Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards
Susanna F. Jenkins
CORRESPONDING AUTHOR
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
now at: Department of Earth Sciences, University of Geneva, Geneva,
Switzerland
George T. Williams
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
now at: Extreme Event Solutions, Verisk, Singapore, Singapore
Josh L. Hayes
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
now at: GNS Science, P.O. Box 30368, Lower Hutt, 5040, New Zealand
Eleanor Tennant
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Qingyuan Yang
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Vanesa Burgos
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Elinor S. Meredith
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Geoffrey A. Lerner
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Magfira Syarifuddin
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
now at: State Agriculture Polytechnic of Kupang, Jalan Prof. Herman
Yohanes, Kupang, 85228, Indonesia
Andrea Verolino
Earth Observatory of Singapore, Asian School of the Environment,
Nanyang Technological University, Singapore, 639754, Singapore
Related authors
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Cited articles
Aldrian, E. and Dwi Susanto, R.: Identification of three dominant rainfall
regions within Indonesia and their relationship to sea surface temperature,
Int. J. Climatol., 23, 1435–1452, 2003.
Aravena, A., Cioni, R., Bevilacqua, A., de' Michieli Vitturi, M., Esposti Ongaro, T., and Neri, A.: Tree-branching-based enhancement of kinetic energy models for reproducing channelization processes of pyroclastic density
currents, J. Geophys. Res.-Solid, 125, e2019JB019271, https://doi.org/10.1029/2019JB019271, 2020.
Aspinall, W. P., Auker, M. R., Hincks, T. K., Mahony, S. H., Pooley, J., Nadim, F., Syre, E., Sparks, R. S. J., and Bank, T. W.: Volcano Hazard and
Exposure in Track II Countries and Risk Mitigation Measures – GFDRR Volcano
Risk Study, The World Bank, 309 pp., 2011.
Auker, M., Sparks, R., Siebert, L., Crosweller, H., and Ewert, J.: A statistical analysis of the global historical volcanic fatalities record, J.
Appl. Volcanol., 2, 1–24, 2013.
Auker, M. R., Sparks, R. S. J., Jenkins, S. F., Aspinall, W. P., Brown, S.
K., Deligne, N. I., Jolly, G., Loughlin, S. C., Marzocchi, W., Newhall, C.
G., and Palma, J. L.: Development of a new global Volcanic Hazard Index (VHI), in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, UK, https://www.cambridge.org/de/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/global-volcanic-hazards-and-risk?format=HB&isbn=9781107111752 (last access: 6 April 2022), 2015.
Bebbington, M.: Long-term forecasting of volcanic explosivity, Geophys. J. Int., 197, 1500–1515, 2014.
Biass, S., Frischknecht, C., and Bonadonna, C.: A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador – Part II: vulnerability and risk assessment, Nat. Hazards, 64, 615–639, 2012.
Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., and Höskuldsson, A.: A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: Hazard assessment, Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, 2014.
Biass, S., Williams, G., Hayes, J., and Rui, J.: vharg/VolcGIS: VolcGIS (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6416793, 2022.
Blong, R. J.: Volcanic hazards: a sourcebook on the effects of eruptions, Academic Press Australia, 424 pp., https://books.google.co.uk/books?hl=en&lr=&id=6kjgBAAAQBAJ&oi=fnd&pg=PP1&dq=blong+1984+sourcebook:&ots=ecdH9sE_YT&sig=ld0_EKlyRwhTQ0IGjsxveRivmA8#v=onepage&q=blong 1984 sourcebook:&f=false (last access: 6 April 2022), 1984.
Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing,
A., and Hincks, T. K.: Probabilistic modeling of tephra dispersal: Hazard
assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res., 110, 1–21, 2005.
Brown, R., Bonadonna, C., and Durant, A.: A review of volcanic ash aggregation, Phys. Chem. Earth Pt. A/B/C, 45, 65–78, 2012.
Brown, S. K., Auker, M. R., and Sparks, R. S. J.: Populations around Holocene volcanoes and development of a Population Exposure Index. Chapter 4, in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, UK, https://www.cambridge.org/de/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/global-volcanic-hazards-and-risk?format=HB&isbn=9781107111752 (last access: 6 April 2022), 2015a.
Brown, S. K., Sparks, R., and Jenkins, S.: Global distribution of volcanic
threat, Global Volcanic Hazards and Risk, Cambridge University Press,
Cambridge, 349–358, https://doi.org/10.1017/CBO9781316276273.025, 2015b.
