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Abstract. Fog, freezing rain, and snow (melt) quickly con-
dense on road surfaces, forming black ice that is difficult to
identify and causes major accidents on highways. As a coun-
termeasure to prevent icing car accidents, it is necessary to
predict the amount and location of black ice. This study ad-
vanced previous models through machine learning and multi-
sensor-verified results. Using spatial (hill shade, river sys-
tem, bridge, and highway) and meteorological (air tempera-
ture, cloudiness, vapour pressure, wind speed, precipitation,
snow cover, specific heat, latent heat, and solar radiation en-
ergy) data from the study area (Suncheon–Wanju Highway
in Gurye-gun, Jeollanam-do, South Korea), the amount and
location of black ice were modelled based on system dynam-
ics to predict black ice and then simulated with a geographic
information system in units of square metres. The interme-
diate factors calculated as input factors were road tempera-
ture and road moisture, modelled using a deep neural net-
work (DNN) and numerical methods. Considering the results
of the DNN, the root mean square error was improved by
148.6 % and reliability by 11.43 % compared to a previous
study (linear regression). Based on the model results, multi-
ple sensors were buried at four selected points in the study
area. The model was compared with sensor data and verified
with the upper-tailed test (with a significance level of 0.05)
and fast Fourier transform (freezing does not occur when fre-
quency= 0.00001 Hz). Results of the verified simulation can

provide valuable data for government agencies like road traf-
fic authorities to prevent traffic accidents caused by black ice.

1 Introduction

Meteorological conditions such as fog, freezing rain, and
snow (melted and refrozen) lead to the formation of black
ice in dark and cold places, such as bridges, tunnel entrances,
and shady roads. Black ice is a thin coat of ice on black as-
phalt, making it difficult for drivers to visually distinguish
it from public roads (Cary, 2010). Black ice can cause sig-
nificant traffic accidents because it occurs rapidly in weather
conditions such as freezing rain (Kämäräinen et al., 2017).
Over the past 5 years, the number of fatalities in traffic ac-
cidents due to black ice is 4 times that of fatalities caused
by snow (Traffic accident article (case1), 2022a). In winter,
the fatality rate is higher than during periods with general
road conditions. Therefore, it is essential to devise measures
to prevent ice-related traffic accidents in many mountainous
and shady areas, such as the city of Suncheon in Korea. Re-
search is needed to predict and verify the amount and loca-
tion of black ice using modelling as a basis for establishing
countermeasures.

This study predicts the amount and location of black ice
by modelling winter ice on a Korean mountainous highway
in winter, expressed as a simulation using the geographic in-
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formation system (GIS). Subsequently, the model was veri-
fied using a multi-sensor. Korea has four distinct seasons, and
in winter, the temperature drops to a minimum of −10 ◦C
(An and Choi, 2013). In addition, Korea is surrounded by
sea on three sides, and various types of inland water bodies
such as lakes, rivers, and mountainous regions are evenly dis-
tributed, thus facilitating formation of black ice (Cary, 2010).
Various types of icing traffic accidents occur annually, de-
pending on the environment prone to black ice (Traffic Ac-
cident Analysis System, 2017). On 3 December 2021, nine
ice accidents occurred in Chungbuk, Korea, from 05:00 to
11:00 LT. At 07:38 LT, seven vehicles collided on the road in
Saenggeuk-myeon, Eumseong-gun, and Chungcheongbuk-
do, injuring two people. At 20:30 LT, 1 t trucks hit each other
in Chilseong-myeon, Goesan-gun, and Chungcheongbuk-do,
and one person was injured (Traffic accident article (case2),
2022b). On the morning of 6 January 2020, 41 vehicles
collided on National Highway 33 in Gyeongsangnam-do,
wounding 10 people (Traffic accident article (case3), 2020).
On 14 December 2019, a chain collision occurred on the
Sangju–Yeongcheon Highway due to black ice, killing 7 peo-
ple and injuring 42 others (Traffic accident article (case4),
2019a). On the morning of 15 November 2019, black ice
caused a chain collision of 20 vehicles, resulting in signifi-
cant damage (Traffic accident article (case5), 2019b). Anal-
ysis of these cases revealed an average of −1.9 ◦C to be the
lowest temperature on the days of the incidents, and the av-
erage cloud cover was 5.6 (maximum 10). The average daily
precipitation was 4.3 mm, and the average sunrise time was
07:28 LT. The average accident time was 07:05 LT (KMA,
2018). Traffic accidents usually occur in the morning around
the time of sunrise, when there is precipitation on average,
and the minimum temperature is below 0 ◦C.

Various studies have been conducted on black ice, and
the cause of its occurrence has been elucidated to some ex-
tent. There are multiple causes, such as freezing of moisture
formed due to fog on road surfaces, rainwater from during
the day that is subsequently frozen at night, rapid freezing
of freezing rain, and refreezing of melted snow (Cary, 2010).
Among them, the cause of high fatality is “freezing rain”,
i.e. extremely cooled rain that does not have enough time to
freeze below 0 ◦C before it hits the ground/road surface and
then freezes rapidly at the moment of impact (Cheng et al.,
2007). As freezing rain freezes as soon as it hits the road,
it is difficult to intuitively predict the amount and location
of black ice (Hull, 1999). Therefore, it is essential to select
a vulnerable section where black ice is expected based on
fog (moisture), freezing rain, and snow (melt) and prevent ic-
ing traffic accidents through structural or non-structural mea-
sures.

Modelling the amount and location of black ice and a GIS
simulation process based on this is required to select sec-
tions vulnerable to freezing traffic accidents. Black ice mod-
elling for GIS simulation was performed based on system
dynamics, a method of simulating dynamic phenomena by

connecting the causal relationships of factors in the form of
a block diagram (Kim, 2021; Forrester, 1994). Road freezing
is difficult to predict with human intuition, as it occurs due to
the time series relationship of factors; thus, system dynamics
are more suitable for modelling this phenomenon (Terzi et
al., 2021). The GIS is a tool for simulating system dynamics
and conducting research on various disasters. Studies using
the GIS include ice and snow analysis (Jeong et al., 2019;
Koumoutsaris, 2019; Bardou and Delaloye, 2004; Cheng et
al., 2007), flood analysis (Wang et al., 2021), underwater vol-
canic eruption modelling (Hayward et al., 2022), traffic anal-
ysis during natural disasters (Toma-Danila et al., 2020), and
earthquake and landslide analysis (Yi et al., 2019; Ali et al.,
2019), among others. In this study, as well as in predicting
and mapping (simulation) black ice, the GIS was applied by
referring to previous disaster-related studies. The GIS dy-
namics modelling study was based on spatial and meteoro-
logical data. In this study, we used digital elevation models,
hill shade, roads, bridges, river systems, and lakes as spatial
data and air temperature, cloudiness, vapour pressure, precip-
itation, wind speed, snow (melted), specific heat, latent heat,
and solar radiation energy as meteorological data. Prior to
starting a full-scale study using major factors, previous stud-
ies on related topics were analysed to explore the justification
of black ice modelling and validation studies. The represen-
tative studies are as follows.

Kangas et al. (2015) performed numerical modelling of
factors related to black ice. They predicted road surface con-
ditions and traffic conditions using the numerical weather
prediction (NWP) model. However, the prediction of the lo-
cation and the generated amount of road icing is insufficient,
and the model lacks validation (Kangas et al., 2015).

Bezrukova et al. (2006) performed numerical modelling to
predict the occurrence of black ice. They developed a block
diagram model to estimate the ice index based on road sur-
face temperature, air temperature, and humidity. Their model
could predict the occurrence of black ice at a superficial
level. However, the prediction of the location and amount of
black ice was insufficient, and the model was not validated
(Bezrukova et al., 2006).

Chapman et al. (2001) estimated road temperature through
numerical modelling. They analysed the relationship be-
tween road temperature and latitude, altitude, sky-view fac-
tor, screening, roughness length, road construction, traffic
density, and topography. However, the prediction of the
amount and location of black ice is insufficient, and the
model was not validated (Chapman et al., 2001).

