Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1789-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
CNR IGAG, Area della Ricerca di Roma 1, Strada Provinciale 35d, 9,
00010 Montelibretti (Rome), Italy
Mauro Rossi
CNR IRPI, via Madonna Alta 126, 06128 Perugia, Italy
Federica Polpetta
CNR IGAG, Area della Ricerca di Roma 1, Strada Provinciale 35d, 9,
00010 Montelibretti (Rome), Italy
Federica Fiorucci
CNR IRPI, via Madonna Alta 126, 06128 Perugia, Italy
Carolina Fortunato
CNR IGAG, Area della Ricerca di Roma 1, Strada Provinciale 35d, 9,
00010 Montelibretti (Rome), Italy
Paola Reichenbach
CNR IRPI, via Madonna Alta 126, 06128 Perugia, Italy
Related authors
No articles found.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
This article is included in the Encyclopedia of Geosciences
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
This article is included in the Encyclopedia of Geosciences
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
This article is included in the Encyclopedia of Geosciences
Chiara Varone, Gianluca Carbone, Anna Baris, Maria Chiara Caciolli, Stefania Fabozzi, Carolina Fortunato, Iolanda Gaudiosi, Silvia Giallini, Marco Mancini, Luca Paolella, Maurizio Simionato, Pietro Sirianni, Rose Line Spacagna, Francesco Stigliano, Daniel Tentori, Luca Martelli, Giuseppe Modoni, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 23, 1371–1382, https://doi.org/10.5194/nhess-23-1371-2023, https://doi.org/10.5194/nhess-23-1371-2023, 2023
Short summary
Short summary
In 2012, Italy was struck by a seismic crisis characterized by two main shocks and relevant liquefaction events. Terre del Reno is one of the municipalities that experienced the most extensive liquefaction effects; thus it was chosen as case study for a project devoted to defining a new methodology to assess the liquefaction susceptibility. In this framework, about 1800 geotechnical, geophysical, and hydrogeological investigations were collected and stored in the publicly available PERL dataset.
This article is included in the Encyclopedia of Geosciences
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
This article is included in the Encyclopedia of Geosciences
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
This article is included in the Encyclopedia of Geosciences
Cited articles
Allstadt, K. E., Thompson, E. M., Jibson, R. W., Wald, D. J., Hearne, M.,
Hunter, E. J., Fee, J., Schovanec, H., Slosky, D., and Haynie, K. L.: The US
Geological Survey ground failure product: Near-real-time estimates of
earthquake-triggered landslides and liquefaction, Earthq. Spectra, 38, 5–36,
https://doi.org/10.1177/87552930211032685, 2022.
Álvarez-Gómez, J. A.: FMC – Earthquake focal mechanisms data
management, cluster and classification, SoftwareX, 9, 299–307,
https://doi.org/10.1016/j.softx.2019.03.008, 2019.
Aydan, Ö.: Large Rock Slope Failures Induced by Recent Earthquakes, Rock
Mech. Rock Eng., 49, 2503–2524, https://doi.org/10.1007/s00603-016-0975-3,
2016.
Beyabanaki, S. A. R., Bagtzoglou, A. C., and Anagnostou, E. N.: Effects of
groundwater table position, soil strength properties and rainfall on
instability of earthquake-triggered landslides, Environ. Earth Sci., 75,
358, https://doi.org/10.1007/s12665-016-5277-2, 2016.
Bird, J. F. and Bommer, J. J.: Earthquake losses due to ground failure, Eng.
Geol., 75, 147–179, https://doi.org/10.1016/j.enggeo.2004.05.006, 2004.
Bozzano, F., Lenti, L., Martino, S., Paciello, A., and Scarascia Mugnozza,
G.: Self-excitation process due to local seismic amplification responsible
for the reactivation of the Salcito landslide (Italy) on 31 October 2002, J.
Geophys. Res., 113, B10312, https://doi.org/10.1029/2007JB005309, 2008.
Chen, M., Tang, C., Xiong, J., Shi, Q. Y., Li, N., Gong, L. F., Wang, X. D.,
and Tie, Y.: The long-term evolution of landslide activity near the
epicentral area of the 2008 Wenchuan earthquake in China, Geomorphology,
367, 107317, https://doi.org/10.1016/j.geomorph.2020.107317, 2020.
