Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Rashid Haider
CORRESPONDING AUTHOR
Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4–20, 52056 Aachen, Germany
Geoscience Advanced Research Laboratory, Geological Survey of Pakistan, Islamabad 45500, Pakistan
Sajid Ali
Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4–20, 52056 Aachen, Germany
Gösta Hoffmann
Department Heritage, Nature, Society, UNESCO Global Geoparks Unit, German Commission for UNESCO, Martin-Luther-Allee 42, 53175 Bonn, Germany
Klaus Reicherter
Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstr. 4–20, 52056 Aachen, Germany
Related authors
No articles found.
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Sarah Mader, Joachim R. R. Ritter, Klaus Reicherter, and the AlpArray Working Group
Solid Earth, 12, 1389–1409, https://doi.org/10.5194/se-12-1389-2021, https://doi.org/10.5194/se-12-1389-2021, 2021
Short summary
Short summary
The Albstadt Shear Zone, SW Germany, is an active rupture zone with sometimes damaging earthquakes but no visible surface structure. To identify its segmentations, geometry, faulting pattern and extension, we analyze the continuous earthquake activity in 2011–2018. We find a segmented N–S-oriented fault zone with mainly horizontal and minor vertical movement along mostly NNE- and some NNW-oriented rupture planes. The main horizontal stress is oriented NW and due to Alpine-related loading.
Cited articles
Ahmed, M., Lodi, S. H., and Rafi, M. M.: Probabilistic seismic hazard analysis based zoning map of Pakistan, J. Earthq. Eng., 26, 271–306, https://doi.org/10.1080/13632469.2019.1684401, 2019.
Banghar, A. and Syke, L. R.: Focal mechanism of an earthquake from the Southern Ocean, Tectonophysics, 79, 37–41, 1981.
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson, K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva, J., Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P., Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B., González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kânoglu, U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon, A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R., Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., and Vyhmeister, E.: Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps, Front. Earth Sci., 9, 1–28, https://doi.org/10.3389/feart.2021.628772, 2021.
Brune, J. N.: Seismic moment, seismicity, and rate of slip along Major fault zones, J. Geophys. Res., 73, 777–784, 1968.
Byrne, D. E., Sykes, L. R., and Davis, D. M.: Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone, J. Geophys. Res., 97, 449–478, https://doi.org/10.1029/91JB02165, 1992.
Chacón-Barrantes, S., Narayanan, R. R. A., and Mayerle, R.: Several Tsunami scenarios at the North Sea and their consequences at the German Bight, Science of tsunami hazards, 32, 8–28, https://oceanrep.geomar.de/id/eprint/35280/ (last access: 22 June 2022), 2013.
Deltares: Delft3d-Flow; simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments, 1–725, https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf (last access: 11 August 2023), 2023.
El-Hussain, I., Omira, R., Deif, A., Al-Habsi, Z., Al-Rawas, G., Mohamad, A., Al-Jabri, K., and Baptista, M. A.: Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone, Arab. J. Geosci., 9, 668, https://doi.org/10.1007/s12517-016-2687-0, 2016.
GEBCO Bathymetric Compilation Group 2023: The GEBCO_2023 Grid – a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2023.
Gelfenbaum, G., Vatvani, D., Jaffe, B., and Dekker, F.: Tsunami inundation and sediment transport in vicinity of coastal mangrove forest, Coast. Sediments '07 – Proc. 6th Int. Symp. Coast. Eng. Sci. Coast. Sediment Process., 1–12, https://doi.org/10.1061/40926(239)86, 2007.
Haider, R., Ali, S., Hoffmann, G., and Reicherter, K.: A multi-proxy approach to assess tsunami hazard with a preliminary risk assessment: A case study of the Makran Coast, Pakistan, Mar. Geol., 459, 107032, https://doi.org/10.1016/j.margeo.2023.107032, 2023.
Hammack, J. L.: A note on tsunamis: Their generation and propagation in an ocean of uniform depth, J. Fluid Mech., 60, 769–799, https://doi.org/10.1017/S0022112073000479, 1973.
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res.-Sol. Ea., 84, 2348–2350, https://doi.org/10.1029/JB084iB05p02348, 1979.
