earthq. Eng., 16, 3399–3438, https://doi.org/10.1007/s10518-017-0130-x, 2018.
Devoti, R., Riguzzi, F., Cuffaro, M., and Doglioni, C.: New GPS constraints on the kinematics of the Apennines subduction, Earth Planet. Sc. Lett., 273, 163–174, https://doi.org/10.1016/j.epsl.2008.06.031, 2008.
Diaconescu, M., Craiu, A., Moldovan, I. A., Constantinescu, E. G., and Ghita, C.: Main active faults from eastern part of Romania (Dobrogea and Black Sea), Part II: Transversal and oblique faults system, Romanian Reports in Physics, 71, 708, https://rrp.nipne.ro/2019_71_2.html (last access: 14 November 2024), 2019a.
Diaconescu, M., Craiu, A., Toma-Danila, D., Craiu, G. M., and Ghita, C.: Main active faults from Romania, Part I: Longitudinal and faults system, Romanian Reports in Physics, 71, 702, https://rrp.nipne.ro/2019_71_1.html (last access: 14 November 2024), 2019b.
Diaconescu, M., Craiu, A., Ghita, C., Moldovan, I. A., Oros, E., Constantinescu, E. G., and Marius, M.: Main active faults from Romania, Part III: Fault systems from Dacia tectonic unit, Romanian Reports in Physics, 73, 710, https://rrp.nipne.ro/2021_73_3.html (last access: 14 November 2024), 2021.
DISS Working Group: Database of Individual Seismogenic Sources (DISS), version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, DISS Working Group [data set], https://doi.org/10.13127/DISS3.3.0, 2021.
Di Stefano, R., Chiarabba, C., Lucente, F., and Amato, A.: Crustal and uppermost mantle structure in Italy fron the inversion of P-wave arrival times: geodynamic impliations, Geophys. J. Int., 139, 483–498, https://doi.org/10.1046/j.1365-246x.1999.00952.x, 1999.
Dutta, R., Jónsson, S., and Vasyura-Bathke, H.: Simultaneous Bayesian Estimation of Non-Planar Fault Geometry and Spatially-Variable Slip, J. Geophys. Res.-Solid, 126, e2020JB020441, https://doi.org/10.1029/2020JB020441, 2021.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., and Çan, T.: Active fault database of Turkey, Bull. Earthq. Eng., 16, 3229–3275, https://doi.org/10.1007/s10518-016-0041-2, 2018.
England, P. and Jackson, J.: Uncharted seismic risk, Nat. Geosci., 4, 348–349, https://doi.org/10.1038/ngeo1168, 2011.
Escartín, J., Cowie, P. A., Searle, R. C., Allerton, S., Mitchell, N. C., MacLeod, C. J., and Slootweg, A. P.: Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, Mid-Atlantic Ridge, 29° N, J. Geophys. Res., 104, 10421–10437, https://doi.org/10.1029/1998JB900097, 1999.
Fadil, A., Vernant, P., McClusky, S., Reilinger, R., Gomez, F., Ben Sari, D., Mourabit, T., Feigl, K., and Barazangi, M.: Active tectonics of the western Mediterranean: Geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco, Geology, 34, 529, https://doi.org/10.1130/G22291.1, 2006.
Fernández-Blanco, D., de Gelder, G., Lacassin, R., and Armijo, R.: A new crustal fault formed the modern Corinth Rift, Earth-Sci. Rev., 199, 102919, https://doi.org/10.1016/j.earscirev.2019.102919, 2019.
Finocchio, D., Barba, S., and Basili, R.: Slip rate depth distribution for active faults in Central Italy using numerical models, Tectonophysics, 687, 232–244, https://doi.org/10.1016/j.tecto.2016.07.031, 2016.
Forslund, T. and Gudmundsson, A.: Crustal spreading due to dikes and faults in southwest Iceland, J. Struct. Geol., 13, 443–457, https://doi.org/10.1016/0191-8141(91)90017-D, 1991.
Ganas, A.: NOAFAULTS KMZ layer Version 4.0 (V4.0), Zenodo [data set], https://doi.org/10.5281/ZENODO.6326260, 2022.
Ganas, A. and Parsons, T.: Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, J. Geophys. Res., 114, B06404, https://doi.org/10.1029/2008JB005599, 2009.