Lee et al. (2018) performed numerical modelling related to
the black ice on Jeju Island, the southernmost island in Ko-
rea. Although the air temperature and wind speed were pre-
dicted using the Weather Research and Forecasting (WRF)
model, the prediction of road icing was insufficient, and the
model was not validated (Lee et al., 2018).

Hong et al. (2021) estimated the amount and location of
black ice based on system dynamics and simulated the re-
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Table 1. Developments of this study compared to previous studies.

Study area Factors Model Result Validation
(added) (road temperature)

Previous Suncheon, – Linear regression model, Amount and –
study Jeollanam-do, evolution algorithm location of
(Hong et South Korea (train set: 98) black ice
al., 2021) (GIS)

Current Gurye, Specific heat, Deep neural network Amount and Multi-sensor
study Jeollanam-do, latent heat, solar model, location of and

South Korea radiation (per evolution algorithm black ice comparison
hour), snow (train Set: 1498) (GIS) analysis
(melted amount)

sults using the GIS. The linear regression analysis, the most
basic statistical analysis technique, was used for road temper-
ature prediction, and black-ice-related factors are relatively
simple. However, the black ice prediction model has not yet
been validated (Hong et al., 2021).

Liu et al. (2017) proposed sensor-based GIS visualisation
technology for black ice management. The traffic danger sec-
tion was visualised by interpolating sensor information using
overlapping spatial data, such as roads, on the GIS. In ad-
dition, a methodology for determining whether black ice is
generated by the fusion of an ice sensor based on electri-
cal conductivity and temperature information has been pre-
sented. Although the sensor monitoring technique has been
efficiently proposed, the modelling part is insufficient, and
the sensor configuration is simple (Liu et al., 2017).

In another study, simple numerical modelling was used to
predict black ice. Related studies include road temperature
prediction using the integrated model of the Korea Meteoro-
logical Administration (KMA) (Park et al., 2014), heat con-
duction analysis due to air temperature and humidity of road
surface (Sass, 1992), salinity and temperature measurement
and analysis of road surface (Xu et al., 2017), and develop-
ment of a black ice estimation algorithm for sensors (Troiano
et al., 2010; Teke and Duran, 2019). As in previous studies,
the estimation of the amount and location of black ice was
insufficient, and there was no model validation.

Using these methods, factors related to black ice can be
systematically predicted. However, in many studies, the com-
bination of spatial and meteorological data is insufficient,
and the simulation step for the location of occurrence has
been omitted. In addition, most studies have not performed
model validation using sensors. Incorporating the amount
and location prediction step in the numerical modelling of
black ice improves its efficiency and aids in preparing for
traffic accidents in winter, going beyond simple road tem-
perature prediction (Chapman et al., 2001). A previous study
of system dynamics modelling for estimating the locations
of road icing using the GIS by Hong et al. (2021) predicted
the occurrence and location of black ice (road icing) using

both meteorological and spatial data, which was simulated
using the GIS (Hong et al., 2021). However, because the pre-
vious study predicted road temperature, the most critical fac-
tor in black ice prediction, using a relatively simple statisti-
cal analysis technique of linear regression, it is necessary to
improve the prediction accuracy using a more advanced tech-
nique. In addition, consideration of black-ice-related factors,
such as specific heat, latent heat, solar radiation energy (per
hour), and snow (melt), is insufficient, and additional mod-
elling of these factors is required (Liu et al., 2021). More-
over, as in other cases, the validation of the model is insuf-
ficient. Compared with previous studies (Hong et al., 2021),
the areas developed in this study are shown in Table 1. In this
study, Gurye, Jeollanam-do, with a more significant propor-
tion of mountainous regions than Suncheon, Jeollanam-do,
was selected as the study area. The added factors are spe-
cific heat, latent heat, solar radiation energy (per hour), snow
(melting), etc. Through the added factors, the phenomenon
of water generation at temperatures above 0 ◦C after snow-
fall and the phenomenon of black ice melting by the sun’s
heat were realised through system dynamics. As mentioned
above, road temperature was predicted among the model
components through linear regression analysis. The model
was improved by combining a deep neural network and an
evolution algorithm to develop it from a simple method fur-
ther. Subsequently, the validity was verified by installing a
multi-sensor at the predicted location of the black ice. This
study aimed to develop a complete black ice model by im-
proving the modelling of previous studies and verifying the
model using sensor technology. A reliable black ice simula-
tion derived using a verified model can be used by govern-
ment agencies (e.g. road traffic authorities) to identify areas
vulnerable to winter traffic accidents in advance and prevent
them.

2 Methodology

As shown in Fig. 1, the research was primarily composed
of three stages. The first step was to establish the research
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methodology corresponding to Phase 2, which defined the
study area, data, and algorithm. The second step, which cor-
responded to Phase 3, defined a scenario and derived mod-
elling results. The road temperature and road moisture were
calculated using system dynamics, and the amount and loca-
tion of black ice were predicted. The third step, which cor-
responded to Phase 4, verified the model using a sensor. For
the validation of the model, a hypothesis test (Z test, one-
tailed test) was performed with a significance level of 0.05
for the section predicted by the model for the round force
value, which was the core data. For the remaining data (water
pressure, ultrasonic, temperature, and humidity), the model’s
validity was verified through fast Fourier transform, Z test,
and graph comparison methods.

2.1 Model flow and data definition

This study attempted to model and simulate the occurrence
of black ice, for which appropriate data selection was re-
quired. Before collecting the actual data, the data type and
format were selected, and a system dynamics model that
could handle the causal relationship between data (factors)
was constructed. Powersim Studio version 10.0 was used
as the software for operating the system dynamics method
(Kim, 2021). A schematic of the system dynamics model de-
signed in Powersim is shown in Fig. 2, which shows a causal
map of the system dynamics structure. The causal map ex-
presses the causal relationship of dynamic variables and di-
rectly describes the operating procedure of system dynamics
(Kim, 2021; Forrester, 1994).

The + and − signs in the causal map express causal re-
lationships between the variables. In the case of +, the be-
fore and after factors are proportional and inversely propor-
tional, respectively. In the causal map, B represents a bal-
anced loop and maintains the total amount of a specific state.
In the model used in this study, the relationship between road
moisture and freezing corresponded to a balanced loop. In the
final stage, freezing and black ice have a positive relation-
ship, and thawing and black ice have a negative relationship
(Sterman, 2000; Terzi et al., 2021). In other words, freezing
and thawing per hour are determined by several factors, and
the amount of black ice generated per hour is predicted ac-
cordingly. A system dynamics block diagram, which is the
basis of the causal map in Fig. 2, is shown in Fig. A1.

In the system dynamics model, spatial data are hill shade
(from the digital elevation model, DEM), roads, bridges,
river systems, and lakes, and weather data are air tempera-
ture, cloudiness, vapour pressure, precipitation, wind speed,
snow (melted), specific heat, latent heat, and solar radiation
energy. The system dynamics used in black ice modelling list
the elements that cause specific phenomena on a block dia-
gram and show their relationships over time. When spatial
and meteorological data are entered into the system dynam-
ics, they are calculated sequentially according to the causal
relationship of the elements, and the output, black ice, is cal-

culated through the intermediate factor. The intermediate fac-
tors, road temperature and road moisture, were calculated
each time by reflecting the dynamic characteristics of the
inputs. Road temperature is expressed as a function of hill
shade, bridges, air temperature, and cloud cover, and road
moisture is defined as a function of vapour pressure, precipi-
tation, snow (melt), and wind speed. Black ice was predicted
per hour according to the dynamic characteristics of the two
intermediate factors. The expected amount and location of
black ice generation were simulated using a GIS in units of
square metres (Lysbakken and Norem, 2008; Nilssen, 2017;
Schulson, 2013). Table 2 lists the required parameters. The
model definition expressing the relational expressions be-
tween the significant factors is shown in Table A2.

