Articles | Volume 22, issue 10
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, 2022
https://doi.org/10.5194/nhess-22-3435-2022
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, 2022
https://doi.org/10.5194/nhess-22-3435-2022
Research article
20 Oct 2022
Research article | 20 Oct 2022

Development of black ice prediction model using GIS-based multi-sensor model validation

Seok Bum Hong et al.

Related authors

Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coast region in South Korea based on a geo-spatial approach
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-253,https://doi.org/10.5194/nhess-2022-253, 2022
Preprint under review for NHESS
Short summary
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022,https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
A Comparative Analysis of Machine Learning Algorithms for Snowfall Prediction Models in South Korea
Moon-Soo Song, Hong-Sik Yun, Jae-Joon Lee, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-118,https://doi.org/10.5194/nhess-2022-118, 2022
Manuscript not accepted for further review
Short summary
Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data
Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang
Nat. Hazards Earth Syst. Sci., 21, 2611–2631, https://doi.org/10.5194/nhess-21-2611-2021,https://doi.org/10.5194/nhess-21-2611-2021, 2021
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022,https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022,https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022,https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Comparison of machine learning techniques for reservoir outflow forecasting
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-171,https://doi.org/10.5194/nhess-2022-171, 2022
Revised manuscript accepted for NHESS
Short summary
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022,https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary

Cited articles

Ali, S., Biermanns, P., Haider, R., and Reicherter, K.: Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan, Nat. Hazards Earth Syst. Sci., 19, 999–1022, https://doi.org/10.5194/nhess-19-999-2019, 2019. 
An, J. S. and Choi, S. W.: The role of winter weather in the population dynamics of spring moths in the southwest Korean peninsula, J. Asia-Pac. Entomol., 16, 49–53, https://doi.org/10.1016/j.aspen.2012.08.005, 2013. 
Bardou, E. and Delaloye, R.: Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments, Nat. Hazards Earth Syst. Sci., 4, 519–530, https://doi.org/10.5194/nhess-4-519-2004, 2004. 
Bezrukova, N., Stulov, E., and Khalili, M.: A model for road icing forecast and control, in: Proc. SIRWEC (conference), 25–27 March 2006, Turin, Italy, 50–57, ID 234368645, 2006. 
Bonanno, R., Loglisci, N., Cavalletto, S., and Cassardo, C.: Analysis of Different Freezing/Thawing Parameterizations using the UTOPIA Model, Water, 2, 468–483, 2010. 
Download
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Altmetrics
Final-revised paper
Preprint