Ganas, A., Oikonomou, I. A., and Tsimi, C.: NOAfaults: a digital database for active faults in Greece, Bull. Geol. Soc. Greece, 47, 518–530, https://doi.org/10.12681/bgsg.11079, 2013.
Ganas, A., Tsironi, V., Kollia, E., Delagas, M., Tsimi, C., and Oikonomou, A.: Recent upgrades of the NOA database of active faults in Greece (NOAFAULTs), in: Proceedings of the 19th General Assembly of WEGENER, 10–13 September 2018, Grenoble, France, https://wegener2018.sciencesconf.org/data/pages/Session_1_Active_Faults_Recent_upgrades_of_the_NOA_database_of_active_faults_in_Greece_NOAFAULTs_.pdf (last access: 14 November 2024), 2018.
Ganas, A., Briole, P., Bozionelos, G., Barberopoulou, A., Elias, P., Tsironi, V., Valkaniotis, S., Moshou, A., and Mintourakis, I.: The 25 October 2018 Mw=6.7 Zakynthos earthquake (Ionian Sea, Greece): A low-angle fault model based on GNSS data, relocated seismicity, small tsunami and implications for the seismic hazard in the west Hellenic Arc, J. Geodynam., 137, 101731, https://doi.org/10.1016/j.jog.2020.101731, 2020.
Garcia, S., Angelier, J., Bergerat, F., and Homberg, C.: Tectonic analysis of an oceanic transform fault zone based on fault-slip data and earthquake focal mechanisms: the Húsavík–Flatey Fault zone, Iceland, Tectonophysics, 344, 157–174, https://doi.org/10.1016/S0040-1951(01)00282-7, 2002.
García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J. A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M. A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E. S., and Cabral, J.: The Quaternary Active Faults Database of Iberia (QAFI v.2.0), J. Iber. Geol., 38, 285–302, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39219, 2012.
García-Mayordomo, J., Martín-Banda, R., Insua-Arévalo, J. M., Álvarez-Gómez, J. A., Martínez-Díaz, J. J., and Cabral, J.: Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database, Nat. Hazards Earth Syst. Sci., 17, 1447–1459, https://doi.org/10.5194/nhess-17-1447-2017, 2017.
Geist, E. L. and Bilek, S. L.: Effect of depth-dependent shear modulus on tsunami generation along subduction zones, Geophys. Res. Lett., 28, 1315–1318, https://doi.org/10.1029/2000GL012385, 2001.
Goes, S., Agrusta, R., Van Hunen, J., and Garel, F.: Subduction-transition zone interaction: A review, Geosphere, 13, 644–664, https://doi.org/10.1130/GES01476.1, 2017.
Gold, R. D., Friedrich, A., Kübler, S., and Salamon, M.: Apparent Late Quaternary Fault-Slip Rate Increase in the Southern Lower Rhine Graben, Central Europe, Bull. Seismol. Soc. America, 107, 563–580, https://doi.org/10.1785/0120160197, 2017.
Gomez, F., Barazangi, M., and Bensaid, M.: Active tectonism in the intracontinental Middle Atlas Mountains of Morocco: synchronous crustal shortening and extension, J. Geol. Soc., 153, 389–402, https://doi.org/10.1144/gsjgs.153.3.0389, 1996.
Gómez de la Peña, L., Ranero, C. R., and Gràcia, E.: The Crustal Domains of the Alboran Basin (Western Mediterranean), Tectonics, 37, 3352–3377, https://doi.org/10.1029/2017TC004946, 2018.
Gómez de la Peña, L., Gràcia, E., Maesano, F. E., Basili, R., Kopp, H., Sánchez-Serra, C., Scala, A., Romano, F., Volpe, M., Piatanesi, A., and R. Ranero, C.: A first appraisal of the seismogenic and tsunamigenic potential of the largest fault systems in the westernmost Mediterranean, Mar. Geol., 445, 106749, https://doi.org/10.1016/j.margeo.2022.106749, 2022.
Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., and Chartier, T.: Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain), Front. Earth Sci., 8, 579398, https://doi.org/10.3389/feart.2020.579398, 2020a.
Gómez-Novell, O., Chartier, T., García-Mayordomo, J., Ortuño, M., Masana, E., Insua-Arévalo, J. M., and Scotti, O.: Modelling earthquake rupture rates in fault systems for seismic hazard assessment: The Eastern Betics Shear Zone, Eng. Geol., 265, 105452, https://doi.org/10.1016/j.enggeo.2019.105452, 2020b.