2.2 Road temperature and moisture modelling

Road temperature and road moisture are important interme-
diate factors in the generation of black ice and were calcu-
lated as input data. These two factors are essential because
freezing water on the road surface at sub-zero temperatures
is the basic principle of black ice formation (Cary, 2010).
The road temperature should be appropriately predicted to
determine the formation of black ice. The existing predic-
tion method required weather variables, such as solar radia-
tion energy, air temperature, atmospheric pressure, wind, and
thermal characteristic values, according to the road surface
material (Park et al., 2014). However, this method requires
many factors when predicting road temperature, and calcula-
tion errors can easily occur because of missing data. Given
the nature of the simulation, which requires high efficiency
and limited data, this area needs to be improved. In this study,
we devised a method that can produce high prediction per-
formance with a small number of input factors through the
combination of a deep neural network (DNN) and an evolu-
tion algorithm (Peng et al., 2022).

The factors entered into the deep neural network model
were hill shade (H ), air temperature (Ta), and cloudiness (C).
Each factor is entered into the system dynamics by the fol-
lowing stock-flow model: variables (VRT, variable referring
to road temperature) related to road temperature were entered
using Eq. (1). The above-mentioned H , Lb, Ta, and C can
be substituted for the variable VRT, which is calculated by
adding the integral value according to time (t = 0 to 13) to
the initial value (t = 0).

VRT =

∫ (
V ′RT

)
t
dt + (VRT)t=0 (1)

The road temperature can be directly predicted using the
three variables of Eq. (1). Previous studies have used a linear
regression model and evolution algorithm for road temper-
ature prediction (Hong et al., 2021). The linear regression
model parameters were trained using 98 datasets, including
H , Lb, Ta, and C. However, when the number of data in-
creases, the prediction ability becomes relatively low, and
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Figure 1. Summary of black ice modelling and sensor validation studies.

Figure 2. Causal loop of system dynamics model. A causal loop is constructed according to the causal relationship of each factor, and the
main results are road temperature, road moisture, and black ice. [+] means proportional, and [−] means inverse proportion.

this method is not robust with various types of cases. In this
study, 1498 datasets were obtained forH , Lb, Ta, and C, and
a DNN model was introduced to predict road temperature in
various weather conditions such as fog, rain, and snow. The
structure of the DNN implemented in system dynamics is
shown in Fig. 3. The DNN consists of three hidden layers:
the first layer has three neurones, while the second and third

layers have four neurones, and each neuron has weight and
bias. Equation (2) is a linear function with a weight (wn) and
bias (bn). Equation (3) is an activation function correspond-
ing to the ReLU function. The ReLU function returns 0 when
the input x value (lf) is less than 0 and returns the value as it
is when the x value is greater than 0. As the maximum value
can be greater than 1 when ReLU is used, vanishing gradients
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Table 2. Main input and output factors of the model.

Factor Category Symbol Value range Unit

Hill shade H 0–254 –
(from DEM) Spatial
Bridge location input Lb 0 or 1 –
River system (t = 0–13 h) RS 0–1 –
Lake L 0–1 –

Air temperature Ta −15 to 10 ◦C
Cloudiness Vc 0–10 –
Vapour pressure Pv 0 or more Pa
Precipitation Meteorological Pr 0 or more mm
Wind speed input Sw 0 or more m s−1

Snow (melted) (t = 0–13 h) Sm 0 or more mm
Specific heat Hs 0 or more J kg−1 K−1

Latent heat Hl 0 or more J kg−1 K−1

Solar radiation energy Esr 0 or more J kg−1 K−1

Evaporation Intermediate E 0 or more g m−2

Condensation (t = 0–13 h) C 0 or more g m−2

Road temperature Output Tr −15 to 10 ◦C
Road moisture (t = 0–13 h) Mr 0 or more g m−2

Black ice BI 0 or more g m−2

Figure 3. Structure of system dynamics of deep neural network for road temperature modelling. (a) Change the parameters of DNN in the
form of the chromosome. (b) The fitness function of the chromosome is evaluated and input to the genetic operator. (c) It performs selection
to select chromosomes with high fitness, crossover to mix gene values, and mutations to simulate mutations in gene values. (d) Choose a
solution based on the goodness of fit.
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can be prevented, and the learning speed is faster (Kelleher,
2019).

lf=
n∑
1
(x ·wn)+ bn, (2)

af=
{

lf, lf> 0
0, lf≤ 0 (3)

The DNN block diagram of the system dynamics and
schematic diagram of the evolution algorithm are shown in
Fig. 3. Parameter (wn, bn) optimisation of the DNN model
was performed using the evolution algorithm. The deep
learning method based on the existing gradient descent and
back propagation is quicker by dynamic programming but
it is not suitable for application to the system dynamics en-
vironment with dynamic characteristics owing to the time
change (Mitra et al., 2021). Therefore, the parameters of
the DNN are optimised with the evolution algorithm, which
is versatile for models with various characteristics such as
dynamic change. Among the processes of the evolution al-
gorithm, encoding involves changing the parameters of the
model to be optimised into the genetic form of the evolu-
tion algorithm. If several candidates are generated by encod-
ing, fitness is evaluated using a fitness function. The fitness
function is given by Eq. (4). This is the mean absolute per-
centage error function between the actual and predicted val-
ues, and the termination condition is when it is minimum
(De Myttenaere et al., 2016). When the parent solution is
updated with solutions whose fitness is highly evaluated by
the fitness function, the parent solutions are transferred to
the genetic operator process to perform crossover and muta-
tion. The child solutions created in the genetic operator pro-
cess return to the fitness measure process, and the termina-
tion condition is evaluated. If the termination condition is
not satisfied, the genetic operator is repeated, and the solu-
tion gradually converges. As the solution converged, the error
between the predicted road temperature and the actual road
temperature changed to the minimum value. A mean abso-
lute percentage error (MAPE) value of 20 % or less implied
appropriate prediction (reliability of 80 % or more) (Holland,
1984).

F(t)=
100%
n

t=13∑
t=0

∣∣∣∣At −FtAt

∣∣∣∣ (4)

It is known that the temperature on bridges is 1–2 ◦C lower
than that on general roads (Tabatabai and Aljuboori, 2017;
Rathke and McPherson, 2006). Accordingly, we performed
a temperature correction on the road passing through the
bridge based on the road temperature prediction value. In
Eq. (5), Tr is the road temperature, and time is the time in the
simulation (∼ 0–13 h). Subsequently, reliability was used to
evaluate the accuracy of the simulation train and test. Relia-
bility is obtained by converting the F(t) value (MAPE) into
a percentage and subtracting it from 100 %.

Tr = Tr

(
−1−

Time
13

)
, (5)

MAPE=
100%
n

t=13∑
t=0

∣∣∣∣Tr−Ft

Tr

∣∣∣∣ , (6)

Reliability= {1−MAPE} · 100(%) (7)

Road moisture must also be appropriately predicted to judge
the formation of black ice. When moisture is formed on the
road, it becomes possible to judge the generation of black ice
over time with the dynamic characteristics of road tempera-
ture. There are three typical cases of moisture generation that
cause black ice on roads (Zerr, 1997).

– Case (1). Water vapour condenses on the road when the
road temperature drops below the dew point.

– Case (2). Freezing rainfalls occurs at below 0 ◦C road
temperature.

– Case (3). Water formation occurs when the accumulated
snow melts due to the sun’s heat.

Factors related to road moisture include vapour pressure, pre-
cipitation, wind speed, snow (melted), specific heat, latent
heat, and solar radiation energy. The stock-flow model in-
puts vapour pressure, precipitation, wind speed, and snow
(melted), such as road temperature factors, and their contents
are the same as those in Eq. (8). The aforementioned Pv, Pr,
Sw, and Sm can be substituted for the variable VRM (variable
referring to road moisture), which is calculated by adding the
integral value according to time (t = 0–13) to the initial value
(t = 0).

VRM =

∫ (
V ′RM

)
t
dt + (VRM)t=0 (8)

The formula for road moisture (Mr) using condensation,
mass of precipitation, and snow (melt) is as follows in
Eq. (9). The mass of precipitation (MoP) is the mass of pre-
cipitation (g m−2), and C is the condensation (g m−2). If
black ice occurs at freezing temperatures, road moisture is
reduced. Fr means freezing per hour, as in Eq. (15).