Cheng, S., Yang, G., Yu, H., Li, J., and Zhang, L.: Impacts of Wenchuan
Earthquake-induced landslides on soil physical properties and tree growth,
Ecol. Indic., 15, 263–270, https://doi.org/10.1016/j.ecolind.2011.09.028,
2012.
Cui, P., Dang, C., Zhuang, J., You, Y., Chen, X., and Scott, K. M.:
Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by
the Wenchuan Earthquake, May 12, 2008): risk assessment, mitigation
strategy, and lessons learned, Environ. Earth Sci., 65, 1055–1065,
https://doi.org/10.1007/s12665-010-0749-2, 2012.
Cui, S., Wang, G., Pei, X., Huang, R., and Kamai, T.: On the initiation and
movement mechanisms of a catastrophic landslide triggered by the 2008
Wenchuan (Ms 8.0) earthquake in the epicenter area, Landslides, 14,
805–819, https://doi.org/10.1007/s10346-016-0754-y, 2017.
Dang, K., Sassa, K., Fukuoka, H., Sakai, N., Sato, Y., Takara, K., Quang, L.
H., Loi, D. H., Van Tien, P., and Ha, N. D.: Mechanism of two rapid and
long-runout landslides in the 16 April 2016 Kumamoto earthquake using a
ring-shear apparatus and computer simulation (LS-RAPID), Landslides, 13,
1525–1534, https://doi.org/10.1007/s10346-016-0748-9, 2016.
Di Giacomo, D., Storchak, D. A., Safronova, N., Ozgo, P., Harris, J., Verney,
R., and Bondár, I.: A New ISC Service: the Bibliography of Seismic
Events, Seismol. Res. Lett., 85, 354–360,
https://doi.org/10.1785/0220130143, 2014
Ehteshami-Moinabadi, M. and Nasiri, S.: Geometrical and structural setting
of landslide dams of the Central Alborz: a link between earthquakes and
landslide damming, Bull. Eng. Geol. Environ., 78, 69–88,
https://doi.org/10.1007/s10064-017-1021-8, 2019.
ElsevierSoftwareX: SOFTX_2018_227, GitHub [code], https://github.com/ElsevierSoftwareX/SOFTX_2018_227, last access: 1 January 2023.
Fan, X., Tang, C. X., van Westen, C. J., and Alkema, D.: Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake, Nat. Hazards Earth Syst. Sci., 12, 3031–3044, https://doi.org/10.5194/nhess-12-3031-2012, 2012.
Fan, X., Scaringi, G., Korup, O., West, A. J., Westen, C. J., Tanyas, H.,
Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans,
S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.: Earthquake-Induced
Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts, Rev.
Geophys., 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.
Fortunato, C., Martino, S., Prestininzi, A., and Romeo, R. W.: Nuova versione del catalogo italiano degli effetti
deformativi indotti da forti terremoti (CEDIT),
Ital. J. Eng. Geol. Environ., 2, 63–74, https://doi.org/10.4408/IJEGE.2012-02.O-05, 2012.
Funiciello, F., Corbi, F., Heuret, A., Piromallo, C., and Rosenau, M.:
Empirical Analysis of Global-Scale Natural Data and Analogue Seismotectonic
Modelling Data to Unravel the Seismic Behaviour of the Subduction
Megathrust, Front. Earth Sci., 8, 600152,
https://doi.org/10.3389/feart.2020.600152, 2020.
g3w: A web-GIS database of the scientific articles on earthquake-triggered landslides, g3w [data set], http://194.119.218.119/it/map/a-web-gis-database-of-the-scientific-articles-on-e/qdjango/54/, last access: 1 January 2023.
g3wSuite: G3W-Suite is Open Source, g3wSuite [code], https://g3wsuite.it/en/download-g3w-suite/, last access: 1 January 2023.
Gallousi, C. and Koukouvelas, I. K.: Quantifying geomorphic evolution of
earthquake-triggered landslides and their relation to active normal faults.
An example from the Gulf of Corinth, Greece, Tectonophysics, 440, 85–104,
https://doi.org/10.1016/j.tecto.2007.02.009, 2007.
Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., and
Wang, G.: Distribution pattern of earthquake-induced landslides triggered by
the 12 May 2008 Wenchuan earthquake, Geomorphology, 133, 152–167,
https://doi.org/10.1016/j.geomorph.2010.12.030, 2011.
Goto, A. S., Muramatsu, T., and Teraoka, Y.: Timing of the Landslide-Dammed
Lake Triggered by Earthquake, at Toyama River, Central Japan, Radiocarbon,
52, 1090–1097, https://doi.org/10.1017/S0033822200046178, 2010.
Gratchev, I. and Towhata, I.: Geotechnical characteristics of volcanic soil
from seismically induced Aratozawa landslide, Japan, Landslides, 7,
503–510, https://doi.org/10.1007/s10346-010-0211-2, 2010.
Guerrieri, L., Michetti, A. M., and Silva, P. G.: EEE Catalogue: A Global Database
of Earthquake Environmental Effects, in: Encyclopedia of Earthquake Engineering, edited by: Beer, M., Kougioumtzoglou, I. A.,
Patelli, E., and Au, SK.,
Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-35344-4_32, 2015.
Guo, D., Hamada, M., He, C., Wang, Y., and Zou, Y.: An empirical model for
landslide travel distance prediction in Wenchuan earthquake area,
Landslides, 11, 281–291, https://doi.org/10.1007/s10346-013-0444-y, 2014.
Havenith, H.-B., Jongmans, D., Faccioli, E., Abdrakhmatov, K., and Bard, P.-Y.: Site Effect Analysis around the Seismically Induced Ananevo
Rockslide, Kyrgyzstan, Bull. Seismol. Soc. Am., 92, 3190–3209,
https://doi.org/10.1785/0120010206, 2002.
He, J., Qi, S., Wang, Y., and Saroglou, C.: Seismic response of the
Lengzhuguan slope caused by topographic and geological effects, Eng. Geol.,
265, 105431, https://doi.org/10.1016/j.enggeo.2019.105431, 2020.
Hong, Y. and Adler, R. F.: Towards an early-warning system for global
landslides triggered by rainfall and earthquake, Int. J. Remote Sens., 28,
3713–3719, https://doi.org/10.1080/01431160701311242, 2007.
Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain
belt derived by landslide mapping, Geology, 25, 231–234, https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2, 1997.
Hu, K., Zhang, X., You, Y., Hu, X., Liu, W., and Li, Y.: Landslides and
dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo
gorge, Landslides, 16, 993–1001,
https://doi.org/10.1007/s10346-019-01168-w, 2019.
Huang, D., Song, Y. X., Ma, G. W., Pei, X. J., and Huang, R. Q.: Numerical
modeling of the 2008 Wenchuan earthquake-triggered Niumiangou landslide
considering effects of pore-water pressure, Bull. Eng. Geol. Environ., 78,
4713–4729, https://doi.org/10.1007/s10064-018-01433-7, 2019.
Islam, N., Hawlader, B., Wang, C., and Soga, K.: Large-deformation
finite-element modelling of earthquake-induced landslides considering
strain-softening behaviour of sensitive clay, Can. Geotech. J., 56,
1003–1018, https://doi.org/10.1139/cgj-2018-0250, 2019.
Jibson, R. W.: Methods for assessing the stability of slopes during
earthquakes – a retrospective, Eng. Geol., 122, 43–50,
https://doi.org/10.1016/j.enggeo.2010.09.017, 2011.
Jibson, R. W. and Harp, E. L.: Extraordinary Distance Limits of Landslides
Triggered by the 2011 Mineral, Virginia, Earthquake, Bull. Seismol. Soc.
Am., 102, 2368–2377, https://doi.org/10.1785/0120120055, 2012.
Jibson, R. W. and Tanyaş, H.: The influence of frequency and duration of
seismic ground motion on the size of triggered landslides – A regional view,
Eng. Geol., 273, 105671, https://doi.org/10.1016/j.enggeo.2020.105671, 2020.
Jibson, R. W., R. Grant, A. R., Witter, R. C., Allstadt, K. E., Thompson, E.
M., and Bender, A. M.: Ground Failure from the Anchorage, Alaska, Earthquake
of 30 November 2018, Seismol. Res. Lett., 91, 19–32,
https://doi.org/10.1785/0220190187, 2020.