Harbitz, C. B., Løvholt, F., and Bungum, H.: Submarine landslide tsunamis: How extreme and how likely?, Nat. Hazards, 72, 1341–1374, https://doi.org/10.1007/s11069-013-0681-3, 2014.
Heidarzadeh, M. and Satake, K.: Possible sources of the tsunami observed in the northwestern Indian ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquake, Geophys. J. Int., 199, 752–766, https://doi.org/10.1093/gji/ggu297, 2014.
Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., and Mokhtari, M.: Modeling of tsunami propagation in the vicinity of the southern coasts of Iran, Int. J. Civ. Eng., 5, 223–234, https://doi.org/10.1115/OMAE2007-29082, 2007.
Heidarzadeh, M., Krastel, S., and Yalciner, A. C.: The state-of-the-art numerical tools for modeling landslide tsunamis: a short review, in Submarine mass movements and their consequences, 6th international symposium, pp. 483–495, Springer, 2014.
Hoffmann, G., Reicherter, K., Wiatr, T., Grützner, C., and Rausch, T.: Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): Tsunamigenic remains?, Nat. Hazards, 65, 851–873, https://doi.org/10.1007/s11069-012-0399-7, 2013a.
Hoffmann, G., Rupprechter, M., Balushi, N. Al, Grützner, C., and Reicherter, K.: The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean) – a review, Zeitschrift für Geomorphol. Suppl. Issues, 57, 257–277, https://doi.org/10.1127/0372-8854/2013/s-00134, 2013b.
Hoffmann, G., Al-Yahyai, S., Naeem, G., Kociok, M., and Grützner, C.: An Indian Ocean tsunami triggered remotely by an onshore earthquake in Balochistan, Pakistan, Geology, 42, 883–886, https://doi.org/10.1130/G35756.1, 2014.
Hoffmann, G., Grützner, C., Schneider, B., Preusser, F., and Reicherter, K.: Large Holocene tsunamis in the northern Arabian Sea, Mar. Geol., 419, 106068, https://doi.org/10.1016/j.margeo.2019.106068, 2020.
Jade, S., Shrungeshwara, T. S., Kumar, K., Choudhury, P., Dumka, R. K., and Bhu, H.: India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015, Sci. Rep., 7, 1–16, https://doi.org/10.1038/s41598-017-11697-w, 2017.
Khaledzadeh, M. and Ghods, A.: Estimation of size of megathrust zone in the Makran subduction system by thermal modelling, Geophys. J. Int., 228, 1530–1540, https://doi.org/10.1093/gji/ggab417, 2022.
Khan, M. A., Bendick, R., Bhat, M. I., Bilham, R., Kakar, D. M., Khan, S. F., Lodi, S. H., Qazi, M. S., Singh, B., Szeliga, W., and Wahab, A.: Preliminary geodetic constraints on plate boundary deformation on the western edge of the Indian plate from TriGGnet (Tri-University GPS Geodesy Network), J. Himal. Earth Sci., 41, 71–87, 2008.
Koshimura, S., Oie, T., Yanagisawa, H., and Imamura, F.: Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from banda aceh, Indonesia, Coast. Eng. J., 51, 243–273, https://doi.org/10.1142/S0578563409002004, 2009.
Koster, B., Hoffmann, G., Grützner, C., and Reicherter, K.: Ground penetrating radar facies of inferred tsunami deposits on the shores of the Arabian Sea (Northern Indian Ocean), Mar. Geol., 351, 13–24, https://doi.org/10.1016/j.margeo.2014.03.002, 2014.
Kukowski, N., Schillhorn, T., Flueh, E. R., and Huhn, K.: Newly identified strike-slip plate boundary in the northeastern Arabian Sea, Geology, 28, 355–358, https://doi.org/10.1130/0091-7613(2000)28<355:NISPBI>2.0.CO;2, 2000.
Løvholt, F.: Tsunami Hazard and Risk Assessment, United Nations Off. Disaster Risk Reduct., 1–9, https://www.unisdr.org/we/inform/publications/57441 (last access: 27 September 2023), 2017.
Macintosh, A.: Coastal climate hazards and urban planning: how planning responses can lead to maladaptation, Mitigation and Adaptation Strategies for Global Change, 18, 1035–1055, https://doi.org/10.1007/s11027-012-9406-2, 2013.