Mr =

t=13∑
t=0

(MoP+C−Fr)t (9)

Precipitation and mass of precipitation are weather-related
factors on rainy days, as shown in Fig. 2. The MoP in Eq. (9)
represents the actual mass of precipitation. In Eq. (10), P is
the amount of precipitation (mm) converted to centimetres
when the mass was calculated. MoP is measured in grams
per square metre, and the length is 100 cm.

MoP= 100 · 100 ·P · 0.1 (10)
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The condensation (C) in Eq. (9) is calculated using the
equation between the amount of water vapour present in
the atmosphere and the amount of saturated water vapour
on the road. Condensation occurs when the temperature of
water vapour in the atmosphere drops below the dew point
on the road surface. The condensation contents are given
by Eq. (11), where E is the evaporation (g m−2), V is the
amount of vapour (g m−2), and Vs is the amount of saturated
water vapour (g m−2).

C =

t=13∑
t=0

(E+V −Vs) (11)

The evaporation (E) in Eq. (11) is based on aerodynamics
and Dalton’s law describing evaporation. Dalton’s law states
that the movement of water molecules on a free surface is
proportional to the vapour pressure gradient in the vertical
direction. The formula for this theory is given by Eq. (12),
where E is the amount of evaporation from the reservoir,
es is the saturated water vapour pressure at air tempera-
ture (mm Hg), Pv is the actual vapour pressure at air temper-
ature (mm Hg), and Sw is the wind speed (m s−1) at a height
of 2 m from the water surface (Silberberg, 2009).

E = 0.345(es−Pv)(0.5+ 0.54Sw) (12)

The amount of vapour (V ) in Eq. (11) can be obtained us-
ing Eq. (13), where Pv is the vapour pressure, and Ta is the
temperature of the air.

V = 217
Pv

Ta+ 273.15
(13)

2.3 Black ice modelling and simulation

The amount and location of black ice generation per hour
can be predicted by calculating the road temperature and
road moisture. The black ice model is an integral value for
the change in freezing (Fr) and thawing (Th) (Pradhan et al.,
2019). Equation (14) is as follows:

BI=
∫
(Fr−Th)tdt. (14)

Freezing is a function of the road temperature (Tr), road
moisture (Mr), and precipitation (P ). In the presence of
road moisture, freezing changes when the road temperature
reaches a specific condition. If the precipitation is greater
than zero, freezing occurs when the road temperature is less
than 1 ◦C (Imacho et al., 2002). If the precipitation is zero,
freezing occurs when the temperature is below 0 ◦C (Bo-
nanno et al., 2010). The contents are the same as those in
Eq. (15).

Fr= f (Tr,Mr,P )=

{
Mr (P > 0 and Tr < 1)
Mr (P = 0 and Tr < 0) (15)

Thawing is a function of black ice (BI), hill shade (H ), air
temperature (Ta), specific heat (Hs), latent heat (Hl), and so-
lar radiation energy (Esr). The amount of energy required for
thawing (Hn) was calculated as the sum of latent heat and
specific heat (Pradhan et al., 2019). The air temperature is
above or below zero and acts as a condition for thawing.

Hn =Hs ·BI ·1Tr+Hl ·BI ·1Tr (16)

Th=


(
H

250

)
Esr

Hn
BI (Ta > 0)

0 (Ta < 0)
(17)

As shown in Fig. 2, the predicted amount and location of
black ice per hour were simulated in units of square me-
tres using the GIS. Black ice was modelled from 00:00 to
13:00 LT, the time range where the occurrence and traffic ac-
cidents were most frequent, and the total amount of black ice
generated at all times was simulated in the GIS.

BIt=0 ... 13 =

t=13∑
t=0

BIt (18)

2.4 Black ice multi-sensor configuration and model
validation

In this paper, sensor validation was performed on the model’s
point where black ice was predicted to occur. To determine
the generation of black ice at the prediction point of the
model, a black ice multi-sensor – that connects several sen-
sors with the control board – was configured, as shown in
Fig. 4.

The multi-sensor consisted of a round force (FSR402),
water pressure (gravity: analogue water pressure sensor), ul-
trasonic (W238), and temperature/humidity (SHT30) sensor.
The round force sensor was buried in the floor, and it de-
tected the pressure of the black ice generated from the up-
per part. The water pressure sensor had a principle similar to
that of the round force sensor, and it detected the pressure of
moisture that entered the upper part and was frozen inside.
In the case of the ultrasonic sensor, the area where the ultra-
sonic wave was emitted faced the floor; when black ice was
generated, a height difference (default of 8 cm) was detected.
Finally, the temperature/humidity sensor had a sensing part
facing the ground, and the interval was ∼ 2 cm.

3 Results (application of black ice scenario)

3.1 Black ice scenario

Gurye-gun, Jeollanam-do, Korea, was used as the study area,
which is adjacent to the southern coast, and the water sys-
tem and mountainous regions are evenly distributed inland.
The highway in this area is prone to moisture and shade; as
a result, it was expected to be prone to black ice (Shao and
Lister, 1995). As shown in Fig. 5, the maximum elevation
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Figure 4. Configuration and installation photo of multi-sensor for black ice detection. The sensing part of the round force and water pressure
sensor faces upward, and the sensing part of the ultrasonic and temperature–humidity sensor faces downward.

of Gurye-gun and Jeollanam-do is 1731 m (World Hillshade,
2020). The average elevation is 420.4 m, which corresponds
to the representative mountainous region of Jeollanam-do.
Jirisan, which belongs to Gurye-gun, is the highest mountain
in Jeollanam-do, with a maximum elevation of 1916.77 m
(Jirisan, 2022). The Suncheon–Wanju Highway in Gurye-
gun, which is ∼ 16 km (Fig. 5a and b), passes through the
water system and mountainous areas on the left and right
(Fig. 5a and b), which is an environment prone to black
ice. In addition, there are 10 bridges in the 16 km section.
Bridges have an average temperature of 1–2 ◦C lower than
that of general roads; therefore, black ice is more likely to oc-
cur even at the same temperature (Tabatabai and Aljuboori,
2017; Xue et al., 2018). Therefore, Gurye-gun in Jeollanam-
do, an area vulnerable to black ice, was selected as the black
ice research area, and data collection and modelling were
performed.

Actual days of black ice were selected as scenarios to
verify the validity of the previously designed model. Data
were acquired between 16–19 December 2021, by installing
a multi-sensor that can detect black ice on a parted sec-
tion of the Suncheon–Wanju Highway located in Gurye-gun,
Jeollanam-do, South Korea. For this period, all three cases
of fog (moisture), freezing rain, and snow (melted) could be
confirmed; therefore, it was selected as a study scenario. The
average values of the weather information for the relevant

days are listed in Table 3. On 16 December, the maximum
value of humidity was 100 %, and the temperature was a min-
imum of 0.3 ◦C; hence, it was analysed that fog had caused
the freezing.

On 17 December, the temperature dropped below zero.
The precipitation amount was 0.7 mm, and the lowest tem-
perature was −4.1 ◦C, which was analysed to be freezing
rain. It was interpreted that there was snow cover on 18–
19 December, and there was a time when the air and ground
temperature was 0 ◦C or higher. Hence, the snow melted, and
the phenomenon of freezing occurred again (KMA, 2018).
Therefore, 16 December was set as the fog scenario, 17 De-
cember as the freezing rain scenario, and 18 and 19 Decem-
ber as the snow scenario in this model.

After establishing the scenario, the spatial and meteo-
rological data for the selected date were entered into the
model. Spatial data were obtained from the lidar satellite,
National Spatial Data Infrastructure Portal (NSDIP), etc. Me-
teorological data were obtained from an automatic weather
station (AWS) and an automated surface observing sys-
tem (ASOS) operated by the Korea Meteorological Admin-
istration (KMA, 2018). The DEM had a resolution of 5 m
and was interpolated to 1 m to produce the hill shade data.
Bridges, roads, river systems, and lakes were converted into
1 m resolution raster information. The AWS, which acquired
weather data, is located in Gurye and provides air temper-
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Figure 5. Suncheon–Wanju Highway, Gurye-gun, Jeollanam-do, a research area for system dynamics model. The Suncheon–Wanju Highway
in Gurye-gun (16 km), Jeollanam-do, runs from point A (35◦18′ S) to point B (35◦10′ S). If the section from (a) to (b) is selected, and the
cross-section is analysed, mountains and water systems are observed to the left and right (source: DEM created by the lidar method at the
National Geographic Information Institute in Korea; https://www.ngii.go.kr/kor/content.do?sq=204, last access: 15 December 2021).