Grad, M., Tiira, T., and ESC Working Group: The Moho depth map of the European Plate, Geophys. J. Int., 176, 279–292, https://doi.org/10.1111/j.1365-246X.2008.03919.x, 2009.
Grützner, C., Carson, E., Walker, R. T., Rhodes, E. J., Mukambayev, A., Mackenzie, D., Elliott, J. R., Campbell, G., and Abdrakhmatov, K.: Assessing the activity of faults in continental interiors: Palaeoseismic insights from SE Kazakhstan, Earth Planet. Sc. Lett., 459, 93–104, https://doi.org/10.1016/j.epsl.2016.11.025, 2017.
Gutscher, M.-A., Roger, J., Baptista, M.-A., Miranda, J. M., and Tinti, S.: Source of the 1693 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane, Geophys. Res. Lett., 33, L08309, https://doi.org/10.1029/2005GL025442, 2006.
Gutscher, M.-A., Dominguez, S., Westbrook, G. K., and Leroy, P.: Deep structure, recent deformation and analog modeling of the Gulf of Cadiz accretionary wedge: Implications for the 1755 Lisbon earthquake, Tectonophysics, 475, 85–97, https://doi.org/10.1016/j.tecto.2008.11.031, 2009.
Halpaap, F., Rondenay, S., and Ottemöller, L.: Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography, J. Geophys. Res.-Solid, 123, 3000–3026, https://doi.org/10.1002/2017JB015154, 2018.
Halpaap, F., Rondenay, S., Perrin, A., Goes, S., Ottemöller, L., Austrheim, H., Shaw, R., and Eeken, T.: Earthquakes track subduction fluids from slab source to mantle wedge sink, Sci. Adv., 5, eaav7369, https://doi.org/10.1126/sciadv.aav7369, 2019.
Haslinger, F., Basili, R., Bossu, R., Cauzzi, C., Cotton, F., Crowley, H., Custódio, S., Danciu, L., Locati, M., Michelini, A., Molinari, I., Ottemöller, L., and Parolai, S.: Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology, Ann. Geophys., 65, DM213, https://doi.org/10.4401/ag-8767, 2022.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M.: Slab2, a comprehensive subduction zone geometry model, Science, 362, 58–61, https://doi.org/10.1126/science.aat4723, 2018.
Herrero-Barbero, P., Álvarez-Gómez, J. A., Martínez-Díaz, J. J., and Klimowitz, J.: Neogene Basin Inversion and Recent Slip Rate Distribution of the Northern Termination of the Alhama de Murcia Fault (Eastern Betic Shear Zone, SE Spain), Tectonics, 39, e2019TC005750, https://doi.org/10.1029/2019TC005750, 2020.
Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., and Faccenna, C.: Physical characteristics of subduction interface type seismogenic zones revisited, Geochem. Geophy. Geosy., 12, Q01004, https://doi.org/10.1029/2010GC003230, 2011.
Hollenstein, Ch., Müller, M. D., Geiger, A., and Kahle, H.-G.: Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003, Tectonophysics, 449, 17–40, https://doi.org/10.1016/j.tecto.2007.12.006, 2008.
Howell, A., Jackson, J., Copley, A., McKenzie, D., and Nissen, E.: Subduction and vertical coastal motions in the eastern Mediterranean, Geophys. J. Int., 211, 593–620, https://doi.org/10.1093/gji/ggx307, 2017.
IGME: QAFI v.3: Quaternary Faults Database of Iberia, IGME [data set], https://info.igme.es/qafi/ (last access: 30 March 2020), 2015.
ISC: On-line Bulletin, International Seismological Centre, ISC [data set], https://doi.org/10.31905/d808b830, 2019.
Johnston, A. C.: Seismotectonic interpretations and conclusions from the stable continental region seismicity database, in: The Earthquakes of Stable Continental Regions – v. 1 Assessment of Large Earthquake Potential, Report No. TR102261V1,edtied by: Johnston, A. C., Coppersmith, K. J., Kanter, L. R., and Cornell, C. A., Electric Power Research Institute, Palo Alto, California, https://www.epri.com/research/products/TR-102261-V1 (last access: 14 November 2024), 1994.
Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., and Chartier, T.: Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France, Nat. Hazards Earth Syst. Sci., 17, 1573–1584, hthttps://doi.org/10.5194/nhess-17-1573-2017, 2017.
