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Abstract. Emergency responders require information on the
distribution of triggered landslides within 2 weeks of an
earthquake or storm. Useable satellite radar imagery is ac-
quired within days of any such event worldwide. Recently,
several landslide detection methods that use these data have
been developed, but testing of these methods has been lim-
ited in each case to a single event and satellite sensor.
Here we systematically test five methods using ALOS-2 and
Sentinel-1 data across four triggering earthquakes. The best-
performing method was dependent on the satellite sensor. For
three of our four case study events, an initial ALOS-2 image
was acquired within 2 weeks, and with these data, co-event
coherence loss (CECL) is the best-performing method. Us-
ing a single post-event Sentinel-1 image, the best-performing
method was the boxcar—sibling (Bx—S) method. We also
present three new methods which incorporate a second post-
event image. While the waiting time for this second post-
event image is disadvantageous for emergency response,
these methods perform more consistently and on average
10 % better across event and sensor type than the boxcar—
sibling and CECL methods. Thus, our results demonstrate
that useful landslide density information can be generated on
the timescale of emergency response and allow us to make
recommendations on the best method based on the availabil-
ity and latency of post-event radar data.

1 Introduction

Information on the spatial distribution of earthquake- or
rainfall-triggered landslides needs to be generated as quickly

as possible in order to be useful for emergency response
efforts, ideally within 2 weeks of an event (Inter-Agency
Standing Committee, 2015; Williams et al., 2018). This in-
formation is commonly generated from analysis of optical
satellite imagery (e.g. Bessette-Kirton et al., 2019; Kargel
et al., 2016). However, relying solely on optical satellite im-
agery in landslide assessment is problematic as the mapping
process can be significantly delayed by cloud cover (Robin-
son et al., 2019). For example, following the 2015 My, = 7.8
Gorkha, Nepal, earthquake, almost no cloud-free optical im-
agery was acquired over the region of most intense landslid-
ing for a full week following the earthquake (Williams et al.,
2018), and Robinson et al. (2019) have demonstrated that
this delay could have been much longer had the earthquake
occurred during Nepal’s monsoon season, with some areas
unlikely to be successfully imaged at all between June and
September.

When optical imagery is not available, empirical models
based on factors such as the topographic slope and measure-
ments or predictions of earthquake-induced shaking or rain-
fall data are used to predict the likely location and intensity
of triggered landsliding (e.g. Kirschbaum and Stanley, 2018;
Kritikos et al., 2015; Nowicki Jessee et al., 2018). The out-
puts of these models have a comparatively low spatial resolu-
tion (around 1 km? in the case of Nowicki Jessee et al., 2018)
but can be used to provide an overview of the most severely
impacted areas. While these models can be generated within
hours of an earthquake or rainfall event, they do not always
perform well. For example, the USGS ground failure model
of Nowicki Jessee et al. (2018) under-predicted the lands-
liding triggered by the M,, = 6.9 2018 Lombok, Indonesia,
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earthquake sequence (Ferrario, 2019), and multiple empirical
models over-predicted the spatial extent of landslides trig-
gered by the 2016 M,, = 7.8 Kaikoura, New Zealand, earth-
quake (Allstadt et al., 2018). The reliability of global em-
pirical rainfall-triggered landslide susceptibility maps such
as that of Kirschbaum and Stanley (2018) is dependent on
the type of landslides, on the rainfall dataset used and on
the intensity of the triggering rainfall event (Jia et al., 2020;
Kirschbaum and Stanley, 2018). Similarly, the accuracy of
empirical models for earthquakes is strongly dependent on
the quality of the shaking data or model. Earthquake-induced
shaking information is typically updated several times fol-
lowing an event, and the details of the shaking dataset that is
used can have a strong effect on the modelled landslide spa-
tial distribution and impacts (Allstadt et al., 2018; Robinson
et al., 2017). For example, empirical models generated im-
mediately following the Gorkha earthquake failed to capture
the spatial pattern of triggered landslides (Robinson et al.,
2017). This spatial information is critically important for use
in emergency response coordination, so this limitation is a
significant disadvantage when applying such empirical mod-
els.

Synthetic aperture radar (SAR) satellite imagery presents
a means of generating landslide information in all weather
conditions as radar is able to penetrate cloud. For landslide
studies, SAR is most commonly used to measure the downs-
lope velocity of slow-moving landslides (e.g. Aslan et al.,
2020; Boni et al., 2018; Dai et al., 2016; Handwerger et al.,
2019; Hu et al., 2019; Reyes-Carmona et al., 2020; Solari
et al., 2020). However, SAR can also be used to detect modi-
fications to the Earth’s surface, and it has been demonstrated
that radar methods can be used to automatically detect wind
damage to forests (Riietschi et al., 2019), flooding (Marti-
nis et al., 2015) and urban damage following earthquakes,
typhoons and wildfires (Fielding et al., 2005; NASA, 2018;
Yun et al., 2015).

Recently, there have been several attempts to develop sim-
ilar SAR-based change detection methods for rapid land-
slide mapping based on SAR amplitude (Konishi and Suga,
2018, 2019; Mondini et al., 2019), coherence (Burrows et al.,
2019; Olen and Bookhagen, 2018; Yun et al., 2015) or some
combination of these (Aimaiti et al., 2019; Jung and Yun,
2019) or based on polarimetric SAR methods (e.g. Yam-
aguchi et al., 2019). However, with the exception of Mondini
et al. (2019), who used a global selection of landslides, these
studies are generally tested on a single landslide event and
use a single radar sensor. For example, Aimaiti et al. (2019),
Konishi and Suga (2019), Jung and Yun (2019), and Yam-
aguchi et al. (2019) tested their methods using ALOS-2 im-
agery of the 2018 Hokkaido earthquake. If such methods are
to be applied in future events, wider testing is needed. This
would allow us to establish whether different methods work
equally well for different events and to determine the best
method to use with data from a given SAR sensor and within
a given time window.
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To address this need, we carried out a systematic statisti-
cal comparison of the performance of five radar-based meth-
ods of landslide detection using imagery acquired by the
Sentinel-1 and ALOS-2 PALSAR-2 sensors spanning four
case study landslide-triggering earthquakes. We chose to test
on earthquakes rather than rainfall events for two reasons.
First, it can be assumed that the majority of landslides oc-
curred concurrently with or very shortly after the shaking,
and this information on landslide timing simplifies the vali-
dation of the methods. Second, radar imagery is more likely
to be acquired immediately after an earthquake as part of
emergency tasking of satellite acquisitions as these data are
commonly used to measure earthquake-related ground de-
formation. We tested on four large (M > 6.6) events: the
2015 Gorkha, Nepal, earthquake; the 2018 Hokkaido, Japan,
earthquake; and two earthquakes of the 2018 Lombok, In-
donesia, sequence (Fig. 1). All of these events triggered thou-
sands of landslides, which have been mapped using optical
satellite imagery (Ferrario, 2019; Roback et al., 2018; Zhang
et al., 2019). We assessed the ability of each method and
radar dataset to predict these validation data and demonstrate
the wide applicability of SAR coherence methods to land-
slide detection, making recommendations for which method
is most suitable depending on the type of SAR data that is
available and the timing of data acquisition.