Table 3. A list of scenarios for the system dynamics model. Validate the model by acquiring sensor data from the dates in the list.

Date Air temperature Precipitation Humidity Snow cover Ground temperature Type
(avg/min; (per day; mm) (avg/max; (avg/max; (avg/min;

◦C) %) cm) ◦C)

16 Dec 2021 5.2/− 0.3 2.1 90/100 0/0 5.2/0.1 Fog
17 Dec 2021 1.6/− 4.1 0.7 78/95 0/0 1.7/0.3 Freezing rain
18 Dec 2021 −2.1/− 7.2 0 62/87 1.1/1.6 1/− 0.5 Snow
19 Dec 2021 1.2/− 3.2 0 76/96 0.3/0.4 1.2/− 1.9 Snow
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Figure 6. Training reliability by combining system dynamics and machine learning when predicting road temperature. (a) The graph means
the reliability of the deep neural network by data acquisition date, and the average value is 93.01 %. (b) The graph means the reliability
of linear regression by data acquisition date, and the average value is 91.4 %. The parameters of the DNN model and the LR model were
optimised with the evolution algorithm.

Table 4. Factor list and data information of system dynamics model.

Factor Category Data source Resolution Time range Content

Hill shade Lidar satellite 1 m 00:00–13:00 LT Scenario input
(from DEM) Spatial (5 m) (interpolation) Train set
Bridge location input NSDIP 1 m – Scenario input
River system NSDIP 1 m – Scenario
Lake NSDIP 1 m – Scenario input

Air temperature AWS 1 m 00:00–13:00 LT Scenario input
Train set

Cloudiness ASOS 1 m 00:00–13:00 LT Scenario input
Train set

Vapour pressure ASOS 1 m 00:00–13:00 LT Scenario input
Precipitation Meteorological AWS 1 m 00:00–13:00 LT Scenario input
Wind speed input AWS 1 m 00:00–13:00 LT Scenario input
Snow (melted) ASOS 1 m 00:00–13:00 LT Scenario input
Specific heat Literature 1 m 00:00–13:00 LT Scenario input
Latent heat Literature 1 m 00:00–13:00 LT Scenario input
Solar radiation energy Literature 1 m 00:00–13:00 LT Scenario input

ature, wind speed, and precipitation data. However, with
AWSs, the types of data that can be acquired are limited,
so the remaining meteorological data were obtained from the
ASOS in Suncheon, a nearby city. The data received from the
ASOS were cloudiness, vapour pressure, and snow (melt).
Specific heat, latent heat, and solar radiation energy were
entered directly into the system dynamics without linking
with the GIS. By obtaining the scientific experimental val-
ues through literature research, we can calculate the size of
each point using the mass of ice and hill shade. The results
are listed in Table 4. Hill shade and meteorological input data
were from the period between 00:00 to 13:00 LT. As men-
tioned in Sect. 1, most black ice traffic accidents occurred

from dawn to morning, and the average temperature reached
its peak at 13:00 LT. For the efficiency of the simulation, the
time range was set from early morning to 13:00 LT, when
the amount of air temperature and solar radiation energy was
low, but the traffic volume was high.

3.2 Black ice system dynamics modelling results

A DNN model was introduced to model road temperature,
and an evolution algorithm was used for parameter optimi-
sation. A total of 1498 training sets were used for parame-
ter optimisation (weight and bias). Each set consisted of hill
shade, air temperature, cloudy conditions, and road temper-

https://doi.org/10.5194/nhess-22-3435-2022 Nat. Hazards Earth Syst. Sci., 22, 3435–3459, 2022



3446 S. B. Hong et al.: Development of black ice prediction model using GIS-based multi-sensor model validation

Table 5. System dynamics and machine learning results for road temperature prediction. The results were expressed as RMSE, MAPE, and
reliability of the model and actual data.

Error Model class 16 Dec 17 Dec 18 Dec 19 Dec Average
indicator (train set)

RMSE
DNN (1498) 1.07 0.72 1.14 1.42 1.09
LR (1498) 1.25 0.75 1.42 1.55 1.24
LR (98) 3.32 1.82 4.1 1.59 2.71

MAPE
DNN (1498) 0.05 0.04 0.06 0.08 0.06
LR (1498) 0.07 0.05 0.07 0.1 0.07
LR (98) 0.15 0.09 0.34 0.11 0.17

Reliability DNN (1498) 94.9 % 96.45 % 94.24 % 92.39 % 94.5 %
(1-MAPE) LR (1498) 92.87 % 95.46 % 92.1 % 90.47 % 92.73 %
×100 % LR (98) 85.15 % 91.06 % 66.29 % 89.77 % 83.07 %

ature. The training reliability obtained using the training set
is shown in Fig. 6. Figure 6a and b show the training re-
sult reliability of the DNN and linear regression (LR), re-
spectively. The reliability of the graph was recorded at time
13:00 LT. Previous studies used the LR model for road tem-
perature prediction (Hong et al., 2021). The training relia-
bility of the model of the previous study (RL) and that of
the current study (DNN) were compared. The results were
93.01 % for DNN and 91.4 % for LR. In addition, when the
root mean square error (RMSE) was applied as another error
index, the DNN was 1.6, and LR was 1.67. That is, the train-
ing performance of the DNN was found to be better. After the
training reliability was confirmed, it was derived by entering
the test data into the DNN model. The DNN model perfor-
mance test was conducted for ground temperature from 16–
19 December 2021, the scenario date described above, from
00:00 to 13:00 LT. Based on the error indicators, the model
test results are listed in Table 5.

Error and reliability values were derived according to the
error indicator, model type, and scenario date. In the case of
LR results, if the previous study method (Hong et al., 2021)
could be introduced as it is, 98 datasets could be used. In the
current study, 1498 datasets were used; therefore, there was
a difference in the results. Hence, DNN (1498 datasets), LR
(1498 datasets), and LR (previous studies, 98 datasets) were
compared to analyse the superiority of the DNN model com-
pared to linear regression. As a result, the average RMSE
of the DNN model was improved by 13.8 % compared with
the LR. In addition, the reliability (100−MAPE× 100 %) of
the DNN model was 1.77 % higher than that of the LR model.
Compared to the previous study (LR, dataset: 97), the RMSE
was improved by 148.6 %, and the reliability was increased
by 11.43 %. Therefore, the DNN model had a higher pre-
diction performance than the LR model; thus, the prediction
value of the DNN model for road temperature was used.

The average road temperature for 16–19 December pre-
dicted by the DNN model is shown in Fig. 7. The lowest
temperature on 16 December was predicted to be −0.31 ◦C,

and the maximum temperature was 10.46 ◦C. The minimum
temperature on 17 December was predicted to be 0.48 ◦C,
and the maximum temperature was 4.74 ◦C. The lowest tem-
perature on 18 December was predicted to be 0.17 ◦C, and
the maximum temperature was 2.89 ◦C. The lowest tempera-
ture on 19 December was predicted to be −0.73 ◦C, and the
maximum temperature was 3.36 ◦C. The predicted values of
road temperature and road moisture were substituted into the
model calculation process to predict the amount and location
of the black ice.

Road moisture was modelled based on the dynamic char-
acteristics of the system dynamics, and black ice generation
was modelled based on the predicted road temperature. The
details of this process are shown in Fig. 8. All graphs in Fig. 8
show the average of 15 764 points on the Suncheon–Wanju
Highway. Figure 8a–d show the amounts of precipitation,
condensation, and road moisture. The maximum amount of
road moisture on 16, 17, 18, and 19 December was predicted
to be 2107.59, 540.12, 1502.61, and 487.21 g m−2, respec-
tively. On 19 December, road moisture increased sharply
as the accumulated snow melted. Figure 8e and f show the
amount of black ice generated per hour due to “freezing” and
“thawing”. The maximum amount of black ice on 16 Decem-
ber was predicted to be 0.72 g m−2; the black ice was formed
before water accumulation due to precipitation. The maxi-
mum amount of black ice on 17 December was predicted
to be 127.03 g m−2, as a result of freezing rain. The max-
imum amount of black ice on 18 and 19 December was
predicted to be 14.36 and 17.91 g m−2, respectively, which
was a result of road moisture formed by the melting of ac-
cumulated snow. The model results of specific points (points
corresponding to 31.2, 32.6, 36.4, and 37.0 of the highway
milestones) among 15 764 were compared with the sensor
data.
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Figure 7. Road temperature prediction results by system dynamics and DNN. (a) Prediction of road temperature for 16 December. (b) Pre-
diction of road temperature for 17 December. (c) Prediction of road temperature for 18 December. (d) Prediction of road temperature for
19 December.