Kagan, Y. Y. and Jackson, D. D.: Tohoku Earthquake: A Surprise?, Bull. Seismol. Soc. America, 103, 1181–1194, https://doi.org/10.1785/0120120110, 2013.
Kagan, Y. Y., Bird, P., and Jackson, D. D.: Earthquake Patterns in Diverse Tectonic Zones of the Globe, Pure Appl. Geophys., 167, 721–741, https://doi.org/10.1007/s00024-010-0075-3, 2010.
Kastens, K. A.: Rate of outward growth of the Mediterranean ridge accretionary complex, Tectonophysics, 199, 25–50, https://doi.org/10.1016/0040-1951(91)90117-B, 1991.
Koulali, A., Ouazar, D., Tahayt, A., King, R. W., Vernant, P., Reilinger, R. E., McClusky, S., Mourabit, T., Davila, J. M., and Amraoui, N.: New GPS constraints on active deformation along the Africa–Iberia plate boundary, Earth Planet. Sc. Lett., 308, 211–217, https://doi.org/10.1016/j.epsl.2011.05.048, 2011.
LaFemina, P. C., Dixon, T. H., Malservisi, R., Árnadóttir, T., Sturkell, E., Sigmundsson, F., and Einarsson, P.: Geodetic GPS measurements in south Iceland: Strain accumulation and partitioning in a propagating ridge system, J. Geophys. Res., 110, B11405, https://doi.org/10.1029/2005JB003675, 2005.
Laigle, M., Hirn, A., Sachpazi, M., and Clément, C.: Seismic coupling and structure of the Hellenic subduction zone in the Ionian Islands region, Earth Planet. Sc. Lett., 200, 243–253, https://doi.org/10.1016/S0012-821X(02)00654-4, 2002.
Laigle, M., Sachpazi, M., and Hirn, A.: Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone, Tectonophysics, 391, 85–95, https://doi.org/10.1016/j.tecto.2004.07.009, 2004.
Leonard, M.: Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release, Bull. Seismol. Soc. Am., 100, 1971–1988, https://doi.org/10.1785/0120090189, 2010.
Leonard, M.: Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults, Bull. Seismol. Soc. Am., 104, 2953–2965, https://doi.org/10.1785/0120140087, 2014.
MacDonald, K. C. and Luyendyk, B. P.: Deep-tow studies of the structure of the Mid-Atlantic Ridge crest near lat 37° N, GSA Bull., 88, 621–636, https://doi.org/10.1130/0016-7606(1977)88<621:DSOTSO>2.0.CO;2, 1977.
Maesano, F. E., Tiberti, M. M., and Basili, R.: The Calabrian Arc: Three-dimensional modelling of the subduction interface, Sci. Rep., 7, 8887, https://doi.org/10.1038/s41598-017-09074-8, 2017.
Maesano, F. E., Buttinelli, M., Maffucci, R., Toscani, G., Basili, R., Bonini, L., Burrato, P., Fedorik, J., Fracassi, U., Panara, Y., Tarabusi, G., Tiberti, M. M., Valensise, G., Vallone, R., and Vannoli, P.: Buried alive: imaging the November 9, 2022, Mw 5.5 earthquake source on the offshore Adriatic blind thrust front of the Northern Apennines (Italy), Geophys. Res. Lett., 50, e2022GL102299, https://doi.org/10.1029/2022GL102299, 2023.
Maggini, M. and Caputo, R.: Rheological behaviour in continental and oceanic subduction:inferences for the seismotectonics of the Aegean Region, Turk. J. Earth Sci., 29, 381–405, https://doi.org/10.3906/yer-1909-4, 2020.
Maggini, M. and Caputo, R.: Seismological data versus rheological modelling: Comparisons across the Aegean Region for improving the seismic hazard assessment, J. Struct. Geol., 145, 104312, https://doi.org/10.1016/j.jsg.2021.104312, 2021.
Martínez-Loriente, S., Gràcia, E., Bartolome, R., Sallarès, V., Connors, C., Perea, H., Lo Iacono, C., Klaeschen, D., Terrinha, P., Dañobeitia, J. J., and Zitellini, N.: Active deformation in old oceanic lithosphere and significance for earthquake hazard: Seismic imaging of the Coral Patch Ridge area and neighboring abyssal plains (SW Iberian Margin), Geochem. Geophy. Geosy., 14, 2206–2231, https://doi.org/10.1002/ggge.20173, 2013.