Jin, K. P., Yao, L. K., Cheng, Q. G., and Xing, A. G.: Seismic landslides
hazard zoning based on the modified Newmark model: a case study from the
Lushan earthquake, China, Nat. Hazards, 99, 493–509,
https://doi.org/10.1007/s11069-019-03754-6, 2019.
Kaverina, A. N., Lander, A. V., and Prozorov, A. G.: Global Creepex
Distribution and Its Relation to Earthquake-Source Geometry and Tectonic
Origin, Geophys. J. Int., 125, 249–265,
https://doi.org/10.1111/j.1365-246X.1996.tb06549.x, 1996.
Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95,
406–421, 1984
Keefer, D. K.: Earthquake-induced landslides and their effects on alluvial
fans, J. Sediment. Res., 69, 84–104, https://doi.org/10.2110/jsr.69.84,
1999.
Keefer, D. K.: Investigating landslides caused by earthquakes – A historical
review, Surv. Geophys., 23, 473–510,
https://doi.org/10.1023/A:1021274710840, 2002.
Kitamura, A., Yamada, K., Sugawara, D., Yokoyama, Y., Miyairi, Y., Hirakawa,
M., Iwatsuki, D., Katagiri, S., Maeda, M., Mori, H., Nakai, Y., Okazaki, S.,
Sakamoto, Y., Sasada, M., Seki, Y., Takikawa, Y., Yamamoto, Y., and Yoda,
Y.: Tsunamis and submarine landslides in Suruga Bay, central Japan, caused
by Nankai–Suruga Trough megathrust earthquakes during the last 5000 years,
Quaternary Sci. Rev., 245, 106527,
https://doi.org/10.1016/j.quascirev.2020.106527, 2020.
Kojima, S., Nozaki, T., Nagata, H., Tanahashi, R., Kondo, R., Okamura, N.,
Suzuki, K., Ikeda, A., Nakamura, T., and Ohtani, T.: Large-scale landslides
in Toyama Prefecture, central Japan, and their probable relationship with
earthquakes, Environ. Earth Sci., 71, 2753–2763,
https://doi.org/10.1007/s12665-013-2654-y, 2014.
Koukouvelas, I. K., Piper, D. J., Katsonopoulou, D., Kontopoulos, N.,
Verroios, S., Nikolakopoulos, K., and Zygouri, V.: Earthquake-triggered
landslides and mudflows: Was this the wave that engulfed Ancient Helike?,
The Holocene, 30, 1653–1668, https://doi.org/10.1177/0959683620950389,
2020.
Lenti, L., Martino, S., Paciello, A., Prestininzi, A., and Rivellino, S.:
Recorded displacements in a landslide slope due to regional and teleseismic
earthquakes, Geophys. J. Int., 201, 1335–1345,
https://doi.org/10.1093/gji/ggv063, 2015.
Li, B., Xing, A., and Xu, C.: Simulation of a long-runout rock avalanche
triggered by the Lushan earthquake in the Tangjia Valley, Tianquan, Sichuan,
China, Eng. Geol., 218, 107–116,
https://doi.org/10.1016/j.enggeo.2017.01.007, 2017.
Li, G., West, A. J., and Qiu, H.: Competing Effects of Mountain Uplift and
Landslide Erosion Over Earthquake Cycles, J. Geophys. Res.-Sol. Ea., 124,
5101–5133, https://doi.org/10.1029/2018JB016986, 2019.
Liu, B., Hu, X., He, K., He, S., Shi, H., and Liu, D.: The starting
mechanism and movement process of the coseismic rockslide: A case study of
the Laoyingyan rockslide induced by the “5.12” Wenchuan earthquake, J. Mt.
Sci., 17, 1188–1205, https://doi.org/10.1007/s11629-019-5775-2, 2020.
Luo, X., Wang, C., Long, Y., and Yi, Z.: Analysis of the Decadal Kinematic
Characteristics of the Daguangbao Landslide Using Multiplatform Time Series
InSAR Observations After the Wenchuan Earthquake, J. Geophys. Res.-Sol. Ea.,
125, e2019JB019325, https://doi.org/10.1029/2019JB019325, 2020.