3.3 Black ice GIS simulation results

Figure 9 shows the simulation results of the amount and loca-
tion of black ice predicted by the system dynamics modelling
in the GIS (World_Imagery, 2020). The results of simulating
the amount and location of black ice in units of square metres
were exaggerated using the buffer function in the GIS. Fig-
ure 9a–d show the predicted location and generated amount
of black ice between 16–19 December. The raster informa-
tion of each black ice map was the average of the black ice
generated from 00:00 to 13:00 LT on the selected day. The
maximum amount of black ice formed during the 14 h period
was (a) 31.5 g m−2, (b) 3715.79 g m−2, (c) 1861.93 g m−2,
and (d) 697.86 g m−2, respectively, for each scenario date.
The total amount of black ice generated, i.e. the average of
all scenarios, was 1576.79 g m−2 (Fig. 9e). The days with the
highest amount of black ice were 16 and 17 December, when
freezing rain and snow occurred, respectively (Fig. 9b and c,

respectively), and it was found that road moisture was higher,
and road temperature was lower than on the other days.

4 Discussion (black ice model sensor validation)

To discuss the modelling and simulation results, sensor data
were acquired, and comparative validation was performed.
Three points in the top two levels and one point in the bottom
two levels were selected from the black ice map in Fig. 9e,
which comprehensively covers all scenarios. Subsequently,
the data were acquired from the sensor buried at the selected
point. Multi-sensor data were collected from 16–19 Decem-
ber and statistically compared and analysed with the model
to verify the system dynamics model.

After the black ice multi-sensor was positioned, data were
acquired according to the scenario’s date range (16–19 De-
cember). Points with signpost numbers 31.2, 32.6, 36.4, and
37.0 on the Suncheon–Wanju Highway were selected as
burial points. Points 31.2, 32.6, and 37.0 corresponded to the
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Figure 8. Prediction of road moisture and black ice through system dynamics model. Panels (a–d) are the road moisture (calculated by
condensation and precipitation) per hour on the road from 16–19 December. Panels (d–g) are black ice (calculated by freezing, thawing) per
hour on the road from 16–19 December.
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Figure 9. Simulation of black ice occurrence prediction results of system dynamics in units of square metres in the GIS. Panels (a–d) show
the amount and location of black ice from 16–19 December. (e) The average of the amount and location of black ice from 16–19 December
(source: Esri, Maxar, Earthstar Geographics, and the GIS user community).
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top two levels of the amount of black ice prediction in Fig. 9e,
and point 36.4 corresponded to the bottom two levels. The
data acquired by date at the corresponding points included
the round force, water pressure, ultrasonic force, tempera-
ture, and humidity. A graph of the multi-sensor burial point
and the received data is shown in Fig. 10. For points 31.2,
32.6, and 37.0, data were acquired from 16–19 December.
For the 36.4 points set as the comparison group by the result
of model prediction, data of 16 December were acquired ow-
ing to the field situation. The round force sensor was anal-
ysed through an upper-tailed test with model prediction re-
sults (Raftery et al., 1995).

The water pressure sensor analysed the point where the
frequency was constant using a fast Fourier transform to dis-
tinguish between the presence and absence of black ice (Rao
et al., 2010). At point 36.4, where black ice was predicted to
not occur, a signal with a constant frequency that is difficult
to appear on ice was separated. The ultrasonic sensor was
analysed through an upper-tailed test, such as a round force
sensor. It was assumed that the data for 36.4, the point where
black ice was predicted to not occur, would be significantly
different when other sensor data were used as the population.
The temperature–humidity sensor was compared and anal-
ysed to determine whether it was consistent with other sen-
sors when the temperature dropped or humidity increased.

The white noise of the multi-sensor waveforms in Fig. 10
was corrected using a low-pass filter. In particular, the correc-
tion of white noise, which occurs mainly in analogue sensors,
is essential for analysing data. The low-pass filter attenuates
signals above the cutoff frequency and passes only signals
below a specific frequency. The mathematical contents are
as follows in Eq. (19), where “τ” is a time constant, and the
larger the value, the greater the data correction, but a time de-
lay occurs. The final correction value (yn) is calculated from
the value corrected immediately before (yn−1) and the target
value to be corrected (xn) (Kumngern et al., 2022; Roberts
and Mullis, 1987).

yn =
τ

τ + ts
yn−1+

ts

τ + ts
xn (19)

4.1 Round force sensor analysis

The round force sensor provides the primary data that can
determine the occurrence of black ice by time among the five
sensors, and it was compared with the model by time unit.
Figure 11 shows the buried position of the sensor and a graph
comparing the sensor value and model. The graph in Fig. 11
shows a visualisation of the model (system dynamics) and
RF (round force) sensor results in which the data collected
by the RF sensor and the data predicted by the system dy-
namics overlap. It can be seen that the black ice occurrence
range predicted by the model by point and time roughly coin-
cided with the period when the sensor detected black ice. For
the convenience of observation, sensor data arranged with a
low-pass filter were included in the graph, but the analysis

was performed including white noise before attenuation. The
time period is approximately the same, but the difference in
the trend in the graph’s height is because of the model repre-
senting the amount of black ice (g m−2) and the sensor value
being a force value (dimensionless). When the units and di-
mensions of the variables are different, a difference occurs
in their maximum values. The data acquired at points 36.4
and 37.0 contain a certain noise pattern. It is interpreted that
this is not an occurrence of black ice but an electrical error
caused by the attachment of multiple sensors. An analysis
was performed considering this phenomenon.

The Z test (upper-tailed test) was performed to analyse the
graph in more detail on the RF sensor values detected in the
time range that predicted black ice in the model. The P value
derived from the Z-test result is the probability value that
the research model indicates the null hypothesis to be correct
but is wrong and is the probability that a specific alternative
hypothesis will result in a type I error (error indicating that
the null hypothesis is correct but is wrong). If the research
hypothesis is tested with a 95 % confidence level, the sig-
nificance level is set to 0.05 (α, 5 %). If the P value is less
than 0.05, the null hypothesis is rejected, and the alternative
hypothesis is adopted. The null and alternative hypotheses
were established, and the P value was calculated to confirm
whether the alternative hypothesis (research hypothesis) was
acceptable (Raftery et al., 1995).

– H0 (null hypothesis). The value of the round force sen-
sor in the range predicted by the model is not different
from other periods.

– H1 (alternative hypothesis). The value of the round
force sensor in the range predicted by the model is
higher than that in other periods.

The formula used to obtain the standardised Z score of the
performance value X of the sample data is as shown in
Eq. (18), where X is the round force sensor value variable,
µ is the population mean for the sensor value, σ is the pop-
ulation standard deviation, and n is the number of variables.
The results of the upper-tailed test are shown in Table 6. The
three points (31.2, 32.6, and 37.0) where black ice was pre-
dicted to occur had a P value lower than 0.05, so the null
hypothesis was rejected, and the alternative hypothesis was
adopted. It was interpreted that black ice occurred signifi-
cantly at the corresponding point.

At point 37.0, where black ice was predicted to not oc-
cur, the P value was higher than 0.05; therefore, it was in-
terpreted that black ice would not occur. Accordingly, it was
confirmed that the round force sensor value and model result
were the same, and the validity was verified.