Martínez-Loriente, S., Sallarès, V., Gràcia, E., Bartolome, R., Dañobeitia, J. J., and Zitellini, N.: Seismic and gravity constraints on the nature of the basement in the Africa-Eurasia plate boundary: New insights for the geodynamic evolution of the SW Iberian margin: Thin oceanic crust at the CPR and SH, J. Geophys. Res.-Solid, 119, 127–149, https://doi.org/10.1002/2013JB010476, 2014.
Martínez-Loriente, S., Gràcia, E., Bartolome, R., Perea, H., Klaeschen, D., Dañobeitia, J. J., Zitellini, N., Wynn, R. B., and Masson, D. G.: Morphostructure, tectono-sedimentary evolution and seismic potential of the Horseshoe Fault, SW Iberian Margin, Basin Res., 30, 382–400, https://doi.org/10.1111/bre.12225, 2018.
Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., and Onur, T.: Seismic Hazard Analyses From Geologic and Geomorphic Data: Current and Future Challenges, Tectonics, 39, e2018TC005365, https://doi.org/10.1029/2018TC005365, 2020.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Neres, M., Carafa, M. M. C., Fernandes, R. M. S., Matias, L., Duarte, J. C., Barba, S., and Terrinha, P.: Lithospheric deformation in the Africa-Iberia plate boundary: Improved neotectonic modeling testing a basal-driven Alboran plate, J. Geophys. Res.-Solid, 121, 6566–6596, https://doi.org/10.1002/2016JB013012, 2016.
Nijholt, N., Govers, R., and Wortel, R.: On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study, Geophys. J. Int., 214, 876–894, https://doi.org/10.1093/gji/ggy144, 2018.
NOAA National Geophysical Data Center: ETOPO1 1 arc-minute global relief model, NOAA National Centers for Environmental Information, NOAA Natinal Geophysical Data Center [data set], https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ngdc.mgg.dem:316/html (last access: 17 September 2016), 2009.
Nocquet, J.-M.: Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results, Tectonophysics, 579, 220–242, https://doi.org/10.1016/j.tecto.2012.03.037, 2012.
Onur, T., Gok, R., Godoladze, T., Gunia, I., Boichenko, G., Buzaladze, A., Tumanova, N., Dzmanashvili, M., Sukhishvili, L., Javakishvili, Z., Cowgill, E., Bondar, I., and Yetirmishli, G.: Probabilistic Seismic Hazard Assessment for Georgia, OSTI.GOV, https://doi.org/10.2172/1511856, 2019.
Onur, T., Gok, R., Godoladze, T., Gunia, I., Boichenko, G., Buzaladze, A., Tumanova, N., Dzmanashvili, M., Sukhishvili, L., Javakishvili, Z., Cowgill, E., Bondár, I., and Yetirmishli, G.: Probabilistic Seismic Hazard Assessment Using Legacy Data in Georgia, Seismol. Res. Lett., 91, 1500–1517, https://doi.org/10.1785/0220190331, 2020.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano, D.: OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014.
Palano, M., González, P. J., and Fernández, J.: The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere, Earth Planet. Sc. Lett., 430, 439–447, https://doi.org/10.1016/j.epsl.2015.08.040, 2015.
Panara, Y., Maesano, F. E., Amadori, C., Fedorik, J., Toscani, G., and Basili, R.: Probabilistic Assessment of Slip Rates and Their Variability Over Time of Offshore Buried Thrusts: A Case Study in the Northern Adriatic Sea, Front. Earth Sci., 9, 664288, https://doi.org/10.3389/feart.2021.664288, 2021.
Passone, L. and Mai, P. M.: Kinematic Earthquake Ground-Motion Simulations on Listric Normal Faults, Bull. Seismol. Soc. Am., 107, 2980–2993, https://doi.org/10.1785/0120170111, 2017.
Pastor, A., Babault, J., Owen, L. A., Teixell, A., and Arboleya, M.-L.: Extracting dynamic topography from river profiles and cosmogenic nuclide geochronology in the Middle Atlas and the High Plateaus of Morocco, Tectonophysics, 663, 95–109, https://doi.org/10.1016/j.tecto.2015.06.007, 2015.
Perea, H., Gràcia, E., Martínez-Loriente, S., Bartolome, R., de la Peña, L. G., de Mol, B., Moreno, X., Iacono, C. L., Diez, S., Tello, O., Gómez-Ballesteros, M., and Dañobeitia, J. J.: Kinematic analysis of secondary faults within a distributed shear-zone reveals fault linkage and increased seismic hazard, Mar. Geol., 399, 23–33, https://doi.org/10.1016/j.margeo.2018.02.002, 2018.