Brown, S. K., Jenkins, S. F., Sparks, R. S. J., Odbert, H., and Auker, M. R.: Volcanic fatalities database: analysis of volcanic threat with distance and victim classification, J. Appl. Volcanol., 6, 15, https://doi.org/10.1186/s13617-017-0067-4, 2017.
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover
100 m: Collection 3 Epoch 2015, Globe, Version V3. 0.1, Zenodo [data set], https://doi.org/10.5281/zenodo.3518038, 2020.
Camejo, M. and Robertson, R.: Estimating Volcanic Risk in the Lesser Antilles, SRC Open File Report 2013-1001, The University of the West Indies Seismic Research Centre, https://vhub.org/resources/2909 (last access: 6 April 2022), 2013.
Charbonnier, S. J. and Gertisser, R.: Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia, J. Volcanol. Geoth. Res., 177, 971–982, https://doi.org/10.1016/j.jvolgeores.2008.07.008, 2008.
Cole, P. D., Neri, A., and Baxter, P. J.: Hazards from pyroclastic density
currents, in: The encyclopedia of volcanoes, Elsevier, 943–956, ISBN 978-0-12-385938-9, 2015.
De Maisonneuve, C. B. and Bergal-Kuvikas, O.: Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers, J. Quaternary Sci., 35, 272–287,
https://doi.org/10.1002/jqs.3181, 2020.
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., and Arnold, M.:
Natural disaster hotspots: a global risk analysis, The World Bank Hazard
Management Unit, 132 pp., https://openknowledge.worldbank.org/handle/10986/7376 License: CC BY 3.0 IGO (last access: 6 April 2022), 2005.
Ewert, J. W.: System for ranking relative threats of U.S. volcanoes, Nat.
Hazards Rev., 8, 112–124, 2007.
Ewert, J. W., Diefenbach, A. K., and Ramsey, D. W.: 2018 update to the US Geological Survey national volcanic threat assessment, US Geological
Survey 2328-0328, US Geological Survey, https://doi.org/10.3133/sir20185140, 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., and Roth, L.: The shuttle radar
topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Freire, S., Florczyk, A. J., Pesaresi, M., and Sliuzas, R.: An Improved
Global Analysis of Population Distribution in Proximity to Active Volcanoes, 1975–2015, ISPRS Int. J. Geo-Inform., 8, 341, https://doi.org/10.3390/ijgi8080341, 2019.
Global Volcanism Program: Report on Mayon (Philippines), in: Weekly Volcanic Activity Report, 6 June–12 June 2001, edited by: Mayberry, G., Smithsonian Institution and US Geological Survey, https://volcano.si.edu/showreport.cfm?doi=GVP.WVAR20010606-273030 (last access: 6 April 2022), 2001.
Global Volcanism Program: Volcanoes of the World, v. 4.8.6 (February 2020), edited by: Venzke, E., Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Global Volcanism Program: Report on Sinabung (Indonesia), in: Weekly Volcanic Activity Report, 1 January–7 January 2014, edited by: Sennert, S. K., Smithsonian Institution and US Geological Survey, 2014.
Grosse, P., Euillades, P. A., Euillades, L. D., and van Wyk de Vries, B.: A
global database of composite volcano morphometry, Bull. Volcanol., 76, 1–16, 2014.
Hayes, J. L., Jenkins, S. F., and Joffrey, M.: Evaluating uncertainty in
long-term frequency-magnitude relationships for volcanoes in Southeast Asia, Front. Geohazard. Georisk., in revision, 2022a.
Hayes, J. L., Biass, S., Jenkins, S. F., Meredith, E. S., and Williams, G.
T.: Integrating criticality concepts into road network disruption exposure
assessments, J. Appl. Volcanol., in review, 2022b.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020.
Hoblitt, R. P., Miller, C. D., and Scott, W. E.: Volcano hazards with regard
to siting nuclear power-plants in the Pacific Northwest, United States
Geological Survey Open-File Report 87-297, United States
Geological Survey, 98–428, https://doi.org/10.3133/ofr87297, 1987.
Hurst, A. W. and Smith, W.: Volcanic ashfall in New Zealand – probabilistic
hazard modelling for multiple sources, New Zeal. J. Geol. Geophys., 53, 1–14, 2010.