Z =
X−µ
σ
√
n

(20)
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Figure 10. The location of occurrence of black ice (top two levels) and data collection results for each sensor. Points 31.2, 32.6, and 37.0 are
the experimental group, and point 36.4 is the comparison group. (a) Data graph of the round force sensor. (b) Data graph of the water
pressure sensor. (c) Data graph of ultrasonic sensor. (d) Average temperature from temperature–humidity sensor. (e) Average humidity from
temperature–humidity sensor (source: Esri, Maxar, Earthstar Geographics, and the GIS user community).

Table 6. Z-test (upper-tailed test) result of round force sensor data value.

Section Black ice Population Z score P value Test
occurrence mean (one-tailed) results

31.2 Occurrence 0.00268 111.676 About 0 (< α) H1 adoption
32.6 Occurrence 0.00266 22.40736 About 0 (< α) H1 adoption
36.4 Non-occurrence 0.02645 0.55702 0.28868 (> α) H0 adoption
37.0 Occurrence 0.02698 2.79609 0.00258 (< α) H1 adoption
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Figure 11. Comparison graph of the data value of round force sensor and black ice prediction value of system dynamics model.

4.2 Water pressure sensor analysis

Figure 10b shows a graph of water pressure, and voltage –
which is a raw data value – was normalised to a value from 0
to 1 for ease of analysis. The graph of water pressure used a
fast Fourier transform (FFT) to analyse the frequency trend
and then determined whether black ice occurred by search-
ing for a fixed frequency. FFT is an algorithm that rapidly
calculates the discrete Fourier transform (DFT). DFT is as
in Eq. (21). By decomposing a series of values into different
frequencies, it is possible to check the waveforms of several
trigonometric functions mixed in one signal. Although this
operation is useful in many engineering fields, the direct cal-
culation is not efficient; therefore, it is performed using FFT.
The FFT quickly computes a transformation by factoring the
DFT matrix into a product of sparse factors (Rao et al., 2010).

Hn =
1
N

n−1∑
m=0

hne

(
−

2πi
N
mn
)
, (0≤ n≤N − 1) (21)

Figure 12 shows the result of the fast Fourier transform of
the graph of the water pressure based on time. Figure 12a, b,
and d show FFT graphs of points predicting that black ice

will occur in the model, and Fig. 12c shows FFT graphs of
points predicting that black ice will not occur in the model.
The x axis represents the frequency of the FFT graph (S; Hz),
and the y axis represents the amplitude. The FFT separates
the periodic wavelengths in the signal in the frequency do-
main. It is assumed that if ice, not water, is frozen in the wa-
ter pressure sensor, periodic wavelengths of relatively high
frequencies can be observed. Therefore, at 0.00001 Hz (sam-
ple time: 300 s) in the graph of Fig. 12c, a sharp increase
in amplitude was observed (0.27). A consistent waveform
was observed at the indicated point in Fig. 12c, the control
group, unlike the other points according to the amplitude
value. It can be assumed that this is a property of the liq-
uid that is not subjected to time-dependent stress owing to
ice. At points 31.2, 32.6, and 37.0, where inconsistent wave-
length was observed, irregular stress was generated due to
ice, which was presumed to be compatible with the model
results. At point 37.0, where a consistent wavelength was
observed, no irregular stress was observed; therefore, it was
presumed to be compatible with the model results.
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Figure 12. Fast Fourier transform of the result of the data signal of the water pressure sensor. Panels (a), (b), and (d) indicate points where
the system dynamics model predicted that black ice would occur, and no waveforms of a particular period were observed. Panel (c) indicates
the point where the system dynamics model predicted that black ice did not occur, and a waveform of a particular period was observed.

4.3 Ultrasonic sensor analysis

Figure 10c shows an ultrasonic graph. The ultrasonic sen-
sor data started with an initial value of 8 cm and decreased
when the ice changed the height of the ground surface. It was
hypothesised that the sensor value of 36.4, the point where
black ice was predicted to not occur, would be significantly
larger than the 31.2, 32.6, and 37.0 points predicted as the oc-
currence of black ice. The established hypothesis was tested
using the Z test (upper-tailed test) for the alternative hypoth-
esis (research hypothesis). The null and alternative hypothe-
ses for point 36.4, the comparison group, are as follows.

– H0 (null hypothesis). The ultrasonic value of the point
predicted by the model as non-occurrence is not differ-
ent from the point predicted by the occurrence.

– H1 (alternative hypothesis). The ultrasonic value of the
point predicted by the model as non-occurrence is dif-
ferent from that predicted as the occurrence.

As in the round force sensor analysis, if the P value is less
than the significance level of 0.05, the null hypothesis is re-

jected, and the alternative hypothesis is adopted. The result
of the upper-tailed test of the sample data at point 36.4 indi-
cated a population mean of 4.67, standard deviation of 1.91,
Z score of 34.17928, and P value of less than 0.00001. Since
the P value was lower than the significance level (α = 0.05),
H0 (null hypothesis) was rejected, and H1 (alternative hy-
pothesis) was adopted. According to the adoption of the al-
ternative hypothesis, a research hypothesis is established: the
ultrasonic value of the point predicted by the model as non-
occurrence is different from the point predicted as the oc-
currence. Their contents are summarised in Table 7. Since
the points 31.2, 32.6, and 36.4 are the population, and the
point 36.4 is the sample, the hypothesis test was performed
only on point 36.4 (Raftery et al., 1995).

4.4 Temperature–humidity sensor and multi-sensor
analysis

Figure 13 shows the average graph for the 31.2, 32.6, and
37.0 points where black ice significantly occurred among the
round force, temperature, and humidity data. The highlighted
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Table 7. Z-test (upper-tailed test) result of ultrasonic sensor data value.

Section Black ice Sensor Z score P value Test
occurrence mean (one-tailed) results

(cm)

31.2 Occurrence 4.36 – – –
32.6 Occurrence 6.51 – – –
36.4 Non-occurrence 7.71 34.17928 About 0 (< α) H1 adoption
37.0 Occurrence 3.09 – – –

Figure 13. Data analysis result of temperature/humidity sensor. Round force, temperature/humidity, precipitation, and snow cover were
compared.

bright areas (a–d) are time sections where black ice occurred
in the system dynamics model. Figure 13 shows three graphs.
(A) is a round force sensor, (B) is a temperature–humidity
sensor, and (C) is precipitation (mm) and snow cover (cm)
data obtained from the ASOS of the Korea Meteorological
Administration for additional comparative analysis: (a) the
average humidity exceeded 100 %, and the average temper-
ature was a minimum of 2.98 ◦C. As previously analysed,
this is an environment in which dew is formed by fog, and
because all the points where black ice occurred significantly
are near bridges, freezing occurred even at the temperature
mentioned in the image. In the case of time, (b) it was found
that black ice occurred because the temperature dropped to
−3.28 ◦C at the lowest, with freezing rainfall, and (c) as
shown in graph (C), snow cover was observed. As in (B),
black ice occurred due to the low temperature of the road
surface after the snow melted in the section where the tem-
perature rose to a maximum of 6.25 ◦C. The snow cover ex-

ists in (d) as in (c), and (d) the snow that melted when the
temperature rose to a maximum of 9.04 ◦C was frozen again
at a low temperature. In conclusion, an environment prone to
ice formation was observed when the model predicted that
black ice would occur. In addition, in the round force graph
in Fig. 13, the 31.2, 32.6, and 37.0 points were consistent
with the model and the black ice occurrence trend. Tempera-
ture and humidity also created an environment that simulta-
neously formed black ice.

Table 8 shows the analysis results of the multi-sensor,
a concept that includes both temperature/humidity and the
sensors (round force, water pressure, ultrasonic) described
above. Table 8 briefly shows the analysis results for the 31.2,
32.6, 36.4, and 37.0 points and sensors. At the 31.2, 32.6,
and 37.0 points, where black ice occurrence was predicted
by the model, the Z-test result of round force was “high”;
the fast Fourier transform result of water pressure was “ape-
riodic”; the Z-test result of ultrasonic was “low”; and tem-
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Table 8. Comprehensive analysis result of multi-sensor.