Perea, H., Martínez-Loriente, S., Maloney, J., Maesano, F. E., and Vannucchi, P.: Editorial: Submarine Active Faults: From Regional Observations to Seismic Hazard Characterization, Front. Earth Sci., 9, 809205, https://doi.org/10.3389/feart.2021.809205, 2021.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 111, B05411, https://doi.org/10.1029/2005JB004051, 2006.
Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., and Vernant, P.: Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, 488, 22–30, https://doi.org/10.1016/j.tecto.2009.05.027, 2010.
Rigby, M.: Recent faulting and active shortening of the Middle Atlas Mountains, Morocco, within the diffuse African-Eurasian plate boundary, Master of Science Degree Thesis, Faculty of the Graduate School, University of Missouri-Columbia, https://doi.org/10.32469/10355/5796, 2008.
Rögnvaldsson, S. T., Gudmundsson, A., and Slunga, R.: Seismotectonic analysis of the Tjörnes Fracture Zone, an active transform fault in north Iceland, J. Geophys. Res., 103, 30117–30129, https://doi.org/10.1029/98JB02789, 1998.
Rontogianni, S.: Comparison of geodetic and seismic strain rates in Greece by using a uniform processing approach to campaign GPS measurements over the interval 1994–2000, J. Geodynam., 50, 381–399, https://doi.org/10.1016/j.jog.2010.04.008, 2010.
Rust, D. and Whitworth, M.: A unique ∼12 ka subaerial record of rift-transform triple-junction tectonics, NE Iceland, Sci. Rep., 9, 9669, https://doi.org/10.1038/s41598-019-45903-8, 2019.
Sachpazi, M., Laigle, M., Charalampakis, M., Diaz, J., Kissling, E., Gesret, A., Becel, A., Flueh, E., Miles, P., and Hirn, A.: Segmented Hellenic slab rollback driving Aegean deformation and seismicity, Geophys. Res. Lett., 43, 651–658, https://doi.org/10.1002/2015GL066818, 2016.
Sallarès, V. and Ranero, C. R.: Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes, Nature, 576, 96–101, https://doi.org/10.1038/s41586-019-1784-0, 2019.
Sallarès, V., Gailler, A., Gutscher, M.-A., Graindorge, D., Bartolomé, R., Gràcia, E., Díaz, J., Dañobeitia, J. J., and Zitellini, N.: Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth Planet. Sc. Lett., 311, 112–123, https://doi.org/10.1016/j.epsl.2011.09.003, 2011.
Sallarès, V., Martínez-Loriente, S., Prada, M., Gràcia, E., Ranero, C., Gutscher, M.-A., Bartolome, R., Gailler, A., Dañobeitia, J. J., and Zitellini, N.: Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia), Earth Planet. Sc. Lett., 365, 120–131, https://doi.org/10.1016/j.epsl.2013.01.021, 2013.
Sanz de Galdeano, C., Azañón, J. M., Cabral, J., Ruano, P., Alfaro, P., Canora, C., Ferrater, M., García Tortosa, F. J., García-Mayordomo, J., Gràcia, E., Insua-Arévalo, J. M., Jiménez Bonilla, A., Lacan, P. G., Marín-Lechado, C., Martín-Banda, R., Martín González, F., Martínez-Díaz, J. J., Martín-Rojas, I., Masana, E., Ortuño, M., Pedrera, A., Perea, H., and Simón, J. L.: Active Faults in Iberia, in: The Geology of Iberia: A Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., Springer International Publishing, Cham, 33–75, https://doi.org/10.1007/978-3-030-10931-8_4, 2020.
Satake, K. and Tanioka, Y.: Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones, Pure Appl. Geophys., 154, 467–483, https://doi.org/10.1007/s000240050240, 1999.
Scala, A., Lorito, S., Romano, F., Murphy, S., Selva, J., Basili, R., Babeyko, A., Herrero, A., Hoechner, A., Løvholt, F., Maesano, F. E., Perfetti, P., Tiberti, M. M., Tonini, R., Volpe, M., Davies, G., Festa, G., Power, W., Piatanesi, A., and Cirella, A.: Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models, Pure Appl. Geophys., 177, 1497–1520, https://doi.org/10.1007/s00024-019-02260-x, 2020.