Lv, Y., Peng, J., and Wang, G.: Characteristics and genetic mechanism of the
Cuihua Rock Avalanche triggered by a paleo-earthquake in northwest China,
Eng. Geol., 182, 88–96, https://doi.org/10.1016/j.enggeo.2014.08.017, 2014.
Marano, K. D., Wald, D. J., and Allen, T. I.: Global earthquake casualties
due to secondary effects: a quantitative analysis for improving rapid loss
analyses, Nat. Hazards, 52, 319–328,
https://doi.org/10.1007/s11069-009-9372-5, 2010.
Marc, O., Hovius, N., and Meunier, P.: The mass balance of earthquakes and
earthquake sequences, Geophys. Res. Lett., 43, 3708–3716, https://doi.org/10.1002/2016GL068333, 2016.
Marc, O., Meunier, P., and Hovius, N.: Prediction of the area affected by earthquake-induced landsliding based on seismological parameters, Nat. Hazards Earth Syst. Sci., 17, 1159–1175, https://doi.org/10.5194/nhess-17-1159-2017, 2017.
Martino, S., Bozzano, F., Caporossi, P., D'angiò, D., Della Seta, M.,
Esposito, C., Fantini, A., Fiorucci, M., Giannini, L.M., Iannucci, R.,
Marmoni, G.M., Mazzanti, P., Missori, C., Moretto, S., Rivellino, S., Romeo,
R.W., Sarandrea, P., Schilirò L., Troiani F., and Varone C.: Ground
effects triggered by the 24th August 2016, Mw 6.0 Amatrice (Italy)
earthquake: surveys and inventorying to update the CEDIT catalogue,
Geogr. Fis. Din. Quat., 77–95, https://doi.org/10.4461/GFDQ.2017.40.7, 2017.
Martino, S., Battaglia, S., D'Alessandro, F., Della Seta, M., Esposito, C.,
Martini, G., Pallone, F., and Troiani, F.: Earthquake-induced landslide
scenarios for seismic microzonation: application to the Accumoli area
(Rieti, Italy), Bull. Earthquake Eng., 18, 5655–5673,
https://doi.org/10.1007/s10518-019-00589-1, 2020.
Masi, A., Chiauzzi, L., Nicodemo, G., and Manfredi, V.: Correlations between
macroseismic intensity estimations and ground motion measures of seismic
events, Bull. Earthquake Eng., 18, 1899–1932,
https://doi.org/10.1007/s10518-019-00782-2, 2020.
Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L.,
Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci,
V., Gürpinar, A., Mc Calpin, J., Mohammadioun, B., Mörner, N. A.,
Ota, Y., and Roghozin, E.: Intensity Scale ESI 2007, in: Memorie Descrittive Carta Geologica d'Italia, edited by: Guerrieri, L. and Vittori,
E., Servizio Geologico
d'Italia, Dipartimento Difesa del Suolo, APAT, Rome, Italy, 74, ISBN 978-88-240-2903-2, ISSN 0536-0242, 2007.
Moore, J. R., Gischig, V., Burjanek, J., Loew, S., and Fah, D.: Site Effects
in Unstable Rock Slopes: Dynamic Behavior of the Randa Instability
(Switzerland), Bull. Seismol. Soc. Am., 101, 3110–3116,
https://doi.org/10.1785/0120110127, 2011.
Mousavi, S. M., Omidvar, B., Ghazban, F., and Feyzi, R.: Quantitative risk
analysis for earthquake-induced landslides – Emamzadeh Ali, Iran, Eng.
Geol., 122, 191–203, https://doi.org/10.1016/j.enggeo.2011.05.010, 2011.
Nakamura, S., Wakai, A., Umemura, J., Sugimoto, H., and Takeshi, T.:
Earthquake-induced landslides: Distribution, motion and mechanisms, Soils
Found., 54, 544–559, https://doi.org/10.1016/j.sandf.2014.06.001, 2014.
Newmark, N. M.: Effects of Earthquakes on Dams and Embankments,
Géotechnique, 15, 139–160, https://doi.org/10.1680/geot.1965.15.2.139,
1965.
Nian, T., Zhang, Y., Wu, H., Chen, G., and Zheng, L.: Runout simulation of
seismic landslides using discontinuous deformation analysis (DDA) with
state-dependent shear strength model, Can. Geotech. J., 57, 1183–1196,
https://doi.org/10.1139/cgj-2019-0312, 2020.