Temperature/ Match the
Section Round force Water pressure Ultrasonic humidity model

Result Black ice Result Black ice Result Black ice Significance
(Z test) (FFT) (Z test)

31.2 High Occurrence Aperiodic Occurrence Low Occurrence Associated Matched
32.6 High Occurrence Aperiodic Occurrence Low Occurrence Associated Matched
36.4 Low Non-occurrence Periodic Non-occurrence High Non-occurrence Unassociated Matched
37.0 High Occurrence Aperiodic Occurrence Low Occurrence Associated Matched

perature/humidity was “associated”, implying “occurrence”
of black ice. At the 36.4 point, where it was predicted that
black ice does not occur, the Z-test result of round force
was “low”; the fast Fourier transform result of water pressure
was “periodic”; the ultrasonic Z-test result was “high”; and
temperature/humidity was “unassociated”, implying “non-
occurrence” of black ice.

5 Conclusion

This study modelled the amount and location of black ice
using the system dynamics method and simulated it using
the GIS. The amount of black ice generated per unit area
(m2) was obtained as a block diagram constructed using the
causal relationship between factors in the system dynamics
model. The information input to the system dynamics model
was meteorological and spatial data, and road temperature
and moisture were calculated using these data. The road tem-
perature was modelled using a DNN model and an evolution
algorithm, and the road moisture was modelled numerically.
Finally, the amount and location of black ice were predicted
through numerical modelling combining road temperature
and road moisture and simulated in units of square metres in
the GIS. The study area was the Suncheon–Wanju Highway
in Gurye-gun, Jeollanam-do, and modelling and simulations
were performed from 16–19 December.

Based on the simulation results, multiple sensors were
positioned at the 31.2, 32.6, 36.4, and 37.0 points on the
Suncheon–Wanju Highway, and data were collected. The
multi-sensor consisted of a round force, water pressure, ul-
trasonic force, and temperature–humidity sensor, and each
sensor was analysed through a Z test and fast Fourier trans-
form. For round force, using the Z test (upper-tailed test)
through the P value, it was tested whether the predicted point
where black ice would occur on the model matched the sen-
sor value. Water pressure was used to analyse the surging
value of the amplitude in the frequency domain using a fast
Fourier transform to determine whether ice existed according
to the periodic vibration. Ultrasonic Z tests were performed
using the P value. It was verified that the height value of the
comparison group (36.4 points) was significantly higher than
that of the other points (31.2, 32.6, 37.0 points). Finally, the

temperature and humidity were analysed at the point where
black ice was predicted to occur in the model. In addition, the
causal relationship between the round force analysed previ-
ously and precipitation and snow cover data obtained from
the AWS of the Korea Meteorological Agency was compar-
atively analysed.

This study predicts the amount and location of black ice
using system dynamics and the GIS. However, the predic-
tion value of occurrence does not reflect other characteristics
of traffic accidents related to society and the environment;
therefore, it is not a complete concept to approach vulnera-
bility. Hence, additional research on traffic accident vulnera-
bility and risk is required. In addition, in the case of sensor
technology, because the round force sensor is directly buried
in the road shoulder, the actual occurrence trend of black ice
can be checked over time; however, water pressure and ul-
trasonic sensors have different data collection environments
(water pressure: collected inside the metal sensor; ultrasonic:
cap to prevent snow accumulation). Therefore, it is possible
to compare the experimental group (31.2, 32.6, and 37.0) and
the comparison group (36.4) in the overall time, but the com-
parison at each time point is a matter to be further developed.
Despite few shortcomings, the results of this study can pro-
vide useful data for government agencies (e.g. road traffic
authorities) when managing traffic accidents caused by black
ice. It should be noted that major factors have been added to
the existing studies, the road temperature prediction rate has
been improved by combining the DNN technique with sys-
tem dynamics, and the system dynamics model has been ver-
ified using a multi-sensor. In the future, if various factors are
supplemented for society and the environment, and a more
accurate vulnerability and risk assessment is performed, it is
possible to reduce the manpower wasted in the investigation
by selecting the points where damage is expected from black
ice in advance. It is also possible to apply structural or non-
structural countermeasures at more precise points.
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Appendix A: Block diagram structure and model
definition of the system dynamics model

Figure A1. Block diagram of the system dynamics model.
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Table A1. The primary definition of a model.

Number Name Definition

1 RMSE DNN SQRT(RUNSUM((‘Road Temp_Trure’− ‘Road Temp_Predict_DNN’)∧2)/14)

2 RMSE LR SQRT(RUNSUM((‘Road Temp_Trure’−‘Road Temp_Predict_LR’)∧2)/14)

3 Condensation MAX(0, Atmospheric Moisture_1m above−Saturated Water Vapor_Road)

4 Road moisture MAX(0,RUNSUM(Condensation+Mass_Preci−Fr_Delay))+ IF(Snow_Wall= 0,melting,0)

5 Lake evaporation MAX(0,(0.345× (‘Saturated Vapor Pressure_Air_mmhg’−
per hour (mm) ‘Vapor Pressure_Air_mmhg’)× (0.5+ 0.54× ‘Wind Speed’))/24)

6 Freezing IF(‘Road Moisture’< 0,0,1)× IF(Precipitation> 0,‘Road Moisture’
× IF(‘Road Temp’≤1,1,0),‘Road Moisture’× IF(‘Road Temp’≤ 0,1,0))

7 Thawing IF(‘Air Temp’> 0,MIN(1,(((Hillshade/250)× ‘Amount of solar radiation_per Hour’)
DIVZ0 ‘Latent Heat_cal’))× ‘Black Ice’,0)

8 MAPE FOR(i= 1 . . . 15 765|RUNSUM(ABS((‘Road Temp_Predict_nor- Copy’[i]
− ‘Road Temp_Trure_nor-Copy’[i])/(‘Road Temp_Predict_nor−Copy’[i]))/14))× 100 %

9 Mass of precipitation FOR(i=1 . . . 15 765|RANDOM(0.98,1.02,0.5/i))× (100× 100×Precipitation× 0.1)

10 Road temperature ‘lf4− 1’+Weight_Bridge×Location_Bridge+ 6.5× ((1+Snow_Wall)/
(1+Snow_wall_max))− IF(Hillshade> 0,3.5× (Hillshade/250),0)

11 Saturated vapour pressure (road) 6.1078× 10∧(7.5× ‘Road Temp’/(‘Road Temp’+ 237.3))

12 Saturated vapour pressure (air) 6.1078× 10∧(7.5× ‘Air Temp’/(‘Air Temp’+ 237.3))

13 Saturated water vapour (air) 217× (‘Saturated Vapor Pressure_Air’/(‘Air Temp’+ 273.15))

14 Saturated water vapour (road) 217× (‘Saturated Vapor Pressure_Road’/(‘Road Temp’+ 273.15))

15 Atmospheric moisture (1 m above) 217× (‘Vapor Pressure’/(‘Air Temp’+ 273.15))+ ‘Evaporation g per m2’

16 Evaporation (g m−2) 100× 100× ‘Lake Evaporation per Hour_mm’× 0.1× ‘River Sys’

17 Weight_Bridge −1− (1× (TIME/13))//−(((TIME+ 3)/16)× 2)// //IF(TIME< 9,−1,IF(TIME< 14,−2,0))

18 Latent Heat_cal ‘Specific Heat_Ice’× ‘Black Ice’×ABS(Delta_Temp)+ ‘Latent Heat_Thawing’
× ‘Black Ice’×ABS(Delta_Temp)

19 Amount of solar radiation_per Hour ‘Amount of solar radiation_per Minute’× 10 000× 60

20 S_Change FOR(i= 1 . . . 15765|RANDOM(0.98,1.02,0.5/i))−
× IF((‘snow scenario_Delay’[INDEX(INTEGER(NUMBER(TIME)+ 1))]
‘snow scenario’[INDEX(INTEGER(NUMBER(TIME)+ 1))])> 0,
(‘snow scenario_Delay’[INDEX(INTEGER(NUMBER(TIME)+ 1))]
− ‘snow scenario’[INDEX(INTEGER(NUMBER(TIME)+ 1))]),0)
× ‘melting_%’-Snow_Delta

21 Melting RUNSUM((100× 100×Snow_Delta)× 0.92× 0.1)

Data availability. The data sources used for the case studies are
listed in Table 4.
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