Hurst, T. and Smith, W.: A Monte Carlo methodology for modelling ashfall
hazards, J. Volcanol. Geoth. Res., 138, 393–403, 2004.
Iguchi, M., Ishihara, K., and Hendrasto, M.: Learn from 2010 eruptions at
Merapi and Sinabung volcanoes in Indonesia, Annuals of Disaster Prevention Research Institute, Kyoto University, 54, 185–194, 2011.
Iverson, R. M., Schilling, S. P., and Vallance, J. W.: Objective delineation
of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110, 972–984, 1998.
Jenkins, S., Magill, C., McAneney, J., and Blong, R.: Regional ash fall hazard I: A probabilistic assessment methodology, Bull. Volcanol., 74, 1699–1712, https://doi.org/10.1007/s00445-012-0627-8, 2012a.
Jenkins, S., McAneney, J., Magill, C., and Blong, R.: Regional ash fall hazard II: Asia-Pacific modelling results and implications, Bull. Volcanol., 74, 1713–1727, https://doi.org/10.1007/s00445-012-0628-7, 2012b.
Jenkins, S., Komorowski, J. C., Baxter, P., Spence, R., Picquout, A., Lavigne, F., and Surono: The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current
dynamics, J. Volcanol. Geoth. Res., 261, 316–329, https://doi.org/10.1016/j.jvolgeores.2013.02.012, 2013.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and
Wilson, T. M.: Volcanic risk assessment: Quantifying physical vulnerability
in the built environment, J. Volcanol. Geoth. Res., 276, 105–120, https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Wilson, T. M., Magill, C. R., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash fall hazard and risk. Chapter 3, in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, UK, https://www.cambridge.org/de/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/global-volcanic-hazards-and-risk?format=HB&isbn=9781107111752 (last access: 6 April 2022), 2015.
Jenkins, S. F., Komorowski, J. C., Baxter, P. J., Charbonnier, S. J., and
Surono, N.: The devastating impact of the 2010 eruption of Merapi Volcano,
Indonesia, Plate boundaries and natural hazards, American Geophysical Union and John Wiley and Sons Inc., 259–269, ISBN 978-1-119-05397-2, 2016.
Jenkins, S. F., Magill, C. R., and Blong, R. J.: Evaluating relative tephra
fall hazard and risk in the Asia-Pacific region, Geosphere, 14, 492–509,
2018.
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Supplementary Material 1: Hazard model outputs, for Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Dataverse [data set], https://doi.org/10.21979/N9/B80UMQ, 2022a.
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Supplementary Material 2: Eruption frequency-magnitude, for Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Dataverse [data set], https://doi.org/10.21979/N9/CGKS6C, 2022b.
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Supplementary Material 3: Exposure results, for Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Dataverse [data set], https://doi.org/10.21979/N9/OUJPZQ, 2022c.
Julzarika, A.: Harintaka. Indonesian DEMNAS: DSM or DTM, in: Proceedings of the 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote
Sensing Technology (AGERS), 26–27 August 2019, Jakarta, Indonesia, https://doi.org/10.1109/AGERS48446.2019.9034351, 2019.
Komorowski, J.-C., Jenkins, S., Baxter, P. J., Picquout, A., Lavigne, F.,
Charbonnier, S., Gertisser, R., Cholik, N., Budi-Santoso, A., and Surono:
Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents,
J. Volcanol. Geoth. Res., 261, 260–294, 2013.
Koyaguchi, T. and Ohno, M.: Reconstruction of eruption column dynamics on
the basis of grain size of tephra fall deposits: 2. Application to the
Pinatubo 1991 eruption, J. Geophys. Res.-Solid, 106, 6513–6533, 2001.
Lavigne, F. and Thouret, J.-C.: Sediment transportation and deposition by
rain-triggered lahars at Merapi Volcano, Central Java, Indonesia, Geomorphology, 49, 45–69, 2003.
Lavigne, F., Thouret, J.-C., Hadmoko, D. S., and Sukatja, C. B.: Lahars in
Java: Initiations, dynamics, hazard assessment and deposition processes,
Forum Geografi (Terbitan Berkala Ilmiah/Scientific Periodicals), Forum Geografi, 17–32, https://doi.org/10.23917/forgeo.v21i1.1822, 2007.