O'Brien, G. A., Cox, S. C., and Townend, J.: Spatially and temporally
systematic hydrologic changes within large geoengineered landslides,
Cromwell Gorge, New Zealand, induced by multiple regional earthquakes, J.
Geophys. Res.-Sol Ea., 121, 8750–8773,
https://doi.org/10.1002/2016JB013418, 2016.
Pérez-Lopez, R., Giner-Robles, J. L., Rodríguez-Pascua, M. A.,
Silva, P. G., Roquero, E., Bardají, T., Elez, J., and Huerta, P.:
Lichenometric dating of coseismic rockfall related to the Great Lisbon
Earthquake in 1755 affecting the archaeological site of “Tolmo de
Minateda” (Spain), Zeit. fur Geo. Supp., 62, 271–293, https://doi.org/10.1127/zfg_suppl/2019/0504, 2019
Polykretis, C., Kalogeropoulos, K., Andreopoulos, P., Faka, A., Tsatsaris,
A., and Chalkias, C.: Comparison of Statistical Analysis Models for
Susceptibility Assessment of Earthquake-Triggered Landslides: A Case Study
from 2015 Earthquake in Lefkada Island, Geosciences, 9, 350,
https://doi.org/10.3390/geosciences9080350, 2019.
Pu, X., Wang, L., Wang, P., and Chai, S.: Study of shaking table test of
seismic subsidence loess landslides induced by the coupling effect of
earthquakes and rainfall, Nat. Hazards, 103, 923–945,
https://doi.org/10.1007/s11069-020-04019-3, 2020.
QGIS: A Free and Open Source Geographic Information System, QGIS [code],
https://qgis.org/en/site/, last access: 1 January 2023.
Razifard, M., Shoaei, G., and Zare, M.: Application of fuzzy logic in the
preparation of hazard maps of landslides triggered by the twin
Ahar-Varzeghan earthquakes (2012), Bull. Eng. Geol. Environ., 78, 223–245,
https://doi.org/10.1007/s10064-018-1235-4, 2019.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically-based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F.,
Chamlagain, D., and Godt, J. W.: The size, distribution, and mobility of
landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal, Geomorphology,
301, 121–138, https://doi.org/10.1016/j.geomorph.2017.01.030, 2018.
Rodríguez-Peces, M. J., García-Mayordomo, J., Azañón, J.
M., Insua Arévalo, J. M., and Pintor, J. J.: Constraining
pre-instrumental earthquake parameters from slope stability back-analysis:
Palaeoseismic reconstruction of the Güevéjar landslide during the
1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes,
Quatern. Int., 242, 76–89, https://doi.org/10.1016/j.quaint.2010.11.027,
2011.
Rodríguez-Peces, M. J., Román-Herrera, J. C., Peláez, J. A.,
Delgado, J., Tsige, M., Martino, S., and Garrido, J.: Unbiased logic-tree
data for earthquake-induced landslide hazard maps for low-to-moderate
magnitude events, Data in Brief, 31, 105940,
https://doi.org/10.1016/j.dib.2020.105940, 2020.
Romeo, R.: Seismically induced landslide displacements: a predictive model,
Eng. Geol., 58, 337–351, https://doi.org/10.1016/S0013-7952(00)00042-9,
2000.
Saito, H., Uchiyama, S., Hayakawa, Y. S., and Obanawa, H.: Landslides
triggered by an earthquake and heavy rainfalls at Aso volcano, Japan,
detected by UAS and SfM-MVS photogrammetry, Prog. Earth Planet. Sci., 5, 15,
https://doi.org/10.1186/s40645-018-0169-6, 2018.
Struble, W. T., Roering, J. J., Black, B. A., Burns, W. J., Calhoun, N., and
Wetherell, L.: Dendrochronological dating of landslides in western Oregon:
Searching for signals of the Cascadia A.D. 1700 earthquake, Geol. Soc. Am.
Bull., 132, 1775–1791, https://doi.org/10.1130/B35269.1, 2020.
