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Abstract. Regional volcanic threat assessments provide a
large-scale comparable vision of the threat posed by multi-
ple volcanoes. They are useful for prioritising risk-mitigation
actions and are required by local through international agen-
cies, industries and governments to prioritise where further
study and support could be focussed. Most regional volcanic
threat studies have oversimplified volcanic hazards and their
associated impacts by relying on concentric radii as proxies
for hazard footprints and by focussing only on population ex-
posure. We have developed and applied a new approach that
quantifies and ranks exposure to multiple volcanic hazards
for 40 high-threat volcanoes in Southeast Asia. For each of
our 40 volcanoes, hazard spatial extent, and intensity where
appropriate, was probabilistically modelled for four volcanic
hazards across three eruption scenarios, giving 697 080 indi-
vidual hazard footprints plus 15 240 probabilistic hazard out-
puts. These outputs were overlain with open-access datasets
across five exposure categories using an open-source Python
geographic information system (GIS) framework developed
for this study (https://github.com/vharg/VolcGIS, last access:
5 April 2022). All study outputs – more than 6500 GeoTIFF
files and 70 independent estimates of exposure to volcanic
hazards across 40 volcanoes – are provided in the “Data
availability” section in user-friendly format. Calculated ex-
posure values were used to rank each of the 40 volcanoes
in terms of the threat they pose to surrounding communities.
Results highlight that the island of Java in Indonesia has the

highest median exposure to volcanic hazards, with Merapi
consistently ranking as the highest-threat volcano. Hazard
seasonality, as a result of varying wind conditions affecting
tephra dispersal, leads to increased exposure values during
the peak rainy season (January, February) in Java but the dry
season (January through April) in the Philippines. A key aim
of our study was to highlight volcanoes that may have been
overlooked perhaps because they have not been frequently
or recently active but that have the potential to affect large
numbers of people and assets. It is not intended to replace of-
ficial hazard and risk information provided by the individual
country or volcano organisations. Rather, this study and the
tools developed provide a road map for future multi-source
regional volcanic exposure assessments with the possibility
to extend the assessment to other geographic regions and/or
towards impact and loss.

1 Introduction

Southeast Asia is one of the most densely populated regions
on Earth; it is also home to over 12 % (n= 173) of the
world’s Holocene volcanoes and around 15 % (n= 1543) of
Holocene eruptions (Global Volcanism Program, 2013). Of
these recorded Southeast Asian eruptions, 93 % (n= 1435)
have occurred since 1500 CE, showing the dominance of his-
torical records reflected in our knowledge of the previous
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eruptive activity. The relatively short timescale of written
eruption records in the region makes capturing the past, and
therefore the likely future, range of eruptive activity chal-
lenging. There is a need for detailed geological studies to
supplement short eruptive records; however, such studies are
lacking for many volcanoes around the world because they
can be time-consuming, costly and suffer from a lack of de-
posit exposure, especially in tropical regions such as South-
east Asia (De Maisonneuve and Bergal-Kuvikas, 2020). In
addition, the focus in volcanically active areas is often, justi-
fiably, on monitoring and crisis management of frequently or
currently active volcanoes; however, these are not necessar-
ily the volcanoes whose eruptions will affect the most peo-
ple in the future. For example, the first historical eruption of
Galunggung, Indonesia, in 1822 – a Volcanic Explosivity In-
dex (VEI) 5 event – killed > 4000 people after a repose of
∼ 3000 years (Brown et al., 2017). Where geological studies
can be carried out, priority must be given to those volcanoes
that pose a major threat to communities because of the poten-
tial magnitude and intensity of the eruption and/or because
of the exposure of communities and their assets to volcanic
hazards.

To identify volcanoes that pose a considerable threat to so-
ciety, previous studies have applied consistent and transfer-
able methodologies to rank multiple volcanoes according to
their hazard (e.g. Aspinall et al., 2011; Auker et al., 2015) or
their population exposure (e.g. Small and Naumann, 2001;
Freire et al., 2019), with some studies combining the two
to evaluate “threat” (e.g. Brown et al., 2015b; Ewert, 2007;
Scandone et al., 2016) on a regional or global scale (Table 1).
Such assessments are typically carried out on a volcano-by-
volcano basis, making it difficult to compare threat across
multiple volcanoes and communities.

Of populations within 10 km of Holocene volcanoes, those
in Southeast Asia are the largest and fastest-growing any-
where in the world (Freire et al., 2019). Indonesia and the
Philippines alone have been estimated to contain more than
75 % of the global volcanic threat (in which threat is a prod-
uct of an average volcanic hazard index, number of volca-
noes and population within 30 km of volcanoes; Brown et
al., 2015b). Exposure and threat estimates across multiple
volcanoes typically rely on concentric radii around each vol-
cano as a proxy for the spatial distribution of threat to life
from volcanic hazards (Table 1). This approach, although fa-
cilitating regional and global exposure analyses, overlooks
the complexity of hazardous volcanic phenomena and their
interactions with external factors (e.g. wind, topography).
In a volcanic context, regional assessments are complicated
by the multi-hazard and spatially varying nature of eruption
products, the wide range of hazard and impact mechanisms,
and the variable knowledge of eruptive records across dif-
ferent volcanic systems. As a result, most existing regional
estimates of population exposure to volcanic hazards rely
on an overly simplified hazard footprint extent and inten-
sity. A more robust estimate of exposure to volcanic hazards

requires the use of numerical models able to describe the
spatial distribution and intensity of volcanic hazards. Iden-
tifying reasonable and physically sound eruption source pa-
rameters (ESPs) for these models strongly depends on the
knowledge of the volcanic system obtained from the geolog-
ical mapping of past deposits. However, in areas like South-
east Asia, where studies, access and deposit preservation are
limited, defining ESPs can be challenging. For this reason,
numerical models are often coupled with probabilistic ap-
proaches in order to simulate ranges of credible potential fu-
ture eruptions and environmental conditions and to quantify
the likelihood of certain areas being affected by a given haz-
ard. Several regional (multi-volcano) studies have used prob-
abilistic hazard modelling to quantify hazard (Hoblitt et al.,
1987; Hurst and Smith, 2004, 2010; Jenkins et al., 2012a; Bi-
ass et al., 2014) and threat (Jenkins et al., 2012b; Scaini et al.,
2014), but they have all focussed on tephra hazard and were
limited by computing power. As a result, no comprehensive
regional, multi-volcano and multi-hazard exposure analysis
has yet been achieved, which raises the question as to what
extent current global volcanic exposure analyses based on
concentric radii around volcanoes are valid.

To address these issues, we developed and applied a new
framework to estimate the exposure to volcanic hazards on a
volcano-by-volcano basis, with the aim of ranking volcanoes
to identify those that pose the greatest threat. The approach
couples probabilistically modelled footprints from four vol-
canic hazards: tephra fall, large clasts, dome collapse and
column collapse pyroclastic density currents (PDCs) across
three eruption scenarios (representing VEI 3, 4 and 5).

We recognise that rain-triggered and occasionally lake-
breakout lahars are key hazards in Indonesia and the Philip-
pines (Lavigne et al., 2007; Newhall and Punongbayan,
1996). However, they are not included in our assessment
because (i) their runout and inundation area is directly
controlled by the spatial distribution and characteristics of
previously emplaced pyroclastic material; (ii) they can be
produced independent of an eruption so that their impact
over time and space is hard to capture without detailed
volcano-specific study; (iii) localised variations in rainfall
can strongly influence the probability of lahar occurrence;
and (iv) empirical models that enable large numbers of sim-
ulations, like LAHARZ, have not been calibrated for lahars
in Southeast Asia and do not capture the dynamics of debris
and hyperconcentrated flows typical of this region (Lavigne
and Thouret, 2003; Iverson et al., 1998).

The hazard data (probabilistic footprints across four haz-
ards and three VEI scenarios) were then coupled with open-
access geographic information system (GIS) data to quan-
tify five categories of exposure (population, buildings, roads,
crop and urban areas). A Python library named VolcGIS was
developed to preprocess and perform all geospatial opera-
tions required to quantify exposure. We demonstrate the ap-
plication of our framework on a selection of volcanoes in
Southeast Asia that are considered high-threat. To support
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Table 1. Previous studies (in chronological order since 2000) that have compared volcanic hazard, exposure and/or a combination of the two
(“threat”) across multiple individual volcanoes to provide a rank. Hazard or exposure factors are listed when there are three or fewer factors.
Studies that ranked countries or regions rather than individual volcanoes (e.g. Dilley et al., 2005; Simpson et al., 2011; Freire et al., 2019)
and studies that considered the hazard to a site such as a city or key infrastructure site rather than from a volcano (e.g. Jenkins et al., 2012a, b,
2018; Magill and Blong, 2005a, b) are not included here.

Study Region Number of Index- Hazard factors Exposure factors Highest-threat
volcanoes based? volcano or country

Small and Global 1405 N None Population within Gede, Indonesia
Naumann (2001) 10–200 km radii

Ewert (2007) USA 169 Y 15 10 Kı̄lauea, USA

Miller (2010) New Zealand 16 Y 15 10 Okataina, New
Zealand

Aspinall et al. 16 World Bank 439 Y 8 Weighted population Not stated
(2011) GFDRR priority counts within 10, 30,

countries 100 km

Camejo and Lesser Antilles 16 Y 8 Weighted population Not stated
Robertson (2013) counts within 10

and 30 km

Auker et al. Global 328 Y 6 None Not stated
(2015)

Brown et al. Global 1551 Y Volcanic hazard index of Weighted population Indonesia
(2015b) Auker et al. (2015) count: 10, 30, 100 km

Pan et al. (2015) Global Not stated N Frequency for each VEI, Population count within Indonesia
with radii where most deaths VEI defined “lethal”
occur for PDC, lahar and radii
tephra fall

Scandone et al. Italy and the 19 Y Time since last eruption and Population within radii Campi Flegrei, Italy
(2016) Canary Islands maximum VEI defined by maximum

VEI

Retnowati et al. Indonesia 44 Y CVGHM hazard maps School building repair Not stated
(2018b) converted to tephra load costs from tephra fall

damage

Ewert et al. USA 161 Y 15 10 Kı̄lauea, USA
(2018)

Nieto-Torres et Mexico 13 Y 9 9 Tacaná, Mexico and
al. (2021) Guatemala

This study Indonesia and the 40 N Probabilistic modelling of Population, buildings, Merapi, Indonesia
Philippines tephra fall, large clast, roads, crops, urban (Java in general)

dome collapse and column areas
collapse PDC; both short-
and long-term assessments

the differing requirements of volcanic risk management, we
consider exposure with two different probability weightings:
(i) conditional, when the assessment was conditional upon
the considered eruption scenario occurring at that volcano:
this can provide important values, maps and assessments in
the event of unrest or crisis management; and (ii) absolute,
when the assessment incorporated the annual probability of
the eruption scenario occurring: this is valuable for compar-
ing across multiple volcanoes on a like-for-like basis. Both
methods can identify “hotspots”, allowing future, more tar-

geted hazard and risk assessments to be prioritised. Using
these complementary approaches, we ranked the volcanoes
in terms of the nature of the volcanic hazard and the type of
exposure.