Lerner, G. A., Jenkins, S. F., Charbonnier, S. J., Komorowski, J.-C., and
Baxter, P. J.: The hazards of unconfined pyroclastic density currents: A new
synthesis and classification according to their deposits, dynamics, and
thermal and impact characteristics, J. Volcanol. Geoth. Res., 421, 107429,
https://doi.org/10.1016/j.jvolgeores.2021.107429, 2022.
Macedonio, G. and Costa, A.: Brief Communication “Rain effect on the load of
tephra deposits”, Nat. Hazards Earth Syst. Sci., 12, 1229–1233,
https://doi.org/10.5194/nhess-12-1229-2012, 2012.
Magill, C. and Blong, R.: Volcanic risk ranking for Auckland, New Zealand.
I: Methodology and hazard investigation, Bull. Volcanol., 67, 331–339, 2005a.
Magill, C. and Blong, R.: Volcanic risk ranking for Auckland, New Zealand.
II: Hazard consequences and risk calculation, Bull. Volcanol., 67, 340–349, 2005b.
Malin, M. C. and Sheridan, M. F.: Computer-assisted mapping of pyroclastic surges, Science, 217, 637–640, 1982.
Mastin, L., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J., Neri, A., Rose, W., Schneider, D., Siebert, L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C.: A
multidisciplinary effort to assign realistic source parameters to models of
volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol.
Geoth. Res., 186, 10–21, 2009.
Miller, C. A.: Threat assessment of New Zealand's volcanoes and their current and future monitoring requirements, GNS Science Report 2010/55, 45 pp.,
https://shop.gns.cri.nz/sr_2010-055-pdf/ (last access: 4 March 2020), 2010.
Newhall, C. and Self, S.: The Volcanic Explosivity Index (VEI) – An estimate
of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87, 1231–1238, 1982.
Newhall, C. G. and Punongbayan, R. S.: Fire and mud: Eruptions and lahars of
Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology and University of Washington Press, Quezon City, Seattle, London, 1126 pp., https://pubs.usgs.gov/pinatubo (last access: 6 April 2022), 1996.
Nieto-Torres, A., Guimarães, L. F., Bonadonna, C., and Frischknecht, C.:
A New Inclusive Volcanic Risk Ranking, Part 1: Methodology, Front. Earth Sci., 9, 672, https://doi.org/10.3389/feart.2021.697451, 2021.
Ogburn, S. E.: Flowdat: Mass flow database v2.2, Hosted by VHub at
https://vhub.org/groups/massflowdatabase (last access: 8 August 2021), 2016.
Ogburn, S. E. and Calder, E. S.: The relative effectiveness of empirical and
physical models for simulating the dense undercurrent of pyroclastic flows
under different emplacement conditions, Front. Earth Sci., 5, 83, https://doi.org/10.3389/feart.2017.00083, 2017.
Osman, S., Rossi, E., Bonadonna, C., Frischknecht, C., Andronico, D., Cioni, R., and Scollo, S.: Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna, Nat. Hazards Earth Syst. Sci., 19, 589–610, https://doi.org/10.5194/nhess-19-589-2019, 2019.
Pallister, J. S., Bina, F. R., McCausland, W., Carn, S., Haerani, N., Griswold, J., and Keeler, R.: Recent explosive eruptions and volcano hazards
at Soputan volcano – a basalt stratovolcano in north Sulawesi, Indonesia,
Bull. Volcanol., 74, 1581–1609, 2012.
Pan, H., Shi, P., Ye, T., Xu, W., and Wang, J. A.: Mapping the expected annual fatality risk of volcano on a global scale, Int. J. Disast. Risk Reduct., 13, 52–60, 2015.
Pesaresi, M., Ehrilch, D., Florczyk, A. J., Freire, S., Julea, A., Kemper, T., Soille, P., and Syrris, V.: GHS built-up grid, derived from Landsat,
multitemporal (1975, 1990, 2000, 2014), JRC Data Catalogue, European Commission, Joint Research Centre, https://ghsl.jrc.ec.europa.eu/download.php (last access: 28 May 2020), 2015.
Pioli, L., Bonadonna, C., and Pistolesi, M.: Reliability of total grain-size
distribution of tephra deposits, Scient. Rep., 9, 1–15, 2019.
Poulidis, A. P., Biass, S., Bagheri, G., Takemi, T., and Iguchi, M.: Atmospheric vertical velocity-a crucial component in understanding proximal
deposition of volcanic ash, Earth Planet. Sc. Lett., 566, 116980, https://doi.org/10.1016/j.epsl.2021.116980, 2021.