Takagi, H., Pratama, M. B., Kurobe, S., Esteban, M., Aránguiz, R., and
Ke, B.: Analysis of generation and arrival time of landslide tsunami to Palu
City due to the 2018 Sulawesi earthquake, Landslides, 16, 983–991,
https://doi.org/10.1007/s10346-019-01166-y, 2019.
Tanyaş, H. and Lombardo, L.: Completeness Index for Earthquake-Induced
Landslide Inventories, Eng. Geol., 264, 105331, https://doi.org/10.1016/j.enggeo.2019.105331, 2020.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M.,
Görüm, T., Jibson, R. W., Godt, J.W., Sato, H.P., Schmitt, R.J.,
Marc, O., and Hovius, N.: Presentation and analysis of a worldwide database
of earthquake-induced landslide inventories, J. Geophys. Res.-Earth, 122,
1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Tanyas, H., Kirschbaum, D., Görüm, T., van Westen, C. J, and Lombardo,
L.: New Insight into Post-seismic Landslide Evolution Processes in the
Tropics, Front. Earth Sci., 9, 700546, https://doi.org/10.3389/feart.2021.700546, 2021.
Tian, Y., Xu, C., Hong, H., Zhou, Q., and Wang, D.: Mapping
earthquake-triggered landslide susceptibility by use of artificial neural
network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event,
Geomat. Nat. Haz. Risk, 10, 1–25,
https://doi.org/10.1080/19475705.2018.1487471, 2019.
Toriumi, M.: Global Seismicity Dynamics and Data-Driven Science: Seismicity
Modelling by Big Data Analytics, Springer Singapore, Singapore, 231,
https://doi.org/10.1007/978-981-15-5109-3, 2021.
Tunas, I. G., Tanga, A., and Oktavia, S.: Impact of Landslides Induced by the
2018 Palu Earthquake on Flash Flood in Bangga River Basin, Sulawesi,
Indonesia, J. Ecol. Eng., 21, 190–200, https://doi.org/10.12911/22998993/116325, 2020.
Tuttle, M. and Barstow, N.: Liquefaction-related ground failure: A case
study in the New Madrid seismic zone, central United States, Bull. Seismol.
Soc. Am., 86, 636–645, 1996.
Vega, J. A. and Hidalgo, C. A.: Quantitative risk assessment of landslides
triggered by earthquakes and rainfall based on direct costs of urban
buildings, Geomorphology, 273, 217–235,
https://doi.org/10.1016/j.geomorph.2016.07.032, 2016.
Villani, F., Civico, R., Pucci, S., Pizzimenti, L., Nappi, R., and De
Martini, P. M.: Open EMERGEO working group, 2018. A database of the coseismic
effects following the 30 October 2016 Norcia earthquake in Central Italy.
Scientific Data 5, 180049, https://doi.org/10.1038/sdata.2018.49, 2018.
Wasowski, J., Keefer, D. K., and Lee, C.-T.: Toward the next generation of
research on earthquake-induced landslides: Current issues and future
challenges, Eng. Geol., 122, 1–8,
https://doi.org/10.1016/j.enggeo.2011.06.001, 2011.
Web of Science Group: 2021, Web of Science-Core Collection, https://clarivate.com/webofsciencegroup/solutions/web-of-science-core-collection/,
last access: 27 September 2021.
Yang, W., Qi, W., and Zhou, J.: Decreased post-seismic landslides linked to
vegetation recovery after the 2008 Wenchuan earthquake, Ecol. Indic., 89,
438–444, https://doi.org/10.1016/j.ecolind.2017.12.006, 2018.
Zhang, Z., Fleurisson, J.-A., and Pellet, F. L.: Numerical evidence of site
effects contributing to triggering the Las Colinas landslide during the 2001
Mw = 7.7 El Salvador earthquake, Landslides, 15, 2373–2384,
https://doi.org/10.1007/s10346-018-1040-y, 2018.
Zhao, T. and Crosta, G. B.: On the Dynamic Fragmentation and Lubrication of
Coseismic Landslides, J. Geophys. Res.-Sol. Earth, 123, 9914–9932,
https://doi.org/10.1029/2018JB016378, 2018.
Download
- Article
(4517 KB) - Full-text XML
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
We present a database of the main scientific articles published on earthquake-triggered...
Altmetrics
Final-revised paper
Preprint