In what follows, we outline our methods, framework and
data sources before presenting and discussing our findings
and limitations. The code is published in open source, and
outputs are provided in the “Data availability” section, with
the intention that they be used to further our understanding
of exposure to volcanic hazards in this region. The proposed
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Figure 1. Active Holocene volcanoes of Southeast Asia (black triangles, as defined in Global Volcanism Program, 2013) with the 40 vol-
canoes considered for analysis in this study highlighted as larger triangles, with their colour dictated by their PEI. Basemap is ambient
population per 1 km2 (LandScan 2018; Rose et al., 2019). Numbers relate to the volcano name and PEI in Table 2.

methodology provides a transferable and evidence-based ap-
proach for evaluating volcanic hazard, exposure and threat
across a volcanic region. This study is not intended to re-
place official hazard and risk information provided by in-
dividual countries or volcano organisations (i.e. Indonesia’s
Centre for Volcanology and Geological Hazard Mitigation,
CVGHM, and the Philippine’s Institute of Volcanology and
Seismology, PHIVOLCS). Instead, it is designed to address
a need from international, regional and national agencies, in-
dustries, and governments for large-scale hazard and risk in-
formation to identify and prioritise volcanoes on which fur-
ther study and support should be focussed.

Choosing volcanoes for analysis

Here, we consider Holocene volcanoes from the Smithso-
nian Institution’s GVP (Global Volcanism Program, 2013)
located in Southeast Asia and with at least one recorded
VEI 3 or greater eruption (n= 48). To further restrict the
volcanoes to those that are more likely to pose a threat to
society, we consider the Population Exposure Index (PEI)
for each volcano, an index that accounts for the increased
potential for loss of life with proximity to the volcano (As-
pinall et al., 2011; Brown et al., 2015a). For our initial sub-
set of 48 volcanoes, we update the PEI values of Brown
et al. (2015a) by recalculating population counts within 10,
30 and 100 km radii using the LandScan 2018 (Rose et al.,

2019), rather than 2011, population dataset and recalculating
the fatality weightings within each radii using the updated
fatality database of Brown et al. (2017) rather than Auker
et al. (2013). The revised fatality weightings do not differ
much from those of Brown et al. (2015a), remaining at 0.003
within the 100 km radius and incurring only small changes
at the 30 km (0.03 to 0.07) and 10 km (0.93 to 0.97) radii.
We use the updated PEI to further restrict our 48 volcanoes
by considering only those with a PEI of 4 or above, indi-
cating a fatality-weighted exposed population of 10 000 or
more (Table 2). Of the remaining 40 volcanoes, 34 are in
Indonesia and 6 are in the Philippines (Fig. 1). Given the rel-
atively large number of volcanoes in Indonesia, and their ge-
ographic spread, we further subdivide the region geograph-
ically into the following (from west to east): Sumatra, Java,
Lesser Sunda Islands, Sulawesi and Halmahera/Banda Sea.
The updated PEI remained the same for 20 of our 40 volca-
noes, increased for 17 and decreased for 3 (Table 2). The
largest change in PEI is +2 for Paluweh volcano in the
Lesser Sunda region of Indonesia due to an increase from
∼ 550000 to more than 1 million people within 100 km fol-
lowing the establishment of the new administration regency
of Nagekeo in 2007.
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Table 2. Volcanoes considered for analysis in this study, the exposed and weighted summed population within 100 km (LandScan 2018; Rose
et al., 2019), and the updated PEI (and change in PEI from that calculated in Brown et al., 2015b). Those volcanoes with a change in PEI are
shown in bold. See text for details on how the PEI was updated. Volcanoes are ordered by decreasing weighted summed population< 100 km
from the volcano. Volcano IDs are used in Fig. 1.

ID Volcano Region Population Weighted Updated
(< 100 km) summed PEI

population (Change
(< 100 km) in rank)

1 Guntur Java 24 672 816 647 625 7 (0)
2 Merapi Java 20 912 606 610 759 7 (0)
3 Gede–Pangrango Java 41 052 844 464 921 7 (0)
4 Cereme Java 24 363 615 434 438 7 (+1)
5 Galunggung Java 23 503 160 411 713 7 (+1)
6 Kelud Java 21 445 246 399 771 7 (+1)
7 Dieng Volcanic Complex Java 20 836 400 381 995 7 (0)
8 Taal Philippines 25 468 937 361 479 7 (0)
9 Papandayan Java 19 871 707 346 022 7 (+1)
10 Mayon Philippines 3 800 811 307 870 7 (+1)
11 Lokon-Empung Sulawesi 1 615 751 302 849 7 (+1)
12 Gamalama Halmahera/Banda Sea 557 971 237 081 6 (0)
13 Lamongan Java 13 034 961 232 253 6 (0)
14 Tengger Caldera Java 19 308 100 206 610 6 (0)
15 Agung Lesser Sunda Islands 4 932 198 173 099 6 (0)
16 Pinatubo Philippines 20 263 766 143 351 6 (0)
17 Soputan Sulawesi 1 672 484 135 393 6 (+1)
18 Semeru Java 16 809 817 121 729 6 (+1)
19 Bulusan Philippines 3 070 592 119 290 6 (+1)
20 Rinjani Lesser Sunda Islands 3 324 266 119 250 6 (0)
21 Sinabung Sumatra 7 046 711 117 027 6 (+1)
22 Ranakah Lesser Sunda Islands 939 183 103 308 6 (+1)
23 Iya Lesser Sunda Islands 851 704 97 554 5 (0)
24 Raung Java 6 899 109 78 405 5 (0)
25 Camiguin Philippines 2 216 661 63 373 5 (0)
26 Parker Philippines 3 493 014 61 911 5 (+1)
27 Tangkoko-Duasudara Sulawesi 1 332 181 39 204 5 (0)
28 Lewotobi Lesser Sunda Islands 627 425 29 233 4 (−1)
29 Gamkonora Halmahera/Banda Sea 702 145 26 855 4 (0)
30 Krakatau Java 6 376 553 26 122 4 (0)
31 Awu Sulawesi 74 125 25 829 4 (0)
32 Lewotolo Lesser Sunda Islands 388 713 24 479 4 (0)
33 Karangetang Sulawesi 90 664 22 496 3 (+1)
34 Leroboleng Lesser Sunda Islands 603 314 22 339 4 (−1)
35 Dukono Halmahera/Banda Sea 536 125 16 989 4 (+1)
36 Paluweh Lesser Sunda Islands 841 119 15 544 4 (+2)
37 Suoh Sumatra 1 526 998 13 702 4 (+1)
38 Iliwerung Lesser Sunda Islands 388 155 13 199 4 (+1)
39 Tambora Lesser Sunda Islands 975 708 11 353 4 (0)
40 Banda Api Halmahera/Banda Sea 6588 10 829 4 (−1)

2 Methodology

This paper presents a methodology to (i) assess the proba-
bilistic hazard associated with short-lived, explosive erup-
tions of VEI 3, 4 or 5 and (ii) estimate various aspects of
exposure to these hazards (e.g. population, buildings, roads,
urban areas and crops). We considered four hazards pro-

duced by explosive volcanic eruptions: (i) the static load
caused by tephra accumulation, (ii) the kinetic impact asso-
ciated with large clasts, and inundation from PDC generated
from (iii) dome collapse and (iv) column collapse. A total
of 697 080 individual model runs were carried out. For each
hazard, the spatial extent, and where appropriate intensity,
was modelled for the different eruption scenarios, with re-
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Figure 2. Schematic outline of the study’s methodology for exposure analysis. CGLS-LC: Copernicus Global Land Service-Land Cover;
ERA 5: Reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF); GEM: Global Earthquake Model;
GVP: Global Volcanism Program of the Smithsonian Institute; OSM: OpenStreetMap; PEI: Population Exposure Index; SRTM: Shuttle
Radar Topography Mission; bool: Boolean workflow was made using draw.io.

sults analysed for three differing probabilities, 10 %, 50 %
and 90 %, giving a total of 57 permutations of hazard and
285 estimates of exposure per volcano. For tephra fall, fur-
ther aggregation was carried out per month to identify any
seasonal variability in hazard footprints, producing 324 addi-
tional probability-aggregated hazard footprints per volcano.
Hazard modelling outputs and their associated exposure esti-
mates were coupled with eruption frequency–magnitude es-
timates to allow two separate rankings to be developed: con-
ditional (assuming the eruption scenario had occurred) and
absolute (weighted by the eruption scenario’s probability of
occurrence). Hazard and exposure were combined using the
newly developed VolcGIS framework.

2.1 GIS framework

We have developed a geospatial python framework that
can source multiple derived hazard and exposure datasets
of varying resolution, unifying them in one consistent grid
(Fig. 2). For each volcano, the extent of the study area was
defined based on the bounds of the 1 kg m−2 tephra isomass
occurring at a 10 % probability for a VEI 5 eruption (see
Sect. 3.2.1). The GIS first applies preprocessing functions to
both hazard model outputs and exposure datasets (i) to ensure
that input files are projected onto the same WGS84 UTM
zone as the target volcano, (ii) to either crop it to the extent
of the study area or pad it with noData value depending on
geographic extent of the input file, and (iii) to resample the
input file to a specified spatial resolution. This preprocess-

ing step produces a set of files with consistent geographic
references (i.e. coordinate system, extent and pixel resolu-
tion) and equal numbers of pixels in the x and y directions.
This step is critical to ensure that the spatial index of pix-
els is consistent amongst all files, after which exposure is
estimated by translating each pixel’s spatial index of hazard
footprints into exposure datasets. Resampling of the rasters
is achieved using a cubic interpolation for continuous haz-
ard data and a nearest-neighbour interpolation for discrete
exposure data. After resampling, population data are multi-
plied by the square of the ratio between the original and fi-
nal resolutions in order to scale population counts to the new
pixel surface area. Here, a pixel size of 90 m was adopted to
keep computing and storage requirements reasonable while
retaining a high enough resolution to allow detailed anal-
ysis of exposure. The source code of the GIS framework
is available at https://github.com/vharg/VolcGIS (last access:
5 April 2022).

To support the re-application of our study over space and
time, all hazard modelling and exposure assessments were
carried out using only open-access datasets. Data descrip-
tions and sources are described within each relevant subsec-
tion below.

2.2 Hazard modelling

For each of the 40 volcanoes chosen for hazard modelling,
we used openly available hazard models (Appendix A), me-
teorological data and a digital elevation model (DEM) to
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probabilistically simulate potential hazard extent and, where
possible, intensity from four explosive volcanic hazards
(tephra fall, large clast, dome collapse and column collapse
PDC) across three VEI scenarios (VEI 3, 4 and 5). Scenarios
were tailored to be generic enough to be applied across all
volcanoes whilst preserving the spatially varying nature of
volcanic hazardous phenomena. VEI classes were chosen to
span the range of impacts from explosive volcanic eruptions;
VEI 2 eruptions were not simulated because of their limited
spatial extent, and VEI 6+ eruptions were not simulated as
they are of lower probability. However, we do recognise that
these scenarios would also be important to consider for com-
prehensive impact assessments.

Estimating ESPs for regional hazard assessments, espe-
cially with such variable eruptive records as those presented
by volcanoes in Southeast Asia, is always challenging. With
sufficient and consistent knowledge of the eruptive history
of selected volcanoes, it could be possible to tailor eruption
scenarios to reflect specific types of activity and to use mod-
els of increasing complexity (e.g. using 3D numerical tephra
dispersal models; Titos et al., 2022; Biass et al., 2014). In
the face of these data and knowledge gaps, regional haz-
ard assessments targeting volcanoes with differing eruptive
histories and record completeness require the development
of more generic eruption scenarios that are uniformly as-
signed to all sources. These eruption scenarios have domi-
nantly been developed around VEI classes (e.g. Jenkins et
al., 2012a), and, although bypassing the importance of some
eruptive processes, they provide key, first-order insights into
regional hazard and allow for comparison across multiple
scenarios and volcanoes.

The spatial extent (and intensity where possible) of each
of our four simulated hazards – tephra fall, large clasts, and
dome collapse and column collapse PDCs – is quantified us-
ing a probabilistic approach designed to account for various
sources of uncertainty. The probabilistic approach is imple-
mented either within the model (e.g. column collapse PDC)
or by the stochastic sampling of model inputs (e.g. tephra
fall). For each hazard and scenario, a generic set of ESPs
was developed from global datasets and analogous volca-
noes, uniformly applied to all volcanoes used in the study and
modelled with a dedicated method. More detail on our mod-
elling approach is provided in the following subsections; we
summarise the key ESPs across all hazards in Table 3, with
full details and rationale available in Appendix A.

Here, we favour empirical and analytical models over
more complex numerical models for two main reasons.
Firstly, their relatively lower computing costs allows prob-
abilistic hazard modelling to be run for all the scenarios and
volcanoes, and, secondly, they typically require fewer and
more generic ESPs. While these models are not necessarily
the most physically accurate representation of eruptive pro-
cesses, they have been shown in numerous circumstances to
be acceptable for determining hazard extent and probability
(e.g. Tephra2: Bonadonna et al., 2005; Large clasts: Rossi et

al., 2019; PDCs: Ogburn and Calder, 2017; Tierz et al., 2016)
and were suitable for creating probabilistic hazard inputs for
our framework. The next sections describe in more detail the
development and the modelling process of eruption scenarios
for each hazard, with input parameters and rationalised data
sources provided in Appendix A and all hazard outputs in (1)
in the “Data availability” section.

2.2.1 Tephra fall

Tephra fall is one of the most widespread and frequently oc-
curring volcanic hazards, and it can cause damage, disruption
or other impacts to buildings, crops and infrastructure (Jenk-
ins et al., 2015). Here, we simulated the spatial distribution
of tephra fall using Tephra2 (Bonadonna et al., 2005), which
solves the advection–diffusion–sedimentation equation using
a semi-analytical approach. For each volcano, an eruption
scenario was compiled for each of VEI 3, 4 and 5. For each
VEI scenario, Tephra2 was run for each of the 2880 synop-
tic hourly wind profiles (across 10 years) for the wind record
closest to the volcano using a single value of critical ESPs.
The variability in the results for each VEI and each volcano
is mostly due to the variability in specified wind profiles.

For each volcano and scenario (i.e. VEI), the 2880 sim-
ulations were post-processed to quantify the spatial distri-
bution of probabilities for exceeding a given accumulation
of tephra. We chose tephra accumulations that reflect key
impacts for our different categories of exposure and fol-
low those defined by Jenkins et al. (2015). A threshold of
1 kg m−2 (approximately equivalent to 1 mm thickness) was
used to quantify exposure to people and roads (signifying
potential health hazards and disruption to roads). Also, we
considered a threshold of 5 kg m−2 (∼ 5 mm) to capture dis-
ruption or productivity loss for crops and clean-up and in-
frastructure disruption in urban areas. Building exposure was
quantified using a 100 kg m−2 (∼ 100 mm) threshold, which
is often considered as the hazard intensity marking the on-
set of damage to weak buildings (Jenkins et al., 2014; Blong,
1984). Based on remote damage surveys around Kelud vol-
cano, Java, Williams et al. (2020) identified 100 kg m−2 as
the median tephra load associated with moderate or worse
damage to tiled or metal sheet roofs – roof types that are
common across Indonesia and the Philippines.

Outputs use all 2880 simulations from the full 10-year
record to identify the 10 %, 50 % and 90 % exceedance prob-
ability contours at each of the loading thresholds and VEI
scenarios above (27 contours per volcano). Monthly subsets
were also extracted to illustrate the variability in hazard as a
function of seasonality (an additional 324 contours per vol-
cano). In total, 345 600 individual tephra simulations were
processed to produce 4680 probabilistic outputs across the
40 study volcanoes (i.e. 360 with aggregated wind conditions
and 4320 for monthly subsets), with each probabilistic output
containing the three probability contours.
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Table 3. Key model input parameters used for the four hazards, with more details and rationale provided in the subsections below and
Appendix A.

Tephra fall (modelled using Tephra2; Bonadonna et al., 2005)

VEI 3 VEI 4 VEI 5

Simulations (n) 2880 2880 2880
Erupted mass (kg) 3.2× 1010 3.2× 1011 3.2× 1012

Plume height (km) 13 20 27

Large clast (modelled using Rossi et al., 2019)

VEI 3 VEI 4 VEI 5

Simulations (n) 2880 2880 2880
Plume height (km) 13 20 27
Clast density (g cm−3) 2.5
Clast diameter (cm) 3

Dome collapse PDC (modelled using LAHARZ modified for use with PDCs;
Schilling, 1998; Widiwijayanti et al., 2009)

Small volume Large volume

Simulations (n) 36 36
Volume (m3) 4.5× 105 9.8× 106

Column collapse PDC (modelled using ECMapProb; Aravena et al., 2020)

VEI 3 VEI 4 VEI 5

Simulations (n) 300 300 300
Column collapse height (m) 1300 2000 2700
H/L ratio 0.24

2.2.2 Large clast

The kinetic energies of lapilli, or large clasts (i.e. particles
with diameters of 2–64 mm), produce a dynamic hazard that
can cause skull fracture and roof penetration (e.g. Etna 2013,
Kelud 2014, Ontake 2014; G. T. Williams et al., 2019). As
their behaviour is partway between wind-advected particles
and ballistics and because they can be released from the
plume margin, large clasts cannot be accurately modelled by
models primarily designed for either ballistic trajectory par-
ticles or ash dispersal and sedimentation. Here, we used the
model of Rossi et al. (2019) that accounts for limited grav-
itational spreading of the umbrella cloud and the influence
of three-dimensional atmospheric conditions on the particles.
This model was successfully validated and applied by Osman
et al. (2019) to model the extent of coarse lapilli from the
23 November 2013 eruption of Etna.

Here, we considered the threat to human activity in the
vicinity of the vent (e.g. hiking activity at the summit). A
threshold of kinetic energies≥ 30 J at impact was chosen as
it represents a central estimate of the impact energy required
to cause skull fracture (Yoganandan et al., 1995). This corre-
sponds to a range of clast sizes, depending on density, from
≥ 3 cm (lithic clasts of 2.5 g cm−3 density) to ≥ 5.6 cm di-

ameter (pumice clasts of 0.63 g cm−3 density). Thus, we only
considered exposure within the extent of the 3 cm lithic iso-
pleth, which is the same extent as a 5.6 cm pumice clast iso-
pleth. The same probabilistic approach was applied for large
clast as for tephra fall (i.e. 2880 wind profiles per volcano
and fixed plume heights for each of VEI 3, 4 and 5) to quan-
tify the spatial distribution of impact probabilities by a large
clast with a kinetic energy exceeding 30 J. For each VEI,
we extracted isopleth extents associated with 10 %, 50 % and
90 % probabilities (nine outputs in total per volcano). In to-
tal, 345 600 individual simulations were processed to pro-
duce 120 probabilistic outputs across the 40 study volcanoes,
with each containing the three probability contours.

2.2.3 Dome collapse PDC

PDCs cause more fatal events and fatalities than any other
volcanic hazard (Brown et al., 2017). A common mecha-
nism of PDC generation is the gravitational collapse of a lava
dome (Cole et al., 2015). These PDCs are typically valley-
confined, but the possible detachment of the dilute compo-
nent can overspill and inundate populated areas (Lerner et al.,
2022). We simulated the likely flow paths of dome collapse
PDCs using a recalibrated version of the LAHARZ model
(Iverson et al., 1998; Schilling, 1998), with empirical coeffi-
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Figure 3. Probabilistic forecasting of dome collapse PDC travel directions calculated using the SRTM DEM (details in Appendices A and B).
Forecasts are shown in blue with actual dome collapse PDC travel directions shown in red for the following: (a) Mayon: one dome collapse
PDC on 11 June 2001 (Global Volcanism Program, 2001); (b) Sinabung: more than 100 dome collapse PDCs between 30 December 2013 and
4 January 2014 (Global Volcanism Program, 2014); (c) Semeru: several dome collapse PDCs between 30 November and 30 December 2002
(Thouret et al., 2007; Solikhin et al., 2012); and (d) Soputan: several dome collapse PDCs on 1 August and 25 October 2007 (Pallister et
al., 2012). When a single channel was reported, this is shown with an arrow accompanied by the channel name, while when only a general
direction was reported, this is shown as a wedge.

cients updated by Widiwijayanti et al. (2009) based on runout
and area for dome collapse PDCs at Soufrière Hills, Merapi,
Colima and Unzen volcanoes (see Appendix A for more de-
tail). Since flow volumes are not correlated to VEI, scenarios
for our simulations were taken as the volumes corresponding
to the 50th (4.5×105 m3) and 90th percentiles (9.8×106 m3)
obtained from the global dataset, FlowDat (Ogburn, 2016).
We did not include the 10th percentile volume (1.1×105 m3)
as it usually results in flows restricted to the summit area.
Since flow models generally do not capture PDC overspills
or inundation area (as opposed to deposit area) accurately, we
applied two buffers around each simulated volume: 300 and
990 m (1 km rounded to the nearest DEM cell). Buffer dis-
tances were chosen based on extents observed in previous
unconfined PDCs (e.g. Merapi 2010, Fuego 2018: Lerner et
al., 2022). For each simulated volume, we output the 10 %,
50 % and 90 % probabilities for each of the buffer extents.
In total, 5760 individual simulations were processed to pro-
duce 160 probabilistic outputs, with each containing the three
probability contours.

Although the PDC scenarios and their ESPs were de-
terministically chosen, we developed a stochastic approach
to estimate the directionality of PDCs from dome collapse.
Lava domes often exhibit preferential growth and collapse
directions that consequently influence the direction of as-
sociated PDCs (Zorn et al., 2019). As factors controlling
growth directionality are still debated (e.g. slope and mor-
phology of the summit region; Voight, 2000; Walter et al.,
2013), we developed a new method to automatically iden-
tify the travel direction probability for each direction around
the crater based on the summit topography. Although this
method is inherently linked to the accuracy of the DEM, it
nonetheless provides a simple, consistent and replicable way
to rapidly identify potential flow directions. The method con-
siders all azimuths – here binned by 10◦ intervals – around

a user-selected release point and cumulatively assesses the
morphological properties of the crater along a radial distance
to express a relative probability (more details on the method
are provided in Appendix B; Tennant et al., 2022). For each
volcano the crater radius was measured using Google Earth
and was used as the starting point for the flows. Figure 3
compares the direction estimated using our method with the
reported directions of dome collapse PDCs from four case
study volcanoes and demonstrates how it successfully cap-
tures the dominant flow directions.

2.2.4 Column collapse PDC

Column collapse events typically produce highly mobile, ra-
dially distributed PDCs (Cole et al., 2015). These are par-
ticularly dangerous since they are not confined to topo-
graphic lows in the same way as other PDCs (e.g. those
from dome collapse). Here, we modelled the PDC inunda-
tion using the probabilistic energy cone approach ECMap-
Prob of Aravena et al. (2020). Following the original ap-
proach of Malin and Sheridan (1982), ECMapProb simulates
PDC runouts by projecting a cone with a given height-over-
length ratio (H/L) originating from a collapse height onto the
topography, stochastically exploring the uncertainty on col-
lapse height, H/L ratio and vent location. This probabilistic
approach allows a PDC’s potential to overcome topographic
barriers to be estimated. In doing so, ECMapProb is also able
to redistribute the residual energy after the cone’s initial in-
tersection with topography to account for the frequent chan-
nelisation of PDCs (Aravena et al., 2020).

Scenarios for column collapse PDCs were defined based
on the plume height identified for each VEI, with a collapse
height estimated to be∼ 10 % of the plume height (after Wil-
son et al., 1978). For each VEI scenario, spatial extents of
the 10 %, 50 % and 90 % probability of inundation were pro-
duced (nine probabilistic outputs in total per volcano). More
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details on the inputs used are provided in Appendix A. In to-
tal, 120 sets of 300 simulations were performed (n= 36000
total), with each set producing a probabilistic output that con-
tained the three probability contours.

2.3 Incorporating eruption frequency

The hazard modelling described thus far provides condi-
tional outputs; i.e. they provide the spatial area affected by
a given hazard assuming that an eruption of a given VEI or
flow volume has occurred. This is valuable information for
crisis planning in the event of unrest; however, comparing
across volcanoes at the regional scale requires estimating ex-
posure as a function of the eruption frequency or probability
of occurrence. We achieved this by following the method-
ology of Hayes et al. (2022a), which uses a Bayesian up-
date and model combination framework to estimate the an-
nual probability of each VEI for each volcano, as well as
the uncertainty around that value (VEI annual probabilities
at the 10 %, 50 % and 90 % probability are provided for
each volcano in (2) in the “Data availability” section). Ana-
logue annual eruption probabilities were first calculated us-
ing two volcano analogue classification systems (Whelley et
al., 2015; Jenkins et al., 2018). These probabilities are then
updated separately using the volcano-specific eruption record
sourced from GVP (version 4.8.5, https://volcano.si.edu/,
downloaded 20 January 2020). This produces two separate
frequency–magnitude probability distributions for each vol-
cano based on the two analogue systems and incorporating
volcano-specific eruption data. These two probability distri-
butions are then combined using a model stacking approach
to produce a single frequency–magnitude probability distri-
bution for each volcano with uncertainty. The 50 % annual
probabilities for each VEI were used in our study to weight
the exposure calculated for each VEI scenario; i.e. each ex-
posure value was multiplied by the annual probability of an
eruption of that VEI occurring at that volcano, with the sum
across them providing the absolute exposure value, which
represents the averaged annual exposure across all eruption
simulations and scenarios for that volcano and hazard. In-
corporating eruption frequency allowed us to better assess
the exposure over given timescales; for example, multiplying
the absolute exposure values by 100 gives the averaged ex-
posure over a 100-year timeframe. For dome collapse PDCs,
in which flow volume cannot be linked to VEI, we do not
incorporate eruption frequency, only providing conditional
probabilities.

2.4 Exposure assessment

Exposure estimates were obtained by overlapping the extent
of hazard footprints with exposure datasets within our GIS.
We considered five distinct categories of exposure.

1. Population. The exposure of populations was estimated
using Oak Ridge National Laboratory LandScan data

for 2018. LandScan is a proxy for the ambient (i.e. 24 h
average) population density at a resolution of ∼ 1 km
(Rose et al., 2019).

2. Number of buildings. The location and number of
buildings was modelled using the Global Earthquake
Model (GEM) building exposure data described by
Silva et al. (2020). Disaggregation of data from the re-
gency level into built-up areas at a 36 m by 36 m resolu-
tion was achieved using the Pesaresi et al. (2015) Global
Human Settlement Layer (GHSL). We considered only
residential buildings.

3. Road lengths and hierarchies. To calculate the length
of roads affected by each of our hazards, we used
OpenStreetMap (OSM) data (downloaded from Ge-
ofrabrik.de on 26 November 2020), which provide the
location of roads and their classification, e.g. motorway,
primary and residential. We consolidated the 16 OSM
road classifications into four distinct hierarchies – mo-
torway (hierarchy 4), arterial (hierarchy 3), collector
(hierarchy 2) and local (hierarchy 1) – on the basis that
road hierarchy is an indicator of the scale of disruption
experienced by the road network from hazardous im-
pacts (Hayes et al., 2022b).

4. Area of crop land. Land cover is used as a proxy for esti-
mating exposure of crops to volcanic hazards. Here we
use the Copernicus Global Land Cover v3 at a 100 m
resolution (CGLS-LC100; Buchhorn et al., 2020) for
2019 and extract the cultivated and managed vegetation
classes from the discrete classification dataset.

5. Urban area. This is the same as for crops, with the
urban/built-up class extracted.

All exposure data were interpolated from their original reso-
lution to the 90× 90 m grid used within our GIS framework,
as described in Sect. 2.1.

3 Results

The multi-hazard and multi-exposure analysis presented here
required nearly 700 000 individual simulations and produced
26 640 probabilistic outputs, comprised of the following:

– 15 240 hazard estimates: 40 volcanoes× 3 prob-
abilities× [(3 VEI scenarios for column collapse
PDC)+ (2 flow volumes× 2 buffers for dome col-
lapse PDC)+ (3 VEI scenarios for large clast)+ (3 VEI
scenarios× 3 thickness thresholds× (12 individual
months+ 1 whole-year average wind conditions))];

– 11 400 exposure estimates: 5 exposures× 40 volca-
noes× 3 probabilities× [(3 VEI scenarios for col-
umn collapse PDC)+ (2 flow volumes× 2 buffers
for dome collapse PDC)+ (3 VEI scenarios for
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large clast)+ (3 VEI scenarios× 3 thickness thresh-
olds× 1 whole-year average wind conditions)].

Such outputs can be useful at the individual volcano scale
(e.g. maps of probabilistic dome collapse PDC inundation
or the number of buildings exposed to a VEI 4 tephra fall
≥ 1 kg m−2 at the 10 %, 50 % and 90 % probabilities), as well
as the regional scale. We provide all our hazard and exposure
results in (1)–(3) in the “Data availability” section. Hazard
outputs are provided per volcano and include processed wind
direction and speed information and hazard model outputs.
Exposure analysis results are provided as an excel file: these
serve as the raw data for all figures and tables in this study.
More information on data format for the hazard, frequency–
magnitude and exposure data are provided in (1), (2) and (3)
in the “Data availability” section. These files include all our
data output files, available in user-friendly formats (tif, xlsx).

3.1 Case study examples

A total of 381 probabilistic hazard outputs were produced for
each volcano (SM1), giving 15 240 in total. Figure 4 high-
lights three case study volcanoes, with the reason for choos-
ing each described below. We use these as examples of our
model outputs and calculated exposure, as well as the as-
sociated hazard and exposure insights that can be derived
from our results. We do not compare our maps with offi-
cial CVGHM or PHIVOLCS hazard maps where they are
available for our study volcanoes for the following reasons:
(i) comparison implies that one can be calibrated or validated
by the other, but (ii) we use different methodologies (prob-
abilistic vs. deterministic), (iii) our input data (i.e. analyt-
ical vs. geological) are different, and (iv) the purpose and
expected end user are not the same.

Merapi volcano in central Java, Indonesia, is one of the
most active and hazardous volcanoes in the world, with more
than 20 million people living within 100 km (Table 2) and
more than 20 000 within 10 km (SM3). Our modelling con-
firms that large clasts and dome collapse PDCs are primarily
near-vent hazards, with a maximum radial extent of around
7 km to the west for large clasts and 10 km to the southeast
through northwest for dome collapse PDC (Fig. 4a). These
distances and directionality fit well with deposits produced
during the last ca. 100 years (Jenkins et al., 2016; Voight
et al., 2000; Charbonnier and Gertisser, 2008). Results sug-
gest that large clasts and dome collapse PDCs do not affect
heavily populated areas, although transient hiking popula-
tions at or near the summit and more heavily populated areas
to the northwest (a low-probability impact area) are exposed
(Fig. 4b). A comparison of our model outputs (simulated vol-
ume of 9.8×106 m3 and buffer extent of 990 m) with mapped
2006 dome collapse PDCs – < 2.6× 106 m3 to the south-
west (Ratdomopurbo et al., 2013) and 6×106 m3 to the south
(Charbonnier and Gertisser, 2008) – shows reasonable simi-
larity in runout extent, highlighting the south and southwest
as particularly high hazard areas. The comparison also shows

that a 30 m resolution DEM fails to capture the strong topo-
graphic controls evident in mapped PDCs. Note that PDCs
during the 2010 eruption (not shown) extended beyond our
simulated PDC footprints to the south by ∼ 5 to 7 km be-
cause they were generated by dome explosion and partial
column collapse, both of which promote greater runout dis-
tances (Komorowski et al., 2013).

Taal volcano, ∼ 60 km to the south of Metro Manila in the
Philippines, is a caldera-forming volcano with a history of
explosive volcanism (Reyes et al., 2018). More than 25 mil-
lion people live within 100 km (Table 2) and nearly 60 000
within 10 km (SM3). The strong topographic control of the
caldera walls in limiting column collapse PDC runout and ex-
posure at Taal is evident in Fig. 4c. Within the caldera scarp,
roads are relatively sparse, except for the town of Taal in
the southwest where gentler relief results in higher road and
population density (Fig. 4c and d) and subsequently an in-
creased exposure to topographically controlled hazards such
as PDCs. For a VEI 4 scenario, 653 km of predominantly
lower-hierarchy 1 and 2 roads are exposed to column col-
lapse PDCs at the 10 % probability contour but only 98 km at
the 50 % probability contour as PDC runout remains mostly
confined to the lake and island. Figure 4d shows the influ-
ence of seasonality on the tephra fall impact area, discussed
in more detail in Sect. 4.1. Regardless of season, our mod-
elling shows that ∼ 50 to 60 km of the EH2 highway to the
east of the volcano, which links the cities of Batangas and
Manila, is likely to be impacted by a VEI 4 eruption from
Taal.

Gede–Pangrango is an active, but recently quiet, volcano
with a poorly known eruptive history that lies∼ 60 km to the
south of Jakarta in western Java (Tennant et al., 2021). This
proximity to Jakarta leads to Gede–Pangrango having the
greatest number of people living within 100 km (more than
41 million) of any volcano in our study (Table 2) or the world
(Small and Naumann, 2001). Closer to the volcano, numbers
are more modest, with ∼ 15000 within 10 km (SM3). Fig-
ure 4e and f show (i) the probability of exceeding a certain
tephra load (≥ 5 kg m−2 in Fig. 4e) and (ii) the tephra load
expected at a given probability (50 % in Fig. 4f). Both ap-
proaches show that tephra falls are most likely to be dis-
persed towards the west, affecting only the southernmost
parts of Jakarta with relatively low loads (≥ 1 kg m−2). Given
a VEI 4 scenario, the city of Sukabumi to the south-southwest
and communities to the west of Gede, along the highway
leading into Bogor and Jakarta, are threatened by poten-
tially damaging tephra fall loads (≥ 100 kg m−2; Fig. 4f);
very atypical wind conditions blowing from the south are
needed to result in such loads across the densely built areas of
Jakarta. Considering the low exceedance probability scenario
(10 %) from a VEI 4 eruption, most of the crops exposed to
≥ 5kg m−2 tephra fall accumulation are located to the east
of Gede–Pangrango, while urban areas are to the northwest,
specifically Bogor (Fig. 4e). For the high-probability sce-
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Figure 4. Results of hazard modelling for a VEI 4 scenario for (a) large clasts and dome collapse PDCs (9.8× 106 m3, 990 m buffer) at
Merapi, with 2006 dome collapse PDC (Charbonnier and Gertisser, 2008) and 2010 large clast extents (Iguchi et al., 2011) shown by the
hashed black areas and dashed red radii, respectively; (b) population exposure data at Merapi (LandScan 2018; Rose et al., 2019) combined
with 50 % large clast hazard footprint and the outer limit of dome collapse PDC from (a); (c) column collapse PDC at Taal overlaying
the roads, categorised by hierarchy; (d) tephra fall extent at 50 % probability for exceeding 1 kg m−2 for January, July and using whole-year
conditions, overlaying roads, categorised by hierarchy (hierarchy legend same as for c); (e) crops and urban area exposure at Gede–Pangrango
combined with tephra fall probability isopachs for an accumulation of 5 kg m−2 for whole-year wind conditions; and (f) number of buildings
at Gede–Pangrango combined with tephra fall accumulation isopachs (50 % exceedance probability) for whole-year wind conditions. Satellite
basemap © Google Maps.
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nario (90 %), exposed crops and urban areas are concentrated
within ∼ 20 km to the west of Gede.

3.2 Exposure assessment

Each probabilistic hazard output was combined with each of
the five exposure datasets to produce 95 exposure estimates
per volcano (3800 in total: SM3). For most hazards, the ex-
posure increases significantly with increasing VEIs, reflect-
ing the increased distance reached with greater eruption in-
tensity and/or magnitude (Figs. 6–8). Column collapse PDC
marks the exception, with a VEI 4 or 5 eruption not marking
a significant increase in exposure compared to a VEI 3 erup-
tion (Fig. 9). In general, the hazards resulting in the high-
est values of exposure are, in decreasing order, tephra fall-
out, PDC from column collapse, large clasts and PDC from
dome collapse. Tephra fall yields a higher population expo-
sure compared to column collapse PDCs up to accumulations
of ∼ 5 kg m−2 for all VEIs. Above a tephra accumulation of
5 kg m−2, column collapse PDCs result in higher population
exposure for a VEI of 3.

3.2.1 Population exposure

For all regions and all hazards, the distribution of popula-
tion exposure across different volcanoes is often asymmet-
rical (positively skewed), with a long tail suggesting that a
smaller number of volcanoes provide the very large expo-
sure values (Fig. 5). For tephra fall, populations in Java are
by far the most exposed to our study volcanoes (n= 13) of
any region (Figs. 5 and 6). As the dominantly east–west wind
directions across Java coincide with the island’s orientation,
tephra is mostly deposited on land. For an eruption of VEI 5
at 50 % probability, 12 of the 13 volcanoes in Java result in
> 10 million people exposed to tephra falls ≥ 1 kg m−2 from
the volcano; for a VEI 4 50 % scenario, with the exception
of Krakatau (∼ 11 000 people), between 3.4 million (Raung)
and 9.6 million (Cereme) are exposed to the same tephra fall
threshold. Within Java, Krakatau volcano always shows a
lower tephra fall exposure relative to other Javanese volca-
noes, whilst Cereme, due to its upwind location to Jakarta,
is consistently amongst the volcanoes resulting in higher ex-
posure to tephra fall. Sulawesi is the region with the second
highest median exposure to tephra fall from eruptions with
VEI 3, but larger eruptions of VEI≥ 4 see the Philippines
ranked second (Fig. 5).

Exposure to large clasts is 3 to 4 orders of magnitude
smaller than for tephra fall, as expected. Populations in Java
and the Philippines have the greatest median exposure to
eruptions of VEI 3 and 5, whereas populations in the Halma-
hera/Banda Sea region have the greatest median exposure to
VEI 4 eruptions (Fig. 7). This indicates that our analysis ac-
curately captures the distribution of population in the region,
with fewer people on the flanks of the volcanoes and most

settlements being 5–10 km away, often on the shores of vol-
canic islands.

For column collapse PDCs, with a maximum runout dis-
tance partway between the maximum extents of large clasts
and tephra fall, populations in Java again have the greatest
median exposure (Fig. 9). For dome collapse PDCs, which
typically have a more directed and relatively short maximum
extent compared to the other simulated hazards, median ex-
posure numbers are relatively small but highlight volcanoes
in Sumatra (n= 2) as those with the greatest median expo-
sure and Sulawesi (n= 5) as those with the largest exposure
values (Fig. 8). Lokon-Empung volcano in Sulawesi is driv-
ing the larger values in the region (> 7000 people exposed)
with the most likely flow direction being to the southeast, af-
fecting communities along the Tomohon–Manado main road
∼ 5 km away. In Java, Guntur volcano provides the largest
outlier exposure value for dome collapse PDCs, with more
than 11 000 people exposed in communities ∼ 7 km south-
east from the volcano on the outskirts of Garut.

3.2.2 Building exposure

For VEI 3, Sulawesi and Sumatra have the largest me-
dian number of buildings exposed to tephra accumula-
tions≥ 100 kg m−2 and Java has the smallest. For VEI≥ 4,
on average, Java becomes the most exposed region with Mer-
api (VEI 4) and Cereme (VEI 5) producing the largest num-
bers (Fig. 6). Sulawesi and the Philippines are the second
two most exposed regions, on average. For large clasts, the
regions that have, on average, the most buildings exposed
to eruptions of VEI≤ 4 are Halmahera/Banda Sea, Sulawesi
and Sumatra. For VEI≤ 4, our Javanese volcanoes have vir-
tually no exposed buildings to large clasts, but the region
climbs to first place for VEI 5. For column collapse PDCs,
the regions with the greatest median exposure are, in de-
creasing order: Java, Sulawesi, Sumatra and the Philippines
across all VEI classes. For dome collapse PDCs, Sulawesi
and Sumatra have the highest median exposure, followed by
Halmahera and Java (Fig. 8).

3.2.3 Road network

Due to the proximity to large and complex urban centres
(e.g. Jakarta, Yogyakarta), on average Java has by far the
greatest road network exposed to tephra accumulations of ≥
1 kg m−2 over all VEIs (Fig. 6). For VEI≥ 4, the region with
the second greatest median exposure is the Philippines, with
the notable case of Taal volcano that can affect metropoli-
tan Manila. For VEI 3, only Sumatra and Lesser Sunda have
some sections of road (i.e. < 20 km) exposed to large clasts.
For VEI 4 and 5, the regions with the greatest median expo-
sure are Sumatra and Java, respectively. The pattern of ex-
posure of the road network to column collapse PDC inunda-
tion is generally the same as for tephra fall, the only excep-
tion being significantly lower median exposure in the Philip-
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Figure 5. Distribution of the population exposure for each volcano colour-coded by region. The horizontal bars and the coloured circles show
the 95 % confidence interval and the median, respectively, whereas the small dark dots show the underlying data. Each column is a different
eruption scenario (i.e. flow volume for dome collapse PDC and VEI otherwise). The hazard used here considers a conditional exceedance
probability of occurrence of 50 %. The number of volcanoes in each region are as follows: Halmahera/Banda Sea (4), Java (13), Lesser
Sunda (10), Sulawesi (5), Sumatra (2), and the Philippines (6).

pines. Due to its location within a caldera lake, Taal volcano
requires large eruptions to affect the road network. Interest-
ingly, the case study of Mayon volcano illustrates the vari-
ability in exposure with VEI between tephra fall and PDC.
For tephra fall, the main wind direction is westwards, and the
urban centre of Legazpi, located∼ 15 km south-southwest of
the vent, becomes increasingly affected by larger eruptions
that develop significant crosswind and downwind sedimen-
tation patterns (Fig. 6). Conversely, column collapse PDCs
are less directional, and the exposed road network varies lit-
tle across VEIs (Fig. 9). Finally, only a limited length of
roads (i.e. maximum of 50 km) is typically exposed to inun-
dation from dome collapse PDCs. For the largest volume and
buffer, Guntur and Merapi are the two volcanoes producing
the largest road exposure values (Fig. 8).

3.2.4 Crop area

Regions displaying the largest median exposure of crop land
to all hazards are Sumatra and Java. For large clasts and dome
collapse PDCs, Sumatra displays the largest median crop ex-
posure across all eruption scenarios (Figs. 7 and 9). For large
eruption scenarios (i.e. VEI≥ 4 for tephra and VEI 5 for col-
umn collapse PDC), volcanoes in Java have the largest ex-
posure, on average. The median exposure of crops to tephra
accumulations≥ 5 kg m−2 in Java varies by 2 orders of mag-
nitude between VEI 3 (∼ 30 km2) and VEI 5 (∼ 1700 km2).

3.2.5 Urban area

Java and Sulawesi show the highest median exposure to both
tephra accumulation≥ 1 kg m−2 (Fig. 6) and column col-
lapse PDCs (Fig. 9). The third most exposed region, on aver-
age, across our volcanoes is the Philippines for tephra and
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Figure 6. Exposure to tephra fall accumulation summarised per region and exposure type for a conditional exceedance probability of oc-
currence of 50 %. Overlying (not stacked) bars illustrate the variability in exposure with VEI (with the top of the bar representing exposure
for that VEI) and dotted lines the median for the region. Note that specific thresholds of tephra loads (as defined in Sect. 2.2.1) are used for
various exposure types.

Sumatra for column collapse PDCs. Considering a VEI 4
eruption, < 1 km2 of urban area is exposed, on average, to
large clasts in these regions. This increases to 6, 11 and
25 km2 for Sumatra, Sulawesi and Java, respectively, for a
VEI 5 scenario (Fig. 7). The median exposure of urban areas
to dome collapse PDC is < 2 km2 for all regions and scenar-
ios and is virtually null for Lesser Sundra (Fig. 8).

3.3 Hazard seasonality

Tephra hazard, and related exposure, is strongly controlled
by wind conditions at the time of the eruption, which vary
across the region as a function of the season. Figure 10 shows
the discrepancy between the values of population exposure
presented above, which aggregate probabilities of tephra fall-
out over all months, and those calculated using wind con-
ditions from each month separately. We acknowledge two
limitations to quantifying our exposure estimates as a func-
tion of season. Firstly, the potential influence of increased
rain on hazard modelling (e.g. aggregation increasing prox-
imal sedimentation; Brown et al., 2012) and post-deposition
hazard intensity estimates (e.g. increased load due to water-

saturated deposits; Macedonio and Costa, 2012; Williams et
al., 2021) is ignored here. Secondly, the population count
provided by LandScan is an ambient averaged population
which does not capture any demographical seasonal dynam-
ics (seasonal workers, tourism, etc.).

Three dominant climatic regions exist across our study
area (Aldrian and Dwi Susanto, 2003): (i) Sumatra, Java, and
Lesser Sunda; (ii) Sulawesi and Halmahera/Banda Sea; and
(iii) the Philippines. Population exposure values for tephra
fall from our study volcanoes in Java generally increase dur-
ing the peak rainy season (January, February) and decrease
during the peak dry season (July, August, September). For
the Philippines, the reverse is true with larger population ex-
posure during the dry season (January through April). Across
all study volcanoes, the percent changes to population expo-
sure estimates as a result of seasonal variability are typically
positive and within 150 % of the whole-year estimate across
Indonesia (with the notable exception of Krakatau) but up to
600 % in the Philippines, with Camiguin and Pinatubo show-
ing the largest percent changes (Fig. 10).
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Figure 7. Exposure to the large clast hazard (i.e. hazard caused by a kinetic impact≥ 30 J) summarised per region and exposure type for a
conditional exceedance probability of occurrence of 50 %. Overlying (not stacked) bars illustrate the variability in exposure with VEI (with
the top of the bar representing exposure for that VEI) and dotted lines the median for the region.

Three volcanoes in the region best illustrate changes in
population exposure as a function of the month of the erup-
tion. Firstly, an eruption at Krakatau volcano in January leads
to a relatively drastic increase in population exposure com-
pared to the rest of the year. Considering a VEI 4 eruption
and a 50 % exceedance probability of occurrence, an erup-
tion in January leaves ∼ 270000 people exposed to an ac-
cumulation≥ 1 kg m−2 compared to ∼ 11000 (a 2350 % in-
crease) when all months are aggregated. Population expo-
sure throughout the year at Krakatau is typically low rela-
tive to the other volcanoes in our study as winds predom-
inantly disperse tephra towards the west and over the sea.
Wind conditions below ∼ 15 km in January blow mostly to
the north or west-southwest, reducing the westward extent of
the ≥ 1 kg m−2 isopach and extending it eastwards, affecting
human settlements on the western parts of Java. A similar
behaviour is observed at Guntur volcano; although the dom-
inant wind direction is towards the southwest, winds during
the rainy months (December–April) also display dispersal to-
wards the north and the east, which increase the probabil-
ity of Bandung (9 million people, northwest of Guntur) and
Garut (100 000 people, southeast of Guntur) being affected
by ≥ 1 kg m−2 of tephra, leading to a small percent increase

from the whole-year value but a large number of people ex-
posed. Finally, winds at Taal volcano show a strong north-
ward component around the tropopause (∼ 8 to 15 km) dur-
ing the peak dry season (e.g. January) compared to the rest
of the year when winds at this height mostly blow towards
the west. As a result, eruptions during the month of January
increase the probability of tephra deposits affecting Metro
Manila, as demonstrated by Taal’s January 2020 eruption.

4 Volcano ranking

The multi-hazard and multi-exposure analysis presented here
allows us to rank all 40 volcanoes according to their exposure
to the four volcanic hazards simulated here (Fig. 11). The
ranking is performed separately for each hazard and exposure
type and simply reflects the relative rank of the computed ex-
posure in decreasing order. Separate rankings are presented
per VEI scenario, providing 55 “conditional” (i.e. condi-
tional to the occurrence of the eruption scenario) estimates
and 15 “absolute” scale (i.e. accounting for the probability
of occurrence of the eruption scenarios; Sect. 3.2) insights
for each volcano. Aggregated results are shown here for each
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Figure 8. Exposure to inundation from dome collapse PDCs summarised per region and exposure type. The hazard is extracted for a
conditional exceedance probability of occurrence of 50 % and considers a 990 m buffer around the flow footprint. Overlying (not stacked)
bars illustrate the variability in exposure with the initial flow volume (with the top of the bar representing exposure for that volume) and
dotted lines the median for the region.

hazard separately (Figs. 12 through 15), with individual vol-
cano results provided in (3) in the “Data availability” section.

The five volcanoes that rank the highest overall (Merapi,
Guntur, Dieng, Cereme, Gede–Pangrango; Fig. 11) include
ranks that range between 1 and 38 (out of 40), showing the
wide variability in exposure when multiple hazards, scenar-
ios and exposure categories are considered. Raung, Suoh and
Pinatubo exhibit ranks across the full range; for example,
Pinatubo ranks as the volcano with the greatest exposure of
crop areas to dome collapse PDCs and large clasts from a
VEI 4 scenario and as the volcano with the smallest expo-
sure of population to VEI 3 and 4 column collapse PDCs and
VEI 5 large clasts, with other permutations falling between
rank 4 and 39 (Fig. 11a).

Merapi is the only one of our 40 study volcanoes to re-
main within the top five ranked volcanoes for population ex-
posure across all hazards, all VEI scenarios, and for both con-
ditional probabilities and those incorporating eruption fre-
quency (Fig. 11b; 3 in the “Data availability” section). For
other exposure categories, Merapi remains within the top six
of all volcanoes for the more distal tephra fall and column
collapse PDC hazards. For the more proximal hazards of

large clasts and dome collapse PDCs, there is large varia-
tion within the lower VEI and volume scenarios, while the
higher VEI and volume scenarios all give ranks within the
top nine. For example, building exposure to VEI 4 large clast
and lower-volume dome collapse PDC scenarios gives ranks
of 24 and 23, respectively, while the same exposure for VEI 5
large clast and upper-volume dome collapse PDC scenarios
results in ranks of 1 and 2, respectively (Fig. 11b). This sup-
ports our earlier finding (Sect. 3.1) that large clasts and dome
collapse PDCs are less likely to affect heavily populated ar-
eas unless the eruption is large, although exposure estimates
are still higher than for most of our study volcanoes.

Gede–Pangrango, a stratovolcano ∼ 60 km to the south of
Jakarta, ranks as having high population exposure when radii
are assumed (Small and Naumann, 2001; Table 2). For the
more distal hazards of relatively thin (≥ 1 or ≥ 5 kg m−2)
tephra fall (Fig. 12) and column collapse PDC (Fig. 15a),
this mostly holds true (ranked within the top 12 for all but
building exposure to tephra falls ≥ 100 kg m−2 from a VEI 3
scenario, which is rank 31). For the more proximal large
clast and dome collapse PDC hazards, Gede–Pangrango for
the most part ranks relatively low for all exposure cate-
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Figure 9. Exposure to inundation from column collapse PDCs summarised per region and exposure type for a conditional exceedance
probability of occurrence of 50 %. Bars illustrate the variability in exposure with VEI and dotted lines the median for the region.

gories (14 to 37) with the exception of the VEI 5 large
clast scenario (ranks 5 through 10). Large clasts typically
fall within a 10 km radius for the VEI 5 scenario at Gede–
Pangrango, meaning that they affect the outskirts of a num-
ber of towns, e.g. Cibodas to the northeast, and associated
cropland that rises up in the valleys between the towns and
the volcano (Fig. 4e). Ranks are generally lower for the abso-
lute, rather than conditional, estimates, reflecting a relatively
low eruption frequency compared to other case study volca-
noes. These findings highlight that while Gede–Pangrango
has previously been considered the volcano with the highest
population exposure in the world (Table 2), this is not the
case when likely hazard footprints and eruption probabilities
are taken into account: while exposure remains high for the
more distal hazards, for more proximal hazards, other volca-
noes in our study pose a greater threat.

Closed-vent systems (sealed conduit), such as Gede–
Pangrango, Guntur and Cereme, are more likely to produce
large explosive eruptions (Bebbington, 2014), and these are
exactly the volcanoes that we want to highlight with our ap-
proach: those that may be currently quiet but that have the
potential to cause significant impact when they reawaken.
This study provides a preliminary assessment of areas, pop-
ulations and assets that may be affected in a future erup-

tion from such volcanoes, highlighting hotspots where there
could be a relatively large impact. Guntur is one such volcano
as it lies ∼ 35 km southeast of the second largest metropoli-
tan area in Indonesia, Bandung, and ∼ 10 km northwest of
the town of Garut and hosts abundant crop areas on the plains
around the volcano. Guntur is a complex of overlapping stra-
tovolcanoes, with the youngest cone having produced fre-
quent explosive eruptions (VEI 2–3) between 1800 and 1847
(n= 21), making it one of the most active volcanoes in the
study area during this time; however, there have been no
eruptions since 1847 (Global Volcanism Program, 2013),
suggesting that the eruptive regime has changed from that
of an open-vent to a closed-vent system. Exposure around
Guntur is particularly high for modelled dome collapse and
column collapse PDCs and for VEI 5 large clast impact as
hazard footprints reach the outskirts of Garut. For tephra fall,
Guntur is ranked within the top 10 volcanoes for all expo-
sure categories and VEI scenarios, with the rank typically
decreasing with increasing VEI as volcanoes with larger dis-
tal downwind populations begin to dominate the rankings.

As we did not simulate all volcanic hazards, volcanoes at
the lower end of the ranking cannot be assumed to pose low
threat for all volcanic hazards. For example, Krakatau vol-
cano ranks as our lowest-threat volcano (Fig. 11), but the
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Figure 10. Seasonality patterns in population exposure values (top row) and percent changes in population exposure (second row) from the
50% probability of ≥ 1 kg m−2 tephra fallout associated with a VEI 4 eruption. Values represent the difference in exposure value between
the tephra hazard estimated from all 2880 hourly synoptic wind profiles across the whole 12 months of a year (normalised to the 0, or 100 %,
line) and a subset of this total population of wind profiles extracted per month, in which each line represents a different month. A value
lower than zero or 100 % represents a decreased exposure in that month and a value greater than zero or 100 % the opposite. Averaged wind
conditions for the dry and rainy seasons for the three main climatic regions are shown in the next rows for altitudes of 5 to 15 km a.s.l. (above
sea level).

2018 tsunamigenic flank collapse, which killed more than
400 people (R. Williams et al., 2019), highlights the impor-
tance of considering other volcanic hazards and conducting
volcano-specific field studies to determine a volcano’s over-
all threat.

Overall, the consideration of eruption frequency into the
rankings does not considerably change the overall trend
across our volcanoes, scenarios, hazards or exposure cat-
egories (3 in the “Data availability” section). Disparity in
rankings across the volcanoes is strongly driven by variabil-
ity in location affected and thus exposure. There are nev-

ertheless interesting case studies to be observed. Consid-
ering the population exposure to ≥ 1 kg m−2 of tephra fall
(Fig. 12), Cereme ranks first when considering the condi-
tional occurrence of eruptions of VEI≥ 4 but ranks 12th
when the absolute probabilistic hazard assessment is consid-
ered, i.e. when the probabilities associated with the three VEI
scenarios are used to weight the exposure. In contrast, Raung
volcano ranks between 11 and 18 when considering the con-
ditional occurrence of VEI 3–5 separately but ranks 4th
when considering absolute probabilities. These different be-
haviours lie in the eruptive histories of the individual volca-
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Figure 11. Upper panel: heat map to show the number of times (cell colour) that a certain rank (x axis) is assigned for each volcano (y axis)
for the 55 ranking permutations across hazard, VEI/volume, and exposure; lower panels: individual ranks and exposure estimates for our
highest overall ranked volcano, Merapi. The y axis and text numbers show the rank for each combination of hazard (columns), VEI or volume
(rows), and exposure (colour), with the size of the circle reflecting the exposure values normalised to the largest value for that combination
from any of our 40 study volcanoes; the black circle represents this largest value. For example, for a VEI 3 tephra fall from Merapi, while
buildings rank higher (3) than crop area (6), the exposure value for crop area is closer to the maximum calculated across all of our volcanoes
than it is for buildings.

noes and the computation of the probabilities of occurrences
for each VEI (Sect. 2.3). Raung is a more frequently erupting
volcano, with 62 recorded eruptions since 1800, compared
to just three at Cereme in the same time period. This trans-
lates into a higher annual probability of an explosive eruption
for each VEI at Raung than Cereme, which considerably in-
fluences the exposure rankings for these two volcanoes. Al-
though the occurrence of large eruptions at Cereme results
in high exposure (Fig. 6), eruptions of VEI 3, 4 and 5 have

annual probabilities of occurrence of 0.4 %, 0.2 % and 0.1 %,
respectively. By contrast, simulated eruptions from Raung re-
sult in, on average, one third of the total exposure attributed
to Cereme, but their annual probabilities are on average 1
order of magnitude higher (e.g. 3.6 %, 1.6 % and 0.6 % for
VEI 3, 4 and 5, respectively). This observation highlights the
benefits and pitfalls of conditional vs. absolute probabilistic
hazard assessments, and their combined use and understand-
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Figure 12. Individual rankings for calculated exposure using the 50 % tephra fall hazard for all volcanoes across the five exposure categories.
Columns “3”, “4” and “5” quantify the exposure to the conditional occurrence of VEI 3, 4 and 5 scenarios. Column “A” quantifies the
absolute exposure using the sum of all scenarios, in which each scenario was weighted by its probability of occurrence. For each individual
column, all volcanoes are attributed a rank between 1 and 40, where 1 is considered the highest (i.e. the largest exposure; dark red cells)
and 40 the lowest (dark blue cells). Volcanoes are ordered from highest to lowest ranking across all conditional categories (equal weighting
assumed). For instance, Raung volcano is the 11th ranked volcano for population exposure to≥ 1 kg m−2 when considering a VEI 5 eruption
(with the highest and lowest being Cereme and Banda Api, respectively) but is amongst the volcanoes with the lowest rank (39) for building
exposure to 100 kg m−2 when considering a VEI 3 eruption.

ing are required to fully inform decision-making during var-
ious phases of volcanic crises.

5 Limitations

As with any consistently applied regional approach to hazard
or exposure assessment, there are limitations to using widely
available data. We discuss these limitations in more detail
over the next sections to highlight how our results may differ
with further data and/or study.

5.1 Hazard approach

A regional approach to hazard simulation can omit local con-
text (e.g. recent unrest crises) and data (e.g. unpublished

eruption records) that could be included within a volcano-
specific hazard assessment. By employing more generic in-
puts across all volcanoes, our results are relevant and compa-
rable at a regional scale, but caution should be used in consid-
ering such assessments at the individual volcano scale. How-
ever, they do provide a solid foundation from which more de-
tailed assessments can be applied. Specifically, the following
factors could be improved in a local single volcano assess-
ment.

– By using global datasets for ESPs (e.g. GVP, VEI classi-
fication), datasets can be biased towards particular erup-
tions and more recent times.

– We simulated with a continuous, rather than fixed, spec-
trum of ESPs for each VEI scenario. This is particularly
important for capturing the larger exposure estimates as
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ESPs that represent the upper end of a VEI, while lower
probability than the fixed ESPs we chose or those at the
lower end of a VEI, are more likely to produce the larger
footprints and thus the larger exposure values (Sandri et
al., 2016).

– Since we modelled hazard probabilistically across
40 volcanoes, we were constrained to using empirical
models that do not fully capture the physical processes
underpinning volcanic phenomena. This is an unavoid-
able consequence of the computational power required
for physical models.

– To constrain the scope of this study, other volcanic haz-
ards such as lahars, lava, gases, volcanogenic tsunami
and lightning were not included.

– For tephra, we considered the hazard from both tephra
fall and large clasts, and for PDC, we considered the
hazard from both column collapse and dome collapse
generation mechanisms. Not all volcanoes are likely to
produce all hazard types, and we do not distinguish
here; therefore overall rankings, i.e. the ordering of vol-
canoes in Figs. 12–15, may require further interpreta-
tion for certain volcanoes. However, individual values
and rankings are still appropriate, and we provide all
data so that the reader can choose certain assessments
only if preferred.

– Some of our case study volcanoes have produced PDCs
that differ in their generation mechanism, and thus dy-
namics, from the dome and column collapse mecha-
nisms simulated here. For example, the 2010 eruption
of Merapi produced PDCs from boiling over, dome ex-
plosion/lateral blast, fountain collapse and dome col-
lapse over the course of 11 d (Jenkins et al., 2016; Ko-
morowski et al., 2013). In the case of repeated PDCs,
our modelling does not capture modification of the sub-
surface topography or smoothness as a result of previ-
ous deposits, which would affect runout. Additionally,
the use of the SRTM 2000 DEM for modelling could re-
sult in less reliable inundation areas where major topo-
graphic changes have occurred since its acquisition, al-
though we did not observe this effect at Merapi (Fig. 4a
and b).

5.2 Exposure data

The limitations and features of regionally applicable expo-
sure data have been well detailed for our data sources (see
references in Sect. 2.4), although the interpolation or extrap-
olation of our data to a consistent grid for calculation across
different hazards and exposure categories inevitably meant
that some resolution in data was lost. For example, we dis-
aggregated the number of buildings and people within a grid
cell and calculated exposure to a hazard as the proportion

of each of our 90× 90 m cells covered by the hazard so that
any clustering of buildings at the original scale (∼ 1 km2 for
people and 36 m2 for buildings) has been lost; we do not ex-
pect this to have a major effect on our overall results, but for
detailed local inspection there may be some variation as a re-
sult. We also noticed a small number of irregularities in our
building exposure results that unavoidably arose as a result
of the dataset limitations, and we note them here; as with the
interpolation, they do not have a major effect on results but
would be worth investigating further if results are interpreted
at the individual volcano scale.

– The GHSL data used to spatially distribute buildings ex-
hibit a 300 km long horizontal line through central Java
that appears to overestimate built-up areas immediately
to the south and underestimate built-up areas immedi-
ately to the north. This affects the distribution of our
buildings, and the artefact comes within 30 km of sev-
eral volcanoes in our analysis.

– A second artefact in the GHSL is its interpretation of
built-up areas using remote sensing. We found that in a
small number of specific locations, bare rock areas such
as riverbeds (e.g. to the northwest of Kelud) or volcanic
craters (e.g. Gede–Pangrango) had been misinterpreted
as built-up areas resulting in the disaggregation of build-
ings into areas where they are unlikely to exist.

6 Discussion and conclusions

With this study we have evaluated five categories of expo-
sure to four volcanic hazards and three VEI scenarios to give
probabilistic outputs for 40 high-threat volcanoes. Ranking
was performed using both conditional probabilities, in which
the exposure was conditional on the occurrence of the erup-
tion scenario and absolute probabilities, which accounted for
the probability of occurrence of the different eruption scenar-
ios considered at each volcano. We explicitly list our simplifi-
cations and how different initial conditions were determined.
This work expands significantly upon previous approaches to
regional volcanic hazard and exposure assessment that con-
sidered concentric radii to reflect hazard extent and/or popu-
lation exposure only. By probabilistically modelling multiple
volcanic hazards and coupling them with open-access expo-
sure data, our approach provides a consistent and transfer-
able method for comparing hazard and exposure at a volcano
and across multiple volcanoes, hazards and exposures. While
the modelling provides valuable information that can act as
a foundation to more detailed local assessments, especially
for volcanoes that have limited or no hazard and exposure
assessments already conducted, it is not intended to replace
local assessments. Wherever possible, local context, data and
knowledge should all be incorporated.

We found Merapi to pose the greatest threat when all haz-
ards, exposures and VEI scenarios are considered with equal
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Figure 13. Individual rankings for calculated exposure using the 50 % large clast hazard. Column names, volcano order and cell colour as
for Fig. 12.

weighting. For a VEI 4 scenario, a ca. 1 in 100-year event
at Merapi, approximately 7.8 million people, 210 000 build-
ings, 38 000 km of road, 930 km2 of crops and 1150 km2

of urban area have a 50 % probability of being affected by
tephra fall accumulations≥ 1 kg m−2. The threat that Mer-
api poses is well appreciated, and it is likely one of the most
studied volcanoes in Indonesia. A key aim of our study was
to highlight those volcanoes that may have been overlooked
perhaps because they have not been frequently or recently
active but that have the potential to affect large numbers of
people and assets. Guntur volcano in Java fits that description
well with comparable, and in some cases larger (e.g. Fig. 8),
exposure than Merapi. Retnowati et al. (2018a) carried out a
current and projected exposure estimate for concentric radii
of lava flow and exponentially thinning tephra fall, extending
it towards estimates of building damage and loss. A more de-
tailed local hazard and risk assessment for Guntur would be
of high value, especially as the volcano appears to be a closed
system at present so that a future eruption may be larger than
those experienced in the recent past.

The GIS framework developed for this work is modu-
lar with the code freely provided (https://github.com/vharg/
VolcGIS, last access: 5 April 2022) so that future works can
simply plug in updated or improved hazard or exposure data.
For example, the key improvements that we anticipate will
be most influential in improving our findings are as follows.

– Field studies that improve our knowledge of the past be-
haviour at volcanoes in the region, and their likely ESPs,
will help us refine our model outputs. The rankings pro-
vided by this method can support the prioritisation of
the volcanoes on which risk reduction activities should
be focussed.

– The incorporation of more sophisticated hazard models
can better describe the physical processes underpinning
volcanic hazards; such models also require greater data
and computing resources, which will hopefully improve
over time.

– The open-access data underpinning our hazard and ex-
posure assessment, e.g. DEMs and OpenStreetMap, are
expected to improve in quality and resolution going for-
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Figure 14. Individual rankings for calculated population exposure for the 50 % dome collapse PDC hazard for all volcanoes across the five
exposure categories. Exposure is provided for the smaller and larger volume scenarios using the 990 m buffer. Volcano order and cell colour
same as for Fig. 12. Dome collapse PDCs are not VEI dependent, and so the absolute ranks are not calculated, and these results are therefore
applicable to the conditional estimate.

ward, and these can be used within the framework to
provide updated, higher-resolution outputs.

– For a robust and evidence-based method for aggregat-
ing exposure scores across multiple hazard and expo-
sure categories, potentially multiple different aggrega-
tions are needed to cover diverse aspects such as life
safety, loss of livelihoods or economic impacts.

We also identify further areas for study that could widen the
assessment provided here.

– The assessment should be extended to include all haz-
ardous volcanic phenomena and all relevant exposure
categories. These likely vary on a volcano-by-volcano
basis; e.g. volcanogenic tsunami will not be applicable
to all volcanoes nor will the exposure of fish farms.

– This study is limited to the quantification of the expo-
sure of populations and their assets to a range of vol-

canic hazards. Future efforts should contribute to the de-
velopment of applicable – rather than theoretical – mod-
els to quantify critical aspects of vulnerability which,
when incorporated into such GIS frameworks as the one
proposed here, will allow measures of impact and risk
to be estimates as a function of the spatial distribution
of hazard intensities and exposed assets.

– Efforts to better constrain the relationship between haz-
ard intensity and impact have dominantly focused on the
hazard caused by tephra fallout. In parallel, the impact
of other hazards is often oversimplified. For instance,
our method considers a binary impact from PDCs in
which inundation implies impact. Recent studies have
demonstrated that this assumption has been disproved
by field observations (Jenkins et al., 2013; Lerner et al.,
2022). Shifting from probabilistically estimating expo-
sure to impact for flows requires advances in two direc-
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Figure 15. Individual rankings for calculated exposure using the 50 % column collapse PDC hazard. Column names, volcano order and cell
colour same as for Fig. 12.

tions. Firstly, there is a need for flow models compati-
ble with probabilistic approaches that predict not only
a binary inundation but also some measure of impact
intensity metrics (e.g. flow depth, dynamic pressure)
whilst requiring ESPs that can realistically be estimated
for purposes of hazard assessments. We acknowledge
that the complexity of the physical processes governing
such flows makes this task challenging. Secondly, more
research should be dedicated to investigate how, when
and why flows can affect populations and their assets.
Again, the diversity of flows (e.g. dense vs. dilute com-
ponents for PDC) makes this task complex, but post-
event impact assessments and experimental and theo-
retical studies all contribute to establishing the baseline
for better vulnerability and impact models.

– Finally, volcanic risk is intrinsically dynamic. On the
one hand, hazards can interact in a nonlinear fashion.
For instance, forecasting lahar triggering is challenging
as it depends on the properties of the fresh pyroclas-
tic deposit, the topography, and the rainfall magnitude
and intensity. Similarly, large clasts can perforate roofs,

but the presence of tephra might cushion the impact
and reduce this hazard (G. T. Williams et al., 2019). On
the other hand, exposure and vulnerability also vary in
space and time. For instance, the risk to the tourist hik-
ers in Southeast Asia varies as a function of the day and
the season, exposing populations from various cultures
and awareness of volcanic hazards. Here, we have ex-
plored the variability in population exposure as a func-
tion of hazard seasonality, and the proposed framework
could also be applied to estimate the changes in expo-
sure using yearly datasets of land cover and population.
Future efforts should therefore aim at modelling the
impact and risk from volcanic eruptions as a dynamic
rather than static process.
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Appendix A: Model input parameters

Table A1. Model input parameters and their rationale used for simulating tephra dispersion and fallout.

Hazard; model Parameter Inputs Data source and rationale

VEI 3 VEI 4 VEI 5

Tephra fall; Erupted mass 3.2× 1010 3.2× 1011 3.2× 1012 The midpoint of the logarithmically bounded range
Tephra2 (kg) of bulk volume is provided by the VEI classification,
(Bonadonna assuming a bulk density of 1000 kg m−3.

et al., 2005) Plume height 13 20 27 This is based on the original classification of Newhall and
(km above Self (1982). Single values, rather than stochastically
vent) sampled ranges, were used to prevent the simulation

of a broad spectrum of eruption intensities that could
not be equally applied across the wide range of
volcanoes and eruptive styles considered in this
regional study, thus making results non-comparable
across volcanoes. The plume height is the mid-point
of the calculated column heights using Eq. (3) of Mastin
et al. (2009) based on the minimum and maximum
volumes defining each VEI.

TGSD: µ=−0.74 µ= 0.9 µ= 1.35 The total grain size distribution (TGSD) is one of the
mean (µ) σ = 2.4 σ = 1 σ = 1.16 most difficult parameters to constrain since it is
SD (σ ) dependent on the collection of well-preserved field
(in φ) data (Pioli et al., 2019). We use analogue TGSDs of
Grain size Ruapehu (1996; Bonadonna et al., 2005) for VEI 3,
range: Kelud (2014; constrained from TEPHRA2 inversion
7 to −6φ modelling by Williams et al., 2020) for VEI 4 and

Pinatubo (1991) for VEI 5 (Volentik, 2009, compiled
from Koyaguchi and Ohno, 2001).

Particle Pumice: 1000 Scollo et al. (2008) suggested that tephra density does
density Lithics: 2600 not greatly affect the simulated results in Tephra2 and
(kg m−3) so we use typical values here.

Plume model α = 3; β = 1.5 This model uses a beta distribution to constrain a plume
with the majority of tephra dispersed at ∼ 80 % height.

Diffusion 5000 These empirical parameters describing atmospheric
coefficient diffusion in Tephra2 should ideally be constrained
(m s−1) through inversion of field deposits. As this is not

Fall time 4000 possible here, for consistency across the regional
threshold (s) analysis, we use the values of Biass et al. (2012) for

subplinian and Plinian eruptions of Cotopaxi volcano.

Eddy 0.04 Standard for the Earth’s atmosphere.
constant
(m2 s−1)

Wind Synoptic hourly data from a 10-year record (2010–2019) at the point closest to each
conditions volcano. Geopotential height and u and v wind components were retrieved at a spatial

resolution of 0.25◦ for 37 pressure levels from the European Center for Medium-Range
Weather Forecasts (ECMWF) ERA5 (Hersbach et al., 2020) – the highest temporal and

spatial reanalysis dataset available. The data were formatted to single profiles for
Tephra2, resulting in 2880 profiles per volcano (10 years× 12 months× 24 h).
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Table A2. Model input parameters and their rationale used for simulating large clast emplacement.

Hazard; model Parameter Inputs Data source and rationale

VEI 3 VEI 4 VEI 5

Large clast; Clast density 2.5 Lithic size corresponding to a kinetic energy of
Rossi et al. (2019) (g cm−3) 30 J is identified as a threshold for skull

Clast diameter 3 fracturation and roof penetration. A similar
(cm) energy can be produced by a 5.6 cm pumice

with a density of 0.63 g cm−3.

Atmospheric Like for tephra fall, with the additional parameters of temperature and humidity, the
conditions latter being used to estimate air density and viscosity. Three-dimensional

atmospheric data were retrieved using the LagTrack code (Poulidis et al., 2021).

Topography Elevation data source is the Shuttle Radar Topography Mission (SRTM) 1 arcsec
global dataset, acquired in 2000 to provide a continuous elevation surface at a resolution
of ∼ 30 m (Farr et al., 2007). The extent of each selected volcano is set to be 60 km from
the vent. The higher-resolution ∼ 8 m DEMNAS (Julzarika, 2019) was found to be less

accurate for steep volcanic terrains and is only available for Indonesia.

Table A3. Model input parameters and their rationale used for simulating dome collapse PDCs.

Hazard; model Parameter Inputs Data source and rationale

Small Large
volume volume
scenario scenario

Dome collapse PDC; Volume 4.5× 105 9.8× 106 This semi-empirical model is based on a scaling
LAHARZ (Iverson et al., 1998, (m3) argument that relates flow volume (V ) to channel
developed by Schilling, 1998, and cross-sectional area (A) and planimetric area (B) as
adapted to MATLAB by Rudiger follows: A= CV 2/3, B = cV 2/3. The model was
Escobar-Wolf, using the PDC originally calibrated using data from 27 lahars
calibration of Widiwijayanti et al., (C = 0.05, c = 200); however, more recent calibrations
2009) have been undertaken to derive coefficients for

alternative flow types, including PDCs
(Widiwijayanti et al., 2009). In this work we use
the calibration presented by Widiwijayanti et al.
(2009) (with C = 0.05, c = 40), which is based on
data for BAF’s acquired at Soufrière Hills, Merapi,
Colima and Unzen volcanoes.
Simulated flow volumes are the 50th and 90th
percentiles obtained from the global block and ash
flow dataset FlowDat (Ogburn, 2016). The 10th
percentile is not included here as such a volume
usually results in flows restricted to the crater area.

Topography Same as for large clasts
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Table A4. Model input parameters and their rationale used for simulating column collapse PDCs.

Hazard; model Parameter Inputs Data source and rationale

VEI 3 VEI 4 VEI 5

Column collapse PDC; Column collapse 1300 2000 2700 The height of column collapse for sustained
ECMapProb height (m) (130) (200) (270) eruptions has been suggested to represent ∼ 10 %
(Aravena et al., (variability of the total column height (Wilson et al., 1978),
2020) applied) and so we consider our collapse heights as 10 %

of the heights used for tephra fall modelling.
A ±10 % range was applied to represent the
variability in this assumption.

Vent location Summit or centre of active The vent location was selected based on the
(variability crater summit or active crater centre of each volcano,
applied) (crater radius) determined from Google Earth and eruption

records.
Variability was based on the size of the summit
area or crater at each volcano, determined from
Google Earth.

H/L 0.24 The H/L ratio (a value based on the ratio of the
(variability (0.08) height to length travelled by flows in the past)
applied) was taken from the median value in the pumice flow

category of the FlowDat database (Ogburn,
2016).
The variability represents the middle 50 % of
values in the FlowDat database (Ogburn, 2016).

Topography Same as for large clasts and dome collapse PDCs

Appendix B: Probabilistic forecasting of dome collapse
PDC travel directions

A MATLAB-implemented methodology was developed to
rapidly analyse a volcano’s summit topography, using this
to assign probabilities to the travel directions of future effu-
sive flows (here applied to dome collapse PDCs). Inputs to
the code include a DEM, coordinates of the crater centre, the
radius of the crater or summit region and the swath length.
The swath length is the entire length from the start point over
which topography is considered in the calculation; it should
extend outside of the crater or summit region and include any
localised topographic highs. For this study we have used the
“summit width” parameter obtained from the global database
of composite volcano morphology (Grosse et al., 2014) to
identify swath lengths, with the addition of a 20 % buffer to
ensure the full summit topography was included in the cal-
culation. For volcanoes not present in the database, a default
length of 1500 m is used. The procedure is as follows.

1. Upon acquisition of the swath length, 360 swath pro-
files (SW1:360) (each with a width of 50 m) are created
radiating from the starting coordinate to the full swath
length. Each swath consists of n cells from start to the
full length (see Fig. B1).

2. At each cell along the length of the swath, elevation
values (E) are compared with elevation values in the
total population of swaths at position n by computing
percentiles (P ). In Fig. B1 cell populations are denoted
by colour; for example, all E1 values are considered a
population, as are all E2 . . . En. In this way elevation is
analysed at each radial distance step from the start point
to the full swath length. Elevation values E1:n are trans-
formed into P1:n such that (Eq. B1)

SW1 (E1) , SW2 (E1) . . .SW360 (E1)

→ SW1 (P1) , SW2 (P1) . . .SW360 (P1)

SW1 (E2) , SW2 (E2) . . .SW360 (E2)

→ SW1 (P2) , SW2 (P2) . . .SW360 (P2)

. . .

SW1 (En) , SW2 (En) . . .SW360 (En)

→ SW1 (Pn) , SW2 (Pn) . . .SW360 (Pn) . (B1)

3. Percentiles are summed down-swath to get a final
(V ) value that can be considered a proxy for the ele-
vation. Values are inverted and interpolated to 10◦ inter-
vals such that high (V ) values are the more likely flow
directions (Eq. B2):
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Figure B1. A graphical representation of the methodology used to
quantify dome collapse PDC travel direction probabilities. Radial
swaths (SWi ) are initiated from the crater start point (X,Y ). For
each distance step from the start to the full swath length, populations
of elevation values Ei (represented by cells of the same colour) are
compared and the percentile calculated.

Vi =6SWi (P1:n) . (B2)

4. To estimate probabilities (Pr) for each swath, we calcu-
late the following (Eq. B3):

Pri = Vi/6V1:36. (B3)

5. The tool outputs a table featuring thirty-six 10◦ azimuth
bins, their associated probabilities and the XY coordi-
nates for each start point. In this work output coordi-
nates were fed into the dome collapse PDC-calibrated
LAHARZ, and dome collapse PDCs were simulated
in all directions. Binary LAHARZ output hazard foot-
prints were multiplied by their travel direction probabil-
ity and aggregated to produce a final conditional dome
collapse PDC probability raster that quantifies both the
probability of travel direction and the probability of in-
undation at each grid cell.

Code availability. The open-source Python code, Vol-
cGIS, which implements all of the spatial operations re-
quired for our exposure analyses is freely available at
https://doi.org/10.5281/zenodo.6416793 (Biass et al., 2022).

Data availability. All hazard and exposure data, and associated for-
mat descriptions, are provided in user-friendly format and openly
available at the NTU research data repository DR-NTU (Data), via
the links below:

1. Hazard model outputs: https://doi.org/10.21979/N9/B80UMQ
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2. Eruption frequency–magnitude estimates:
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