Serra, C. S., Martínez-Loriente, S., Gràcia, E., Urgeles, R., Gómez de la Peña, L., Maesano, F. E., Basili, R., Volpe, M., Romano, F., Scala, A., Piatanesi, A., and Lorito, S.: Sensitivity of Tsunami Scenarios to Complex Fault Geometry and Heterogeneous Slip Distribution: Case-Studies for SW Iberia and NW Morocco, J. Geophys. Res.-Solid, 126, e2021JB022127, https://doi.org/10.1029/2021JB022127, 2021.
Shaw, B. and Jackson, J.: Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophys. J. Int., 181, 966–984, https://doi.org/10.1111/j.1365-246X.2010.04551.x, 2010.
Skarlatoudis, A. A., Somerville, P. G., and Thio, H. K.: Source-Scaling Relations of Interface Subduction Earthquakes for Strong Ground Motion and Tsunami Simulation, Bull. Seismol. Soc. Am., 106, 1652–1662, https://doi.org/10.1785/0120150320, 2016.
Šket Motnikar, B., Zupančič, P., Živčić, M., Atanackov, J., Jamšek Rupnik, P., Čarman, M., Danciu, L., and Gosar, A.: The 2021 seismic hazard model for Slovenia (SHMS21): overview and results, Bull. Earthq. Eng., 20, 4865–4894, https://doi.org/10.1007/s10518-022-01399-8, 2022.
Stich, D., Serpelloni, E., de Lis Mancilla, F., and Morales, J.: Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations, Tectonophysics, 426, 295–317, https://doi.org/10.1016/j.tecto.2006.08.004, 2006.
Styron, R. and Pagani, M.: The GEM Global Active Faults Database, Earthq. Spectra, 36, 160–180, https://doi.org/10.1177/8755293020944182, 2020.
Syracuse, E. M., van Keken, P. E., and Abers, G. A.: The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 183, 73–90, https://doi.org/10.1016/j.pepi.2010.02.004, 2010.
Thiebot, E. and Gutscher, M.-A.: The Gibraltar Arc seismogenic zone (part 1): Constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modeling, Tectonophysics, 426, 135–152, https://doi.org/10.1016/j.tecto.2006.02.024, 2006.
Thingbaijam, K. K. S., Martin Mai, P., and Goda, K.: New Empirical Earthquake Source-Scaling Laws, Bull. Seismol. Soc. Am., 107, 2225–2246, https://doi.org/10.1785/0120170017, 2017.
Tonini, R., Basili, R., Maesano, F. E., Tiberti, M. M., Lorito, S., Romano, F., Scala, A., and Volpe, M.: Importance of earthquake rupture geometry on tsunami modelling: The Calabrian Arc subduction interface (Italy) case study, Geophys. J. Int., 223, 1805–1819, https://doi.org/10.1093/gji/ggaa409, 2020.
van der Woerd, J., Dorbath, C., Ousadou, F., Dorbath, L., Delouis, B., Jacques, E., Tapponnier, P., Hahou, Y., Menzhi, M., Frogneux, M., and Haessler, H.: The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence, J. Geodynam., 77, 89–109, https://doi.org/10.1016/j.jog.2013.12.004, 2014.
Vanneste, K., Camelbeeck, T., and Verbeeck, K.: A Model of Composite Seismic Sources for the Lower Rhine Graben, Northwest Europe, Bull. Seismol. Soc. Am., 103, 984–1007, https://doi.org/10.1785/0120120037, 2013.
Wang, K. and Dixon, T.: “Coupling” Semantics and science in earthquake research, Eos Trans. AGU, 85, 180, https://doi.org/10.1029/2004EO180005, 2004.
Wdowinski, S., Ben-Avraham, Z., Arvidsson, R., and Ekström, G.: Seismotectonics of the Cyprian Arc, Geophys. J. Int., 164, 176–181, https://doi.org/10.1111/j.1365-246X.2005.02737.x, 2006.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974–1002, https://doi.org/10.1785/BSSA0840040974, 1994.
Woessner, J., Danciu, L., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., and the SHARE Consortium: The 2013 European Seismic Hazard Model: key components and results, Bull. Earthq. Eng., 13, 3553–3596, https://doi.org/10.1007/s10518-015-9795-1, 2015.
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic...
Special issue
Altmetrics
Final-revised paper
Preprint