Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2589-2022
https://doi.org/10.5194/nhess-22-2589-2022
Research article
 | 
12 Aug 2022
Research article |  | 12 Aug 2022

Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure

Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García

Related authors

Regional subsidence at the former Texcoco Lake: numerical modelling and settlements prediction
Efrain Ovando-Shelley, Alexandra Ossa-Lopez, and Renata Gonzalez
Proc. IAHS, 382, 521–524, https://doi.org/10.5194/piahs-382-521-2020,https://doi.org/10.5194/piahs-382-521-2020, 2020
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023,https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023,https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023,https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary

Cited articles

Akiyama, M., Frangopol, D. M., and Ishibashi, H.: Toward life-cycle reliability-, risk- and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: emphasis on earthquake, tsunami and corrosion, Struct. Infrastruct. Eng., 16, 26–50, https://doi.org/10.1080/15732479.2019.1604770, 2020. 
Altomare, C., Crespo, A. J. C., Domínguez, J. M., Gómez-Gesteira, M., Suzuki, T., and Verwaest, T.: Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures, Coast. Eng., 96, 1–12, https://doi.org/10.1016/j.coastaleng.2014.11.001, 2015. 
Andrus, R. D. and Stokoe, K. H.: Liquefaction resistance based on shear wave velocity, in: Technical Report NCEER-97-0022, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, UT, edited by: Youd, T. L. and Idriss, I. M., National Center for Earthquake Engineering Research, Buffalo, NY, 89–128, https://trid.trb.org/view/542968 (last access: 6 August 2022), 1999. 
Argyroudis, S. and Kaynia, A. M.: Analytical seismic fragility functions for highway and railway embankments and cuts, Earthq. Eng. Struct. Dynam., 44, 1863–1879, https://doi.org/10.1002/eqe.2563, 2015. 
Argyroudis, S. A. and Mitoulis, S. A.: Vulnerability of bridges to individual and multiple hazards- floods and earthquakes, Reliabil. Eng. Syst. Safe., 210, 107564, https://doi.org/10.1016/j.ress.2021.107564, 2021. 
Download
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Altmetrics
Final-revised paper
Preprint