Okada, Y.: Surface deformation due to shear and tensile faults in a half space, B. Seismol. Soc. Am., 75, 1135–1154, https://doi.org/10.1785/bssa0820021018, 1985.
Park, S., van de Lindt, J. W., Cox, D., and Gupta, R.: Concept of Community Fragilities for Tsunami Coastal Inundation Studies, Nat. Hazards Rev., 14, 220–228, https://doi.org/10.1061/(asce)nh.1527-6996.0000092, 2013.
Pendse, C. G.: The Mekran Earthquake of the 28th November 1945, Sci. Notes, X, 141–146, 1946.
Rehman, K. and Cho, Y. S.: Building damage assessment using scenario based tsunami numerical analysis and fragility curves, Water (Switzerland), 8, 109, https://doi.org/10.3390/w8030109, 2016.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res.-Sol. Ea., 111, 1–26, https://doi.org/10.1029/2005JB004051, 2006.
Röbke, B. R., Schüttrumpf, H., and Vött, A.: Effects of different boundary conditions and palaeotopographies on the onshore response of tsunamis in a numerical model – A case study from western Greece, Cont. Shelf Res., 124, 182–199, https://doi.org/10.1016/j.csr.2016.04.010, 2016.
Röbke, B. R., Schüttrumpf, H., and Vött, A.: Hydro- and morphodynamic tsunami simulations for the ambrakian gulf (Greece) and comparison with geoscientific field traces, Geophys. J. Int., 213, 317–339, https://doi.org/10.1093/gji/ggx553, 2018.
Rodriguez, M., Fournier, M., Chamot-Rooke, N., Huchon, P., Bourget, J., Sorbier, M., Zaragosi, S., and Rabaute, A.: Neotectonics of the Owen Fracture Zone (NW Indian Ocean): Structural evolution of an oceanic strike-slip plate boundary, Geochem. Geophys. Geosyst., 12, https://doi.org/10.1029/2011GC003731, 2011.
Smith, G. L., McNeill, L., Henstock, I. J., and Bull, J.: The structure and fault activity of the Makran accretionary prism, J. Geophys. Res., 117, 1–17, https://doi.org/10.1029/2012JB009312, 2012.
Srinivasa Kumar, T. and Manneela, S.: A Review of the Progress, Challenges and Future Trends in Tsunami Early Warning Systems, J. Geol. Soc. India, 97, 1533–1544, https://doi.org/10.1007/s12594-021-1910-0, 2021.
Sujatmiko, K. A., Ichii, K., Murata, S., and Mulia, I. E.: Application of Stress Parameter from Liquefaction Analysis on the Landslide Induced Tsunami Simulation: A Case Study of the 2018 Palu Tsunami, J. Disaster Res., 18, 199–208, https://doi.org/10.20965/jdr.2023.p0199, 2023.
Tarbotton, C., Dall'Osso, F., Dominey-Howes, D., and Goff, J.: The use of empirical vulnerability functions to assess the response of buildings to tsunami impact: Comparative review and summary of best practice, Earth-Sci. Rev., 142, 120–134, https://doi.org/10.1016/j.earscirev.2015.01.002, 2015.
UNESCO: Indian Ocean, UNESCO [data set], https://iotic.ioc-unesco.org/, last access: 22 September 2021.
Van Ormondt, M., Nederhoff, K., and Van Dongeren, A.: Delft Dashboard: A quick set-up tool for hydrodynamic models, J. Hydroinformatics, 22, 510–527, https://doi.org/10.2166/hydro.2020.092, 2020.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chéry, J.: Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int., 157, 381–398, https://doi.org/10.1111/j.1365-246X.2004.02222.x, 2004.
Watts, P.: Wavemaker Curves for Tsunamis Generated by Underwater Landslides, J. Waterw. Port, Coastal, Ocean Eng., 124, 127–137, https://doi.org/10.1061/(asce)0733-950x(1998)124:3(127), 1998.
Zaccagnino, D., Telesca, L., and Doglioni, C.: Scaling properties of seismicity and faulting, Earth Planet. Sc. Lett., 584, 117511, https://doi.org/10.1016/j.epsl.2022.117511, 2022.
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high...
Altmetrics
Final-revised paper
Preprint