Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3197-2020
https://doi.org/10.5194/nhess-20-3197-2020
Research article
 | Highlight paper
 | 
27 Nov 2020
Research article | Highlight paper |  | 27 Nov 2020

A systematic exploration of satellite radar coherence methods for rapid landslide detection

Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore

Related authors

Detection of landslide timing, reactivation and precursory motion during the 2018, Lombok, Indonesia earthquake sequence with Sentinel-1
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264,https://doi.org/10.5194/egusphere-2024-3264, 2024
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022,https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021,https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Limit analysis of earthquake-induced landslides considering two strength envelopes
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024,https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary

Cited articles

Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-Induced Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 Data, Remote Sens., 11, 2351, https://doi.org/10.3390/rs1120235, 2019. a, b, c, d
Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., and Rengers, F. K.: Improving Near-Real-Time Coseismic Landslide Models: Lessons Learned from the 2016 Kaikōura, New Zealand, Earthquake Improving Near-Real-Time Coseismic Landslide Models, B. Seismol. Soc. Am., 108, 1649–1664, 2018. a, b, c
Aslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., and Cakir, Z.: Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps, Remote Sens., 12, 1305, https://doi.org/10.3390/rs12081305, 2020. a
Bessette-Kirton, E. K., Cerovski-Darriau, C., Schulz, W. H., Coe, J. A., Kean, J. W., Godt, J. W., Thomas, M. A., and Hughes, K. S.: Landslides Triggered by Hurricane Maria: Assessment of an Extreme Event in Puerto Rico, GSA Today, 29, 4–10, 2019. a, b, c, d
Bonì, R., Bordoni, M., Colombo, A., Lanteri, L., and Meisina, C.: Landslide state of activity maps by combining multi-temporal A-DInSAR (LAMBDA), Remote Sens. Environ., 217, 172–190, 2018. a
Download
Short summary
Satellite radar could provide information on landslide locations within days of an earthquake or rainfall event anywhere on Earth, but until now there has been a lack of systematic testing of possible radar methods, and most methods have been demonstrated using a single case study event and data from a single satellite sensor. Here we test five methods on four events, demonstrating their wide applicability and making recommendations on when different methods should be applied in the future.
Altmetrics
Final-revised paper
Preprint