Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3197-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-3197-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systematic exploration of satellite radar coherence methods for rapid landslide detection
COMET, Department of Earth Sciences, Durham University, Durham, UK
Richard J. Walters
COMET, Department of Earth Sciences, Durham University, Durham, UK
David Milledge
School of Engineering, Newcastle University, Newcastle, UK
Alexander L. Densmore
Department of Geography, Durham University, Durham, UK
Related authors
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264, https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Short summary
In 2018, 6 moderate-large earthquakes occurred in Lombok, Indonesia over a 3-week period, triggering landslides across the island. Their locations were previously mapped with optical satellite images, but information on which earthquake triggered which landslide was limited. Here we use Sentinel-1 satellite images to determine when during the earthquake sequence many of the landslides failed and so build a more complete picture of how landslide activity evolved through time.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022, https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025, https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides, such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management of landslide risk.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264, https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Short summary
In 2018, 6 moderate-large earthquakes occurred in Lombok, Indonesia over a 3-week period, triggering landslides across the island. Their locations were previously mapped with optical satellite images, but information on which earthquake triggered which landslide was limited. Here we use Sentinel-1 satellite images to determine when during the earthquake sequence many of the landslides failed and so build a more complete picture of how landslide activity evolved through time.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022, https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, https://doi.org/10.5194/nhess-22-481-2022, 2022
Short summary
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Cited articles
Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-Induced
Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using
PALSAR-2 Data, Remote Sens., 11, 2351, https://doi.org/10.3390/rs1120235, 2019. a, b, c, d
Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J.,
Godt, J. W., and Rengers, F. K.: Improving Near-Real-Time Coseismic Landslide Models: Lessons Learned from the 2016 Kaikōura, New Zealand, Earthquake Improving Near-Real-Time Coseismic Landslide Models, B. Seismol. Soc. Am., 108, 1649–1664, 2018. a, b, c
Aslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., and
Cakir, Z.: Landslide Mapping and Monitoring Using Persistent Scatterer
Interferometry (PSI) Technique in the French Alps, Remote Sens., 12, 1305,
https://doi.org/10.3390/rs12081305, 2020. a
Bonì, R., Bordoni, M., Colombo, A., Lanteri, L., and Meisina, C.: Landslide state of activity maps by combining multi-temporal A-DInSAR (LAMBDA), Remote Sens. Environ., 217, 172–190, 2018. a
Collins, B. D. and Jibson, R. W.: Assessment of existing and potential
landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake
sequence, Tech. rep., US Geological Survey, https://doi.org/10.3133/ofr20151142, 2015. a, b
Coltuc, D., Bolon, P., and Chassery, J.-M.: Exact histogram specification, IEEE T. Image Process., 15, 1143–1152, 2006. a
Copernicus: Copernicus Open Access Hub, available at: https://scihub.copernicus.eu/, last access: November 2020. a
Dai, K., Li, Z., Tomás, R., Liu, G., Yu, B., Wang, X., Cheng, H., Chen, J., and Stockamp, J.: Monitoring activity at the Daguangbao mega-landslide
(China) using Sentinel-1 TOPS time series interferometry, Remote Sens. Environ., 186, 501–513, 2016. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007. a
Fielding, E. J., Talebian, M., Rosen, P. A., Nazari, H., Jackson, J. A.,
Ghorashi, M., and Walker, R.: Surface ruptures and building damage of the
2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar
interferometric correlation, J. Geophys. Res.-Solid, 110, B03332, https://doi.org/10.1029/2004JB003299, 2005. a, b
Franceschetti, G., Marino, R., Migliaccio, M., and Riccio, D.: SAR simulation
of three-dimensional scenes, in: SAR Data Processing for Remote Sensing, vol. 2316, International Society for Optics and Photonics, Rome, Italy, 192–202, https://doi.org/10.1117/12.197539, 994. a
Fransson, J. E., Pantze, A., Eriksson, L. E., Soja, M. J., and Santoro, M.:
Mapping of wind-thrown forests using satellite SAR images, in: 2010 IEEE
International Geoscience and Remote Sensing Symposium, 25–30 July 2010, Honolulu, Hawaii, 1242–1245, 2010. a
Fujiwara, S., Nakano, T., Morishita, Y., Kobayashi, T., Yarai, H., Une, H., and Hayashi, K.: Detection and interpretation of local surface deformation from the 2018 Hokkaido Eastern Iburi Earthquake using ALOS-2 SAR data, Earth
Planet. Space, 71, 64, https://doi.org/10.1186/s40623-019-1046-2, 2019. a
Handwerger, A. L., Fielding, E. J., Huang, M.-H., Bennett, G. L., Liang, C.,
and Schulz, W. H.: Widespread initiation, reactivation, and acceleration of
landslides in the northern California Coast Ranges due to extreme rainfall, J. Geophys. Res.-Earth, 124, 1782–1797, 2019. a
Hanley, J. A. and McNeil, B. J.: The meaning and use of the area under a
receiver operating characteristic (ROC) curve, Radiology, 143, 29–36, 1982. a
Hanssen, R.: Radar Interferometry Data Interpretation and Error Analysis, https://doi.org/10.1007/0-306-47633-9, 2001. a
Hu, X., Bürgmann, R., Lu, Z., Handwerger, A. L., Wang, T., and Miao, R.:
Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe
landslide in California revealed by L-band satellite radar interferometry, J. Geophys. Res.-Solid, 124, 7504–7518, 2019. a
ICIMOD: Snow cover statistic – Nepal, available at: http://www.icimod.org/?q=10216 (last access: January 2020), 2013. a
JAXA: High-Resolution Land Use and Land Cover 30 m resolution map of Japan [2014–2016], version 18.03, available at: https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.html (last access: Ocotber 2019), 2018. a
Jia, G., Tang, Q., and Xu, X.: Evaluating the performances of satellite-based
rainfall data for global rainfall-induced landslide warnings, Landslides, 17,
283–299, 2020. a
Just, D. and Bamler, R.: Phase statistics of interferograms with applications
to synthetic aperture radar, Appl. Optics, 33, 4361–4368, 1994. a
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E., Fujita, K., Geertsema, M., Miles, E., Steiner, J., Anderson, E., Bajracharya, S., Bawden, G. W., Breashears, D. F., Byers, A., Collins, B., Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L., Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut, K., Huyck, C., Immerzeel, W. W., Jiang, L., Jibson, R., Kääb, A., Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Shiyin, L., Mingyang, L., McKinney, D., Nahirnick, N. K., Zhuotong, N., Ojha, S., Olsenholler, J., Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, Q. I., Raup, B. H., Regmi, D., Rounce, D. R., Sakai, A., Donghui, S., Shea, J. M., Shrestha, A. B., Shukla, A., Stumm, D., van der Kooij, M., Voss, K., Xin, W., Weihs, B., Wolfe, D., Lizong, W., Xiaojun, Y., Yoder, M. R., and Young, N.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake, Science, 351, 6269, https://doi.org/10.1126/science.aac8353, 2016. a
Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95, 406–421, 1984. a
Konishi, T. and Suga, Y.: Landslide detection using COSMO-SkyMed images: a
case study of a landslide event on Kii Peninsula, Japan, Eur. J. Remote Sens., 51, 205–221, 2018. a
Konishi, T. and Suga, Y.: Landslide detection with ALOS-2/PALSAR-2 data using
convolutional neural networks: a case study of 2018 Hokkaido Eastern Iburi
earthquake, Proc. SPIE, 11154, https://doi.org/10.1117/12.2531695, 2019. a, b
Koskinen, J. T., Pulliainen, J. T., and Hallikainen, M. T.: The use of ERS-1
SAR data in snow melt monitoring, IEEE T. Geosci. Remote, 35, 601–610, 1997. a
Kritikos, T., Robinson, T. R., and Davies, T. R.: Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach, J. Geophys. Res.-Earth, 120, 711–729, 2015. a
Li, Z., Wright, T., Hooper, A., Crippa, P., Gonzalez, P., Walters, R., Elliott, J., Ebmeier, S., Hatton, E., and Parsons, B.: Towards InSAR everywhere, all the time, with Sentinel-1, Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci., 41, 763–766, https://doi.org/10.5194/isprsarchives-XLI-B4-763-2016, 2016. a
Martinis, S., Kersten, J., and Twele, A.: A fully automated TerraSAR-X based
flood service, ISPRS J. Photogram. Remote Sens., 104, 203–212, 2015. a
Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., and
Monserrat, O.: Sentinel-1 SAR Amplitude Imagery for Rapid Landslide Detection, Remote Sens., 11, 760, https://doi.org/10.3390/rs11070760, 2019. a, b
NASA: Advanced Rapid Imaging and Analysis (ARIA) Project for Natural Hazards, available at: https://aria.jpl.nasa.gov/, last access: 27 June 2018. a
Olen, S. and Bookhagen, B.: Mapping damage-affected areas after natural hazard events using Sentinel-1 coherence time series, Remote Sens., 10, 1272, https://doi.org/10.3390/rs1008127, 2018. a
Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S.,
Haarpaintner, J., Hajduch, G., Laurin, G. V., Lavalle, M., López-Martínez, C., Thomas Nagler, T., and Su, B.: The Copernicus L-band SAR mission ROSE-L (Radar Observing System for Europe)(Conference Presentation), in: Active and Passive Microwave Remote Sensing for Environmental Monitoring III, vol. 11154, International Society for Optics and Photonics, Strasbourg, France, p. 111540E, 2019. a
Reyes-Carmona, C., Barra, A., Galve, J. P., Monserrat, O., Pérez-Peña, J. V., Mateos, R. M., Notti, D., Ruano, P., Millares, A.,
López-Vinielles, J., and Azañón, J. M.: Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain), Remote Sens., 12, 809, https://doi.org/10.3390/rs12050809, 2020. a
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Champlain, D., and Godt, J. W.: Map data of landslides triggered by the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake, US Geological Survey data release, https://doi.org/10.5066/F7DZ06F9, 2017. a
Robinson, T. R., Rosser, N. J., Densmore, A. L., Williams, J. G., Kincey, M. E., Benjamin, J., and Bell, H. J. A.: Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support, Nat. Hazards Earth Syst. Sci., 17, 1521–1540, https://doi.org/10.5194/nhess-17-1521-2017, 2017. a, b
Robinson, T. R., Rosser, N. J., Davies, T. R., Wilson, T. M., and Orchiston,
C.: Near-Real-Time Modeling of Landslide Impacts to Inform Rapid Response:
An Example from the 2016 Kaikōura, New Zealand, EarthquakeNear-Real-Time
Modeling of Landslide Impacts to Inform Rapid Response, Bull. Seismol. Soc. Am., 108, 1665–1682, 2018. a
Rüetschi, M., Small, D., and Waser, L. T.: Rapid detection of windthrows
using Sentinel-1 C-band SAR data, Remote Sens., 11, 115, https://doi.org/10.3390/rs11020115, 2019. a, b
Saito, T. and Rehmsmeier, M.: The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets,
PloS One, 10, e0118432, https://doi.org/10.1371/journal.pone.0118432, 2015. a
Scott, C., Lohman, R., and Jordan, T.: InSAR constraints on soil moisture
evolution after the March 2015 extreme precipitation event in Chile, Scient. Rep., 7, 4903, https://doi.org/10.1038/s41598-017-05123-4, 2017. a
Solari, L., Del Soldato, M., Raspini, F., Barra, A., Bianchini, S., Confuorto, P., Casagli, N., and Crosetto, M.: Review of Satellite Interferometry for Landslide Detection in Italy, Remote Sens., 12, 1351, https://doi.org/10.3390/rs12081351, 2020. a
Wang, F., Fan, X., Yunus, A. P., Subramanian, S. S., Alonso-Rodriguez, A., Dai, L., Xu, Q., and Huang, R.: Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism, Landslides, 16, 1551–1566, 2019. a, b, c
Washaya, P., Balz, T., and Mohamadi, B.: Coherence change-detection with
sentinel-1 for natural and anthropogenic disaster monitoring in urban areas,
Remote Sens., 10, 1026, https://doi.org/10.3390/rs10071026, 2018. a
Wessel, P. and Smith, W. H.: New, improved version of Generic Mapping Tools
released, Eos Trans. Am. Geophys. Union, 79, 579–579, 1998. a
Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven, K. J., Densmore, A. L., Milledge, D. G., Robinson, T. R., Jordan, C. A., and Dijkstra, T. A.: Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes, Nat. Hazards Earth Syst. Sci., 18, 185–205, https://doi.org/10.5194/nhess-18-185-2018, 2018.
a, b, c, d
Yun, S.-H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Manipon, G., Liang, C., Fielding, E., Milillo, P., Hua, H., and Coletta, A.: Rapid Damage Mapping for the 2015 Mw7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites, Seismol. Res. Lett., 86, 1549–1556, 2015. a, b, c, d, e, f, g, h, i
Short summary
Satellite radar could provide information on landslide locations within days of an earthquake or rainfall event anywhere on Earth, but until now there has been a lack of systematic testing of possible radar methods, and most methods have been demonstrated using a single case study event and data from a single satellite sensor. Here we test five methods on four events, demonstrating their wide applicability and making recommendations on when different methods should be applied in the future.
Satellite radar could provide information on landslide locations within days of an earthquake or...
Altmetrics
Final-revised paper
Preprint