Ratdomopurbo, A., Beauducel, F., Subandriyo, J., Nandaka, I. M. A., Newhall,
C. G., Sayudi, D. S., and Suparwaka, H.: Overview of the 2006 eruption of
Mt. Merapi, J. Volcanol. Geoth. Res., 261, 87–97, 2013.
Retnowati, D. A., Meilano, I., and Riqqi, A.: Modeling of Volcano Eruption
Risk toward Building Damage and Affected Population in Guntur, Indonesia, in:
2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote
Sensing Technology (AGERS), 18–19 September 2018, Jakarta, Indonesia,
1–7, https://doi.org/10.1109/AGERS.2018.8554097, 2018a.
Retnowati, D. A., Meilano, I., Virtriana, R., and Hanifa, N. R.: Volcanic
eruption risk for school building in Indonesia, in: AIP Conference Proceedings, 20–21 November 2017, Bandung, Indonesia,
https://doi.org/10.1063/1.5047382, 2018b.
Reyes, P. J. D., Bornas, M. A. V., Dominey-Howes, D., Pidlaoan, A. C., Magill, C. R., and Solidum Jr., R. U.: A synthesis and review of historical
eruptions at Taal Volcano, Southern Luzon, Philippines, Earth-Sci. Rev., 177, 565–588, 2018.
Rose, A. N., McKee, J. J., Urban, M. L., Bright, E. A., and Sims, K. M.:
LandScan 2018 (2018), Oak Ridge National Laboratory, https://landscan.ornl.gov/downloads/2018 (last access: 5 April 2022), 2019.
Rossi, E., Bonadonna, C., and Degruyter, W.: A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions, Earth Planet. Sc. Lett., 505, 1–12, 2019.
Sandri, L., Costa, A., Selva, J., Tonini, R., Macedonio, G., Folch, A., and
Sulpizio, R.: Beyond eruptive scenarios: assessing tephra fallout hazard
from Neapolitan volcanoes, Scient. Rep., 6, 1–13, 2016.
Scaini, C., Felpeto, A., Marti, J., and Carniel, R.: A GIS-based methodology
for the estimation of potential volcanic damage and its application to Tenerife Island, Spain, J. Volcanol. Geoth. Res., 278, 40–58, 2014.
Scandone, R., Bartolini, S., and Martí, J.: A scale for ranking volcanoes by risk, Bull. Volcanol., 78, 1–8, https://doi.org/10.1007/s00445-015-0995-y, 2016.
Schilling, S.: LAHARZ: GIS Programs for automated mapping of lahar-inundation hazard zones, US Geological Survey Open-File Report 98-638, US Geological Survey, https://doi.org/10.3133/ofr98638, 1998.
Scollo, S., Tarantola, S., Bonadonna, C., Coltelli, M., and Saltelli, A.:
Sensitivity analysis and uncertainty estimation for tephra dispersal models,
J. Geophys. Res.-Solid, 113, B06202, https://doi.org/10.1029/2006jb004864, 2008.
Silva, V., Amo-Oduro, D., Calderon, A., Costa, C., Dabbeek, J., Despotaki, V., Martins, L., Pagani, M., Rao, A., and Simionato, M.: Development of a global seismic risk model, Earthq. Spectra, 36, 372–394, 2020.
Simpson, A., Johnson, R. W., and Cummins, P.: Volcanic threat in developing
countries of the Asia–Pacific region: probabilistic hazard assessment, population risks, and information gaps, Nat. Hazards, 57, 151–165,
https://doi.org/10.1007/s11069-010-9601-y, 2011.
Small, C. and Naumann, T.: The global distribution of human population and
recent volcanism, Environ. Hazards, 3, 93–109, 2001.
Solikhin, A., Thouret, J.-C., Gupta, A., Harris, A. J., and Liew, S. C.:
Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery,
Geomorphology, 138, 364–379, 2012.
Tennant, E., Jenkins, S. F., Winson, A., Widiwijayanti, C., Gunawan, H.,
Haerani, N., Kartadinata, N., Banggur, W., and Triastuti, H.: Reconstructing
eruptions at a data limited volcano: A case study at Gede (West Java), J. Volcanol. Geoth. Res., 418, 107325, https://doi.org/10.1016/j.jvolgeores.2021.107325, 2021.
Tennant, E., Jenkins, S. F., and Biass, S.: FlowDIR: a MATLAB tool for rapidly and probabilistically forecasting the travel directions of volcanic
flows, in preparation, 2022.
Thouret, J.-C., Lavigne, F., Suwa, H., and Sukatja, B.: Volcanic hazards at
Mount Semeru, East Java (Indonesia), with emphasis on lahars, Bull. Volcanol., 70, 221–244, 2007.
Tierz, P., Sandri, L., Costa, A., Zaccarelli, L., Di Vito, M. A., Sulpizio,
R., and Marzocchi, W.: Suitability of energy cone for probabilistic volcanic
hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei
(Italy), Bull. Volcanol., 78, 1–15, 2016.
Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G., and Costa, A.: Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic, Nat. Hazards Earth Syst. Sci., 22, 139–163,
https://doi.org/10.5194/nhess-22-139-2022, 2022.
Voight, B.: Structural stability of andesite volcanoes and lava domes, Philos. T. Roy. Soc. Lond. A, 358, 1663–1703, 2000.
Voight, B., Constantine, E. K., Siswowidjoyo, S., and Torley, R.: Historical
eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998, J. Volcanol. Geoth. Res., 100, 69–138, https://doi.org/10.1016/s0377-0273(00)00134-7, 2000.
Volentik, A.: Tephra transport, sedimentation and hazards, University of
South Florida, ProQuest Dissertations & Theses Global, 304995972, https://remotexs.ntu.edu.sg/user/login?url=https://www.proquest.com/docview/304995972?accountid=12665 (last access: 5 April 2022), 2009.
Walter, T. R., Ratdomopurbo, A., Aisyah, N., Brotopuspito, K. S., Salzer, J., and Lühr, B.: Dome growth and coulée spreading controlled by surface morphology, as determined by pixel offsets in photographs of the 2006 Merapi eruption, J. Volcanol. Geoth. Res., 261, 121–129, 2013.
Whelley, P., Newhall, C., and Bradley, K.: The frequency of explosive volcanic eruptions in Southeast Asia, Bull. Volcanol., 77, 1–11,
https://doi.org/10.1007/s00445-014-0893-8, 2015.
Widiwijayanti, C., Voight, B., Hidayat, D., and Schilling, S.: Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and
surges, Bull. Volcanol., 71, 687–703, 2009.
Williams, G. T., Kennedy, B. M., Lallemant, D., Wilson, T. M., Allen, N.,
Scott, A., and Jenkins, S. F.: Tephra cushioning of ballistic impacts: Quantifying building vulnerability through pneumatic cannon experiments and
multiple fragility curve fitting approaches, J. Volcanol. Geoth. Res., 388, 106711, https://doi.org/10.1016/j.jvolgeores.2019.106711, 2019.
Williams, G. T., Jenkins, S. F., Biass, S., Wibowo, H. E., and Harijoko, A.:
Remotely assessing tephra fall building damage and vulnerability: Kelud Volcano, Indonesia, J. Appl. Volcanol., 9, 1–18, 2020.
Williams, G. T., Jenkins, S. F., Lee, D. W., and Wee, S. J.: How rainfall
influences tephra fall loading – an experimental approach, Bull. Volcanol., 83, 1–13, 2021.
Williams, R., Rowley, P., and Garthwaite, M. C.: Reconstructing the Anak
Krakatau flank collapse that caused the December 2018 Indonesian tsunami,
Geology, 47, 973–976, 2019.
Wilson, L., Sparks, R. S. J., Huang, T. C., and Watkins, N. D.: The control
of volcanic column heights by eruption energetics and dynamics, J. Geophys. Res., 83, 1829–1836, 1978.
Yoganandan, N., Pintar, F. A., Sances Jr, A., Walsh, P. R., Ewing, C. L., Thomas, D. J., and Snyder, R. G.: Biomechanics of skull fracture, J.
Neurotrauma, 12, 659–668, 1995.
Zorn, E. U., Le Corvec, N., Varley, N. R., Salzer, J. T., Walter, T. R.,
Navarro-Ochoa, C., Vargas-Bracamontes, D. M., Thiele, S. T., and Arámbula Mendoza, R.: Load stress controls on directional lava dome growth at Volcán de Colima, Mexico, Front. Earth Sci., 7, 84, https://doi.org/10.3389/feart.2019.00084, 2019.
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
There is a need for large-scale comparable assessments of volcanic threat, but previous...
Altmetrics
Final-revised paper
Preprint