2 Satellite radar coherence for change detection

A SAR system works by illuminating the Earth’s surface
with microwave radiation and measuring the amplitude and
phase of the returned signal. In the interferometric SAR (In-
SAR) technique, the difference in phase between two images
acquired over the same area at different times can be used
to map the change in distance between the ground and the
satellite. SAR amplitude is the strength of the backscattered
signal and is partially dependent on the material at the ground
surface: its orientation relative to the satellite, its roughness
and its dielectric properties.

When using an interferogram to map ground deformation,
it is important that the signals recorded at a given location
in the two SAR images are correlated as decorrelation will
result in high-frequency noise. In order to assess this and to
identify noisy pixels, the coherence y is estimated for every
pixel from the similarity in the two SAR images in amplitude
and phase difference for a small ensemble of n pixels (Eq. 1,
Just and Bamler, 1994):

y = e . (1)
\/% <Z Ai-Ai Y B E)
i=1 i=l1

A; and B; are complex representations of the phase and am-
plitude of each pixel i within the ensemble, with the complex
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Figure 1. (a—c) Landslides triggered, respectively, by the 2015 Gorkha, Nepal, earthquake; the 2018 Hokkaido, Japan, earthquake; and
the 2018 Lombok, Indonesia, earthquakes (Roback et al., 2018; Zhang et al., 2019; Ferrario, 2019). The landslides are plotted as the areal
density of landsliding based on 1 km? cells. ALOS-2 SAR acquisitions are shown in green and Sentinel-1 in blue. In (c), a second earthquake,
referred to as “Lombok-2”, is inset. (d—f) Acquisition dates and track numbers of SAR imagery used in this study. Earthquakes are shown as

vertical red lines, black symbols show pre-event image acquisition dates,

conjugate shown by the overline. The ensemble is chosen so
that the pixels used in the calculation are expected to be sim-
ilar. In a “boxcar” method, it is assumed that pixels immedi-
ately adjacent to and centred on the target pixel are similar
to it (e.g. Hanssen, 2001; Yun et al., 2015). In a “sibling”
method, an assessment is carried out for every pixel to iden-
tify pixels that are statistically similar to it. For example, the
sibling method of Spaans and Hooper (2016) identifies pixels
that have similar amplitude behaviour through time.
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and red symbols show post-event dates.

Coherence can be decomposed into three components,
with the total coherence dependent on their product (Eq. 2;
Zebker and Villasenor, 1992):

2

Ytotal = Ytemporal * Vspatial * Vthermal -

Here we are interested in temporal coherence Jtemporal as
decorrelation of this component reflects changes in the phys-
ical properties of the Earth’s surface between image ac-
quisitions. The spatial coherence, Yspatial, is dependent on
the geometric properties of the satellite acquiring the image

Nat. Hazards Earth Syst. Sci., 20, 3197-3214, 2020



3200

and the ground surface. Decorrelation of the spatial com-
ponent of coherence Yspaiial is the result of small changes
in satellite viewing geometry between acquisitions and can
be stronger in areas of steep topography as it is dependent
on incidence angle. This decorrelation is particularly sensi-
tive to the SAR image pair’s perpendicular baseline (the dis-
tance between the locations at which the satellite acquired
the two SAR images measured perpendicular to both the
flight and look directions). When the perpendicular base-
line of the image pair used to form an interferogram is suf-
ficiently small, this spatial component will be small com-
pared to any temporal decorrelation (Zebker and Villasenor,
1992). For modern satellites, this will be the case most of
the time. We removed distorted pixels, which were likely to
be more strongly affected by decorrelation of Yypatial, from
our analysis in Sect. 3.4. Decorrelation of the thermal co-
herence Yihermal Was assumed to be insignificant following
Zebker and Villasenor (1992).

3 Data and methods
3.1 SAR data

In this study, radar imagery was used from two satellite sys-
tems. Sentinel-1 uses C-band radar (wavelength ~ 5.6 cm),
whilst ALOS-2 PALSAR-2 uses lower-frequency L-band
radar (wavelength ~24 cm). The difference in wavelength
between the two systems means that, in forested areas, L-
band radar penetrates further into the canopy than C-band.
The shorter wavelength of C-band radar means it is sensitive
to surface modifications on a smaller spatial scale. For exam-
ple, in a forest, C-band radar data may detect change in the
location or orientation of leaves, while L-band is sensitive in-
stead to changes in the location and orientation of branches.
L-band InSAR is often more useful in vegetated areas as its
deeper penetration allows it to retain higher coherence in the
absence of major vegetation changes (Zebker and Villasenor,
1992).

Radar systems acquire data at an oblique angle to the ver-
tical on near-polar ascending and descending orbital tracks
(referred to here as a and d), which are acquired on different
dates. The satellite look direction is perpendicular to the orbit
direction. The data used in this study were acquired at an an-
gle of between 31.4 and 43.8° to vertical. This oblique acqui-
sition angle means that on a given track, some hillsides will
be more favourably oriented to the sensor than others, and
so information from ascending and descending tracks can be
combined to obtain more complete coverage of an event. As
it is impossible to calculate a combined coherence surface
using data from two tracks, and in some cases imagery will
only be acquired on one track within 2 weeks of an event,
here we considered each track separately. We will refer to
tracks according to their sensor, track number and orbit di-
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rection, for example, A018d (ALOS-2, track 18, descending
orbit).

3.2 Case studies

We used four case study events: the 2015 M, =7.8
Gorkha, Nepal, earthquake (Fig. la and d); the My, = 6.6
2018 Hokkaido, Japan, earthquake (Fig. 1b and e); and two
My, = 6.8 and 6.9 earthquakes from the 2018 Lombok, In-
donesia, sequence (Fig. lc and f). These four events have
several traits in common which made them suitable for this
study. First, they were all large earthquakes, triggering thou-
sands of landslides, making them of interest from an emer-
gency response perspective. This also meant that the earth-
quakes and associated landslides had previously been investi-
gated, and inventories of triggered landslides had been com-
piled from optical satellite imagery, enabling direct testing
of the radar methods against these independent datasets (Fer-
rario, 2019; Roback et al., 2018; Zhang et al., 2019). Sec-
ond, while the vegetation types differ between the three re-
gions, the presence of dense vegetation across each region
meant that we could expect landslide and non-landslide pix-
els to have a similar first-order signal in the radar data across
the events. Third, ascending- and descending-track Sentinel-
1 data and at least one track of high-resolution ALOS-2 data
(acquired in stripmap mode at a resolution of 3—-10 m) were
available for all case study areas. Finally, the type of land-
slides triggered by our four case study earthquakes were typ-
ical of landslides triggered by earthquakes (Keefer, 1984).
The majority of ground failures in the four earthquakes were
slides. In Nepal, ground failures were primarily a mixture of
slides and falls, with the exception of a large debris avalanche
in the Langtang Valley. For all four earthquakes, failure sur-
faces were at shallow depths in most cases, with a small num-
ber of exceptions (Collins and Jibson, 2015; Ferrario, 2019;
Yamagishi and Yamazaki, 2018).

The My, =7.8 2015 Gorkha, Nepal, earthquake (Fig. 1a)
occurred on 25 April 2015 and triggered around 25 000 land-
slides over an area hundreds of kilometres wide, as mapped
by Roback et al. (2018). Sentinel-1 imagery was acquired on
tracks S019d and S085a. ALOS-2 data on track A157a were
divided into subtracks, with acquisitions on different dates,
shown as separate polygons in Fig. 1a, which are referred to
as east (E), central (C) and west (W).

The M, =6.6 2018 Hokkaido, Japan, earthquake
(Fig. 1b) occurred on 5 September 2018. Two invento-
ries have been published for this event: one containing
7837 landslides (Wang et al., 2019) and one containing 5265
(Zhang et al., 2019). Neither provided information on the
mapping extent, so we assumed that this could be approx-
imated by the convex hull of the data locations. As the
inventory of Zhang et al. (2019) has the largest convex hull,
we used this inventory for validation of the radar methods.
Both descending and ascending ALOS-2 data were available
for this event, with a higher spatial and temporal frequency
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than for the other events. The earthquake occurred the day
after Typhoon Jebi passed over Hokkaido, and so this case
study was also an opportunity to test landslide detection
methods following a rainfall event, with the advantage that
because the typhoon and earthquake occurred 1d apart,
and aerial imagery of the triggered landslides was acquired
immediately afterwards, we know more precisely when the
landslides occurred (Yamagishi and Yamazaki, 2018). This
is important if SAR methods are to be used in the future for
mapping storm-triggered landslides because factors such as
wind damage and the water content of the soil are known to
affect SAR coherence and amplitude (Rietschi et al., 2019;
Scott et al., 2017).

The 2018 Lombok earthquake sequence comprised four
earthquakes with My, > 6: My, = 6.4 on 28 July, My, = 6.8
on 5 August, and My, =6.3 and 6.9 on 19 August. Fer-
rario (2019) generated two landslide inventories for this
sequence. Although cloud-free imagery was not available
across the whole affected area following the earthquake on
28 July, no landslides were visible in the areas that could be
mapped. Ferrario (2019) thus presented their first inventory
of 4823 landslides triggered following the 5 August earth-
quake and a second inventory of 9319 landslides, which had
been triggered by the end of the sequence. We refer to the 5
August inventory as Lombok-1 (Fig. 1c) and the 19 August
inventory as Lombok-2 (Fig. 1c, inset).

There are several key ways in which the events dif-
fered. First, the triggered landslides had very different spa-
tial patterns, with the Gorkha earthquake triggering land-
slides across an area spanning hundreds of kilometres, while
the Lombok and Hokkaido earthquakes triggered landslides
across only a few kilometres. It can be seen in Fig. 1 that
much denser landsliding was triggered by the Hokkaido
earthquake than by the other events. Second, the sizes and
shapes of the landslides were very different between events:
the Lombok earthquakes triggered a large number of small
landslides, with a median landslide area of 460m?2 for
Lombok-1 and 580 m? for Lombok-2, compared to equiv-
alent median areas of 4350 m? for Hokkaido and 1070 m?
for Nepal (measured from the inventories of Ferrario, 2019;
Roback et al., 2018; and Zhang et al., 2019). Third, the events
occurred under different weather conditions: the Hokkaido
earthquake followed months of heavy rain and occurred 1d
after Typhoon Jebi, while the Gorkha and Lombok earth-
quakes occurred during the dry season. Finally, the topo-
graphic relief in the three case study areas varied signifi-
cantly. In Nepal the majority of landslides occurred on slopes
of over 40° (Roback et al., 2018). For the Hokkaido event, the
proportion of slopes > 40° was very low, and so the major-
ity of landslides occurred on much shallower slopes (Wang
etal., 2019), with Lombok lying between these two extremes.
This is highly relevant to the application of SAR coherence
methods to landslide detection. Steep slopes can lead to dis-
tortion of the radar image, and coherence is also dependent
on the geometry of the hillslope and radar sensor. Therefore,
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we might expect that, as hillslopes in Hokkaido and Lom-
bok are shallower than in Nepal, landslide detection using
SAR may be more successful in these areas. These differ-
ences between the four events made them ideal for testing the
wider applicability of SAR-coherence-based landslide detec-
tion methods in vegetated areas. If a method is to be widely
applied in the future, we need to be confident that its perfor-
mance is consistent across differing events and settings.

3.3 Landslide detection methods

We tested two existing methods: the co-event coherence
loss (CECL) method of Yun et al. (2015) and the boxcar—
sibling method of Burrows et al. (2019). Each of these ex-
isting methods uses a single post-event SAR image. We also
present three new methods that incorporated a second post-
event image: the post-event coherence increase (PECI), the
sum of the coherence increase and decrease (AC_sum), and
the maximum of coherence increase or decrease (AC_max).
A “boxcar” coherence estimate is used for CECL, PECI,
AC_sum and AC_max.

3.3.1 Co-event coherence loss (CECL)

The coherence loss between a pre-event interferogram and
a co-event interferogram can be used to detect physical
changes to the ground surface associated with an earth-
quake, such as surface rupture, building damage and land-
slides (Fielding et al., 2005; Washaya et al., 2018; Yun et al.,
2015). This method has been applied by the NASA Advanced
Rapid Imaging and Analysis (ARIA) project for use in urban
damage mapping and identifies “damaged” pixels as those
where coherence has decreased in the co-event map relative
to the pre-event map. First the pre-event coherence map is
adjusted so that it has the same coherence frequency distri-
bution as the co-event coherence map using exact histogram
matching (Coltuc et al., 2006). This process accounts for dif-
ferent levels of bulk temporal decorrelation in the pre-event
and co-event interferograms. It assumes only a small fraction
of the pixels are affected by landslides so that the landslide
signal is not removed from the co-event interferogram. The
pre-event surface is then subtracted from the co-event sur-
face, and pixels whose coherence has decreased are flagged
as damaged (Yun et al., 2015). Although this method was de-
veloped for detecting damage to buildings, Yun et al. (2015)
tested it on the 2015 Gorkha earthquake and noted that land-
slides in the Langtang Valley corresponded spatially to ar-
eas of coherence decrease in the ARIA surface. Coherence
decrease between pre-event and co-event interferograms has
since been used as an input in the landslide detection meth-
ods of Aimaiti et al. (2019) and Jung and Yun (2019) applied
to the 2018 Hokkaido earthquake.
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3.3.2 The boxcar-sibling method (Bx-S)

Rather than relying on the coherence change through time,
the Bx—S method of Burrows et al. (2019) uses the differ-
ence between two alternative co-event spatial methods of co-
herence calculation as a landslide classification surface. The
four other methods tested here all use a traditional “boxcar”
coherence, in which the coherence of a pixel is estimated
from the similarity in phase change of the pixels immediately
adjacent to it. When a sibling-based method is used to esti-
mate coherence, the coherence of a pixel becomes dependent
on “siblings” that are not immediately adjacent to it but that
are expected to behave similarly. In the method of Spaans and
Hooper (2016) used here, an ensemble of siblings is selected
for every pixel that have similar amplitude behaviour in a
time series of pre-event imagery. For a landslide pixel, this
means that its coherence is calculated from a more dispersed
ensemble of pixels than with a traditional boxcar coherence
estimate, and so proportionally less of the ensemble will also
lie within the landslide. A sibling-based coherence surface is
therefore relatively insensitive to landslides, and landslides
can be identified as those whose co-event boxcar coherence
is lower than their co-event sibling coherence (see Burrows
et al., 2019, for details).

3.3.3 Post-event coherence increase (PECI)

The coherence decrease caused in a co-event interferogram
by a landslide is a temporary effect, assuming that the land-
slide stops moving following the earthquake. Therefore in a
post-event interferogram (calculated from two post-event im-
ages), coherence should be higher for landslide pixels than
in a co-event interferogram. As landslides expose bare rock
or soil, which is likely to have higher coherence than vege-
tated areas, this co-event-to-post-event increase may actually
be larger than the pre-event-to-co-event decrease used in the
CECL method to measure landslides, making the signal eas-
ier to detect. This is particularly the case when using C-band
SAR, which experiences more decorrelation than L-band in
vegetated regions. Applying the same histogram-matching
step as in the CECL method, we propose this co-event-to-
post-event coherence increase as a new potential landslide
detection method.

3.3.4 Sum of coherence increase and
decrease (AC_sum)

As landslides are expected to exhibit both a decrease in co-
event coherence and an increase in post-event coherence,
we summed the absolute magnitudes of these changes to
form a new landslide classification surface. As in the CECL
method, the pre-event and post-event coherence maps were
histogram-matched to the co-event coherence map, remov-
ing bulk changes in coherence between the three maps. This
method is equivalent to CECL + PECI.
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3.3.5 Maximum of coherence increase or
decrease (AC_max)

For every pixel, we took whichever was largest of the pre-
event-to-co-event coherence loss (CECL) and the co-event-
to-post-event increase (PECI). This method is similar to the
AC_sum method but uses whichever has the strongest signal.
The relative signal strength of the CECL or PECI methods
will vary by location, for example according to the vegetation
type. This method takes whichever of the two methods has a
stronger signal for any given location.

3.4 Data processing

SAR data were processed using GAMMA, with the LICSAR
processing software used for Sentinel-1 (Li et al., 2016). The
data were multilooked by a factor of 5 in range and 1 in az-
imuth (Sentinel-1) or by 5 in both range and azimuth (ALOS-
2) to improve the signal-to-noise ratio. See Table 1 for infor-
mation on the data resolution and pixel size at various stages
of the processing. For geometric coregistration, we used the
1-arcsecond Shuttle Radar Topography Mission (SRTM) dig-
ital elevation model (Farr et al., 2007).

The boxcar coherence estimate used in all methods was
calculated using a 3 x 3 px moving window (Table 1). The
sibling-based coherence estimate used for the Bx—S method
was calculated using the RapidSAR algorithm of Spaans and
Hooper (2016). Siblings were calculated based on all pre-
event images shown in Fig. 1 (a minimum of six images).
For every pixel, between 15 and 50 siblings were identi-
fied within an 81 x 81 px window based on their amplitude
and amplitude variability (window sizes in Table 1). Unfor-
tunately, insufficient pre-event ALOS-2 data were available
to carry out this calculation in the case of the 2015 Gorkha
earthquake, and so the Bx—S method could not be tested for
this case.

In most cases, we used the co-event, pre-event and post-
event coherences with the shortest temporal baseline; how-
ever for the inventory provided by Ferrario (2019) for the
landslides triggered by the Lombok earthquake on 19 Au-
gust, we used a co-event image that spans this earthquake
and the 5 August earthquake as the landslide inventory con-
tains landslides triggered by both events. After calculating
each landslide classification surface from the methods de-
scribed in Sect. 3.3, we used the GAMMA software to con-
vert the surfaces to a geographic coordinate system. This pro-
cess, involving reprojection and interpolation, results in uni-
form pixel size (20 m x 22 m). We then normalised the values
of each surface by the theoretical maximum and minimum
value that could be obtained from each method, resulting in
a set of classification surfaces with values between 0 and 1,
with 1 most likely to be a landslide.

Before statistical testing, we removed distorted pixels. The
oblique angle at which SAR imagery is acquired meant that
some pixels were distorted by topography and were badly
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Table 1. The resolution and pixel spacing of the data at different stages throughout the processing for Sentinel-1, ALOS-2 on tracks A018d
and A116a (Hokkaido), track A157a (Nepal), and track A129a (Lombok). Resolutions are given in range x azimuth coordinate system.

Resolution  Radar pixel =~ Multilooked Boxcar Sibling search

(m) spacing (m) radar pixel window window size

spacing (m) size (m) (m)

All Sentinel-1 20 x 22 23x14.0 11.6x14.0 34.8x42.0 940 x 1134
ALOS-2018d 3x3 1.4 x2.1 7.2x10.6 21.6x31.8 583 x 859
ALOS-2 116a 3x3 1.4x19 72%x93 21.6x27.9 583 x 753
ALOS-2 157a 10 x 10 43x%x3.8 21.5x19 64.5x%x57.0 1742 x 1539
ALOS-2 129a 10 x 10 43x%x33 21.5x163 64.5x489 1742 x 1320

imaged by the SAR system, experiencing shadow, foreshort-
ening, or layover (Franceschetti et al., 1994) and decorrela-
tion of Yspatial (Sect. 3.1). Following Burrows et al. (2019),
we masked these according to the area in geographic coordi-
nates that contributes to the pixel in radar geometry, remov-
ing pixels with an area of 0 and those where this area was
over 6 times larger than their multilooked pixel spacing in
radar coordinates (see Table 1).

We carried out statistical testing of the results at two res-
olutions: first, at the initial resolution of the processed radar
data in geographical coordinates (20 m x 22 m), with the vec-
tor landslide inventories of Ferrario (2019), Roback et al.
(2018) and Zhang et al. (2019) rasterised at this resolution,
and second, at an aggregated resolution of 200 m x 220 m,
calculated by amalgamating 10 x 10 grids of the 20 m x 22 m
pixels. Aggregated classifier pixels were given the mean
value of the unmasked pixels in the 10 x 10 grid. If over 95 %
of an aggregate pixel was made up of masked pixels, the ag-
gregate pixel was masked. This high threshold of 95 % was
chosen to minimise the loss of spatial coverage due to the
masks. Varying the threshold between 95 % and 5 % had little
difference in terms of the number of pixels used in the anal-
ysis in Hokkaido and Lombok (< 5 %), but in Nepal, where
more pixels were masked due to distortion on steep slopes,
decreasing the threshold to 5 % resulted in a loss of coverage
of around 40 % on S085a. Altering this threshold made very
little difference to the results presented in Sect. 4.1.

In this study, we did not attempt to map SAR classifica-
tion surface values directly to landslide areal density val-
ues as this has not been attempted in previous studies (e.g.
Aimaiti et al., 2019; Burrows et al., 2019; Jung and Yun,
2019; Yun et al., 2015) and may not be possible due to differ-
ences in viewing geometry, land cover and, particularly with
the ALOS-2 data used here, differences in temporal base-
line between events. Thus, a binary ground truth was prefer-
able, which we generated by assigning aggregate pixels as
“landslide” if they were composed of over 25 % landslide
by area according to the rasterised landslide inventories we
used for verification. We explore the effect that this choice
of a 25 % threshold to define a landslide pixel has on our re-
sults in the Supplement, but varying this threshold between
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1% and 50 % was found to have little effect on the relative
performance of the different classifiers.

The aggregation process was done for several reasons.
First, the boxcar coherence estimation has the effect of blur-
ring neighbouring pixels so that the minimum size of an ob-
ject we could resolve was dependent on the size of the 3 x 3
boxcar (see Table 1). In all cases this was larger than the
20m x 22 m pixel spacing in geographic coordinates. Sec-
ond, it has already been demonstrated that SAR-coherence-
based methods perform better at lower resolutions (Burrows
et al., 2019). Third, when comparing landslide inventories,
for example those of Zhang et al. (2019) and Wang et al.
(2019) for the Hokkaido earthquake, there is often some
variation in the exact shape and location of individual poly-
gons. We expect this effect to be decreased when inven-
tories are downsampled. We therefore chose a resolution
that was larger than the boxcar window but that resulted in
enough mapped landslide and non-landslide aggregate pix-
els for analysis. This is similar to the resolution of other
landslide products generated for emergency response (e.g.
Bessette-Kirton et al., 2019; Nowicki Jessee et al., 2018)

3.5 ROC analysis

We used the receiver operating characteristic (ROC) area un-
der the curve (AUC) to evaluate and compare the classifi-
cation ability of each surface. For each classification sur-
face, a threshold was set for which no pixels were classi-
fied as landslides and then incrementally decreased until it
reached a value where all pixels were classified as landslides.
At each incremental threshold, the false-positive rate (the ra-
tio of false positives to real non-landslide pixels) was plotted
against the true positive rate (the ratio of true positives to
real landslide pixels) to form an ROC curve. The area under
this curve is equal to the probability that if a landslide pixel
and a non-landslide pixel were randomly selected from the
dataset, the classifier would rank them correctly (Hanley and
McNeil, 1982). For a randomly generated surface with no
classification ability, the AUC =0.5. For a perfect classifier,
the AUC = 1.0.

On all SAR tracks, there are many more non-landslide than
landslide pixels. It has been suggested that for such imbal-
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(a) Event Hokkaido Nepal Lombok-1 Lombok-2
Satellite S-1 A-2 S-1 A-2 S-1 A-2 S-1
Track no. |068a 046d|116a 018d|085a 019d|157a|156a 32a [129a|156a 032d
S CECL 0.52 0.57(0.70 0.89|0.59 0.69|0.81|0.64 0.56|0.88[0.49 0.45
L
)
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<
Q
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‘f‘" Waiting time (days) | 20 12 | 15 15|20 16 | 91 | 9 6 [153| 7 10
1.0 1.0 1.0
(b) (c)
208 08 Q 0.8
& & P
g 0.6 g 0.6 g 0.6 4
50,4- § 0.4 g 0.4
v S068a v S156a v . Al57a
(= 024 CECL = 02 Bx-S = 0.24 ‘ AC_max
0.0 4 AUC =0.52 0.0 AUC=0.67 004 AUC=0.85

T T T T T T
025 050 075 100 0.00 0.25

False Positive Rate

T
0.00

0.50
False Positive Rate

T T T T
0.25 050 0.75 1.00

False Positive Rate

T T T
0.75 1.00 0.00

Figure 2. (a) AUC values for each classifier described in Sect. 2 at a resolution of 200 m x 220 m. For Hokkaido, we use the inventory of
Zhang et al. (2019). Insufficient pre-event data were available on A157a to calculate the Bx—S classification surface. Colours range from red
(worst-performing, AUC < 0.55) to green (best-performing, AUC > 0.80). (b—d) Examples of ROC curves for (b) the CECL method on track
S156a, Hokkaido; (c) the Bx—S method on track S156a, Lombok-2; (d) AC_max on track A157a, Nepal.

anced data, precision-recall curves can better represent clas-
sification ability than ROC AUC (Saito and Rehmsmeier,
2015). Here, we chose to use ROC analysis since precision-
recall curves do not allow comparison between datasets with
different proportions of landslide and non-landslide pixels
and therefore between different earthquakes and SAR tracks.
However, when considering the relative performance of clas-
sifiers for each track independently, we found the same con-
clusions could be drawn from precision-recall curves as from
ROC curves. A recreation of Fig. 2a using precision-recall
rather than ROC AUC values can be found in the Supple-
ment.

4 Results
4.1 Results at 200 m x 220 m resolution

Figure 2 shows the ROC AUC values for each classifica-
tion method described in Sect. 3.3 and each track of radar
data shown in Fig. 1. The cells are coloured so that the best-
performing classification surfaces are shown in green and the
weakest in red. A classifier that performs well for all events
and both sensors should therefore appear as a green row. The
eastern and western tracks of S157a and data for Lombok-2
on track A129a have been omitted as the waiting times for
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the first post-event image were very long (77, 63 and 1394,
respectively). This long time window resulted in widespread
co-event coherence loss that adversely affected classifier per-
formance. Such a long waiting time would make it extremely
unlikely that these data could be used in emergency response,
and the poor performance is unlikely to be representative of
classifier behaviour when using more timely imagery.

The methods are grouped by the number of post-event
images that are required, and the waiting time in days for
this imagery for each event and SAR track is also given. As
the primary scientific use for post-event ALOS-2 imagery is
to form a co-event interferogram, only one post-event im-
age was acquired immediately following the Lombok-1 and
Nepal earthquakes, with the waiting time for the second post-
event image being considerably longer. We still include these
results as the waiting time for L-band radar data is likely to
decrease in the future with the planned NASA-ISRO syn-
thetic aperture radar (NISAR) satellite constellation, which
is expected to launch in 2022, acquiring data globally with a
12 d repeat time (Sharma, 2019).

If we consider only data acquired within the 2-week emer-
gency response window (Inter-Agency Standing Committee,
2015), the highest AUC in Hokkaido was initially 0.58 on
day O using the Bx—S method on S046d, rising to 0.89 af-
ter 1d with data from track A018d and the CECL method.
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(a) S032d, Bx-S, AUC=0.55

(b) S156a, Bx-S, AUC=0.64
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Figure 3. (a—f) Time series of classification surfaces in the order that SAR data were acquired on tracks S032d, S156a and A129a following
the 5 August 2018 Lombok earthquake using the methods we recommend in Sect. 4.1. (g) Observed landslide areal density for 200 m x 220 m

pixels (calculated from Ferrario, 2019).

In Nepal, the first radar data were acquired on day 4 on track
S019d, from which the highest AUC of 0.74 was obtained us-
ing the Bx—S method. On day 7, the first ALOS-2 image was
acquired on A157a, and more accurate information could
have been generated using CECL (AUC 0.81), although this
ALOS-2 scene covers a smaller area than the Sentinel-1
data (Fig. 1). In Lombok, the 6d Sentinel-1 acquisition re-
peat time meant that a large volume of data was available
within 2 weeks of these events. The best data and method
for Lombok-1 evolved as follows: CECL, S032d (day O,
AUC 0.56); CECL or Bx-S, S156a (day 3, AUC 0.64);
PECI, S032d (day 6, AUC 0.69); AC_max, S156a (day 9,
AUC 0.72); CECL, Al129a (day 13, AUC 0.88). The corre-
sponding classification surfaces for this evolution are plot-
ted in Fig. 3. For Lombok-2, the first Sentinel-1 image was
acquired on day 1, track S156a, and had an AUC of 0.67
using the Bx—S method, which could be slightly improved
upon using the second post-event image that was acquired on
day 7 using PECI (AUC 0.68). No ALOS-2 data were avail-
able within 2 weeks of this earthquake. Therefore in most
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cases, initially only Sentinel-1 data are available, and the
best option is the Bx—S method. This can then be improved
upon when the first ALOS-2 image becomes available using
CECL. For Lombok-1 and Lombok-2, where two post-event
Sentinel-1 images became available before the first ALOS-2
image, incorporating these data also improved on the accu-
racy of the result.

With a single L-band post-event image from ALOS-2,
CECL was the best-performing landslide classification sur-
face in all cases. An improvement was seen when an addi-
tional post-event image was acquired, and methods requir-
ing this image were used for the case of Lombok and Nepal
but not for Hokkaido. When a single C-band post-event im-
age was used, the Bx—S method outperformed CECL for
Hokkaido, Gorkha and Lombok-2 and had a similar per-
formance for Lombok-1. The addition of a second post-
event image and adoption of methods that used this image
showed an improvement in Hokkaido and Lombok-1 but not
in Nepal. However, when considering Fig. 2a as a whole,
methods that used a second post-event image were both
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better-performing and more consistent across event and sen-
sor type. When looking across all three events, the best op-
tion in terms of AUC was to use the AC_sum method with L-
band imagery. When grouped by event and radar look direc-
tion and ranked according to AUC, AC_sum using ALOS-2
was ranked 3rd out of 10 classification surfaces for descend-
ing imagery over Hokkaido, 1st out of 9 for ascending im-
agery over Nepal and 2nd out of 10 for ascending imagery
over Lombok-1. A comparison cannot be made for ascend-
ing track data in Hokkaido as A116a and SO85a had different
look directions (westwards and eastwards, respectively).

Figure 4 shows the landslide classification surfaces calcu-
lated using the AC_sum method and ALOS-2 data of each
event alongside the aggregated validation landslide data. In
Fig. 4b, d and £, cells made up of < 1 % landslide by area are
masked. In order to recreate this in the radar surface, it was
necessary to threshold and plot only pixels that were most
likely to be landslides based on their classifier value. Here
we applied a threshold such that the number of pixels plotted
in Fig. 4a, c and e is the same as the number in Fig. 4b, d
and f, respectively. These threshold values were similar but
not identical, and we expect that more case study sites would
be required to determine a more general threshold for ap-
plication in future events. However, in each case, the spatial
pattern of landsliding in Fig. 4b, d and f was recreated using
the radar surfaces in Fig. 4a, ¢ and e, which would allow the
worst-affected areas to be identified for emergency response
even without strict definition of this threshold.

4.2 Variation across event and sensor type

Our results show significant variation across event and sensor
type. L-band radar outperformed C-band in the majority of
cases, but for some methods, we observed additional effects
causing differences in performance.

For methods relying on a co-event vs. pre-event coher-
ence decrease (i.e. CECL, AC_sum, AC_max), landslides
associated with Lombok-2 were more difficult to predict
than Lombok-1 (Fig. 2). This is likely to be due to the co-
event acquisition time window, which was 6d for the first
inventory but had to be increased to 18d on track S156a
and 24 d on S032d in order to span both earthquakes. This
will have caused temporal decorrelation of vegetated non-
landslide pixels, resulting in a smaller difference between
landslide and non-landslide co-event coherence and mak-
ing it more difficult for the classifier to distinguish between
these. The same effect was seen in Nepal, where 12 d interfer-
ograms were used for S019d, but 24 d pre-event and co-event
interferograms were used for S085a.

Generally, the Bx—S method was more consistent across
sensor type than the CECL method. The CECL method per-
formed better than the Bx—S method with ALOS-2 data but
worse with Sentinel-1. There are several possible reasons for
this. First, the longer wavelength of L-band SAR meant that
it was able to maintain a higher coherence in the pre-event
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interferogram so that the coherence difference for a land-
slide pixel in a pre-event and co-event interferogram was
larger, resulting in better performance from CECL. Second,
in the Bx—S method, siblings are identified using pre-event
imagery. As Sentinel-1 imagery is acquired every 12 d, more
images were available for this calculation and were acquired
over a shorter time period. This allows less time for pixels
to be altered by changes to the ground surface, meaning that,
for non-landslide pixels, a pixel and its siblings are likely to
be more similar. In this way, the siblings selected by Rapid-
SAR for Sentinel-1 imagery may have been of a higher qual-
ity than those for ALOS-2, giving a more reliable coherence
estimate.

4.3 Results at 20 m x 22 m resolution

While the main aim of this study was not to map individual
landslides, we also show results at a 20m x 22 m scale (the
resolution of the classification surfaces in geographic coordi-
nates), with pixels that are sufficiently small to resolve indi-
vidual landslides. Our results show that SAR methods were
less successful at this resolution than when downsampled,
with AUC on average 16 % lower using Sentinel-1 data and
11 % lower using ALOS-2 data. Using Sentinel-1 data, AUC
values were low, ranging from 0.49 (CECL, Lombok-2) to
0.61 (PECI, Hokkaido). From this we conclude that mapping
individual landslides with Sentinel-1 data was not possible
using the methods tested here, which supports similar pre-
liminary findings by Burrows et al. (2019).

Classification surfaces using ALOS-2 are more promising,
with AUC up to 0.80 (AC_max, Lombok-1). As in Sect. 4.1,
AC_sum performed best, having the highest AUC on tracks
All6a and A157a and an AUC of only 0.01 less than the
best-performing classification surface on tracks A018d and
A129a. Figure 6 shows small regions of this surface over-
lain with landslide polygons for each event. While the land-
slides generally coincide spatially with high classifier values,
it is clear that it would not have been possible in most cases
to map the landslide polygons using the radar data. Some
large landslides (Fig. 6b and d) contain pixels with high clas-
sifier values. However, in Fig. 6d, there are also areas of
mapped landslides that do not have high classifier values, and
in Fig. 6a and c the landslides are too small. Therefore we
conclude that, while radar coherence methods show promise
in individual landslide detection, it was not possible using
the methods tested here, and there is likely to be a minimum
detectable landslide size.

5 Discussion

We have demonstrated that SAR data are widely applica-
ble to landslide detection in vegetated areas within the time
frame of the emergency response effort. For example, within
the 2-week limit suggested by the Inter-Agency Standing
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Figure 4. SAR-based landslide classification surfaces for the Gorkha (a), Hokkaido (c¢) and Lombok-1 (e) earthquakes calculated with ALOS-
2 radar data using the AC_sum method at a 200 m x 220 m resolution. (b, d, f) Observed landslide density calculated as the percentage of
each 200 m x 220 m cell covered by landsliding for each event according to the inventories of Ferrario (2019), Roback et al. (2018) and Zhang
et al. (2019), respectively. Cells where landslide density was 0 were masked. For the AC_sum surface, a threshold value of the classifier was
selected such that the number of cells plotted in (a, ¢, e) for each event was the same as the number plotted in (b, d, f).

Committee (2015) and Williams et al. (2018), it would have
been possible to generate triggered landslide density infor-

mation using the CECL method with ALOS-2 data with an
ROC AUC of 0.81 in Nepal, 0.89 in Hokkaido and 0.88 in
Lombok-1 (Fig. 2). In this section, we first consider the ap-
plications of the SAR methods to future events and then turn
to potential sources of errors. Finally we discuss future work
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that would allow wider application of SAR methods to land-
slide detection.
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5.1 Application
5.1.1 Landslide density estimation

We found that radar methods were better suited to the pro-
duction of landslide density maps than to the identifica-
tion of individual landslides. The aggregated resolution of
200m x 220 m that we used here was not high enough to
identify individual landslides. However it was higher than
the resolution of most empirical landslide susceptibility mod-
els designed for rapid response (Allstadt et al., 2018; Now-
icki Jessee et al., 2018) and landslide maps generated from
optical satellite imagery for use in aid efforts by Bessette-
Kirton et al. (2019) following Hurricane Maria, Puerto
Rico, in 2017 and by Williams et al. (2018) following the
2015 Gorkha earthquake. SAR data seem best suited to pro-
ducing products at this spatial scale. For example, Bessette-
Kirton et al. (2019) produced a grid of 2 x 2km pixels and
assigned them as “high landslide density” (> 25 landslides),
“low landslide density” (1-25 landslides) or “no landslides”.
This was published a month after the hurricane using optical
imagery acquired between 6 and 18 d after the event. As radar
data are available within a few days of an earthquake, equiv-
alent products could easily be generated from radar within
this timescale.

Landslide density maps can be combined with data on
population density in order to estimate exposure, as in Now-
icki Jessee et al. (2018). They can be used alongside maps of
roads to identify transport routes that are likely to be blocked
and maps of river networks in order to identify areas where a
landslide may have temporarily dammed a river, posing a risk
of flash flooding when the dam collapses (Robinson et al.,
2018). Information of this kind may guide aerial assessments
of landslides such as that by Collins and Jibson (2015), which
was carried out 32-36d after the 2015 Gorkha earthquake to
identify possible landslide dams.

5.1.2 Recommendations on data and methods

We showed in Sect. 4 that, in the majority of cases, land-
slide classification surfaces generated using L-band data out-
performed those generated from C-band data. Currently, the
main source of L-band data is the ALOS-2 satellite system.
This system has a 14 d repeat time, and one of its objectives
is disaster response. Therefore, in most cases, a post-seismic
image will be made available within 2 weeks of an earth-
quake, with the main purpose of producing a co-event in-
terferogram that can be used to measure ground displace-
ment and infer fault geometry. However, as this interfero-
gram requires only one post-event image, the waiting time
for a second image may be several months, as was the case
following the Nepal and Lombok earthquakes. Therefore in
an emergency response situation, it is likely that only one
L-band image will be available within the required timeline,
and so CECL would be the best available classification sur-
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face. L-band data are also less likely to be acquired follow-
ing a rainfall event, even if this event triggers many land-
slides as ground displacement maps and therefore interfero-
grams are not needed. In the future, however, the availability
of L-band SAR is likely to increase with the planned NISAR
and ROSE-L satellite constellations. NISAR, a joint NASA—
ISRO mission planned to launch in 2022, will acquire L-band
data continuously with a 12 d repeat time over all landmasses
globally (Sharma, 2019), while the ESA ROSE-L satellite,
whose launch date is planned in 2026, will have 6d global
repeat coverage and 3 d in Europe (Pierdicca et al., 2019).
While Sentinel-1 data yield generally lower AUC values
(Figs. 2a and 5), the system acquires data continuously over
global tectonic belts with a 12d repeat time, with all data
made freely available. Image acquisitions on ascending and
descending tracks are offset in time so that the waiting time
for a single post-event track is always less than 6-12 d. Over
Europe, Sentinel-1 data are acquired at twice this frequency,
meaning that the first post-event image should be available
within 3d. As the data are regularly acquired, they will be
available for rainfall events as well as earthquakes. In some
cases, we may have two post-event Sentinel-1 images be-
fore the first ALOS-2 image becomes available. It is more
difficult to make a definitive recommendation for the best
method to use in this situation as performance varies signifi-
cantly between events. With one post-event image, the Bx—S
method is the best-performing classifier with Sentinel-1 and
in Nepal remains the best classifier even after additional post-
event Sentinel-1 images have been acquired. With two post-
event images, the best-performing classifier in two out of
eight cases is either AC_sum or AC_max. However in cases
where the presence of vegetation means that pre-event coher-
ence and non-landslide co-event coherence are very low, the
best option is to use PECI (e.g. Lombok-1 S032d, Lombok-
2, Hokkaido). Inspection of the pre-event coherence should
therefore be carried out first to select which method to use.

5.2 Sources of incorrect classifications
5.2.1 Building damage

As the CECL method of Yun et al. (2015) was originally de-
signed to detect urban damage, it is unsurprising that dam-
aged buildings cause false positives in SAR-coherence-based
methods for landslide detection. Large-scale signals, such as
the town of Atsuma in Hokkaido, could be removed using
a land cover map, but masking landslides in built-up areas
is clearly disadvantageous as this is where they would do the
most damage. Additionally, buildings located outside of large
towns may not be included in such maps, but damage to these
would still result in false positives. These false positives will
occur using all the methods in this study. They are particu-
larly likely to have negatively affected the AUC values for
Al16a in Hokkaido as this track had a larger proportion of
non-landslide pixels lying in built-up areas.
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Figure 5. AUC values for each classifier described in Sect. 2 at a resolution of 20 m x 22 m. For Hokkaido, we use the inventory of Zhang
et al. (2019). Insufficient pre-event data were available on A157a to calculate the Bx—S classification surface. Colours range from red (worst-

performing AUC < 0.55) to green (best-performing, AUC > 0.80).

5.2.2 Wind damage

In Hokkaido, we observed some large false-positive patches
in CECL, PECI, AC_sum and AC_max classification sur-
faces using ALOS-2 data and PECI, AC_sum and AC_max
surfaces using Sentinel-1. These correspond spatially to areas
of evergreen needleleaf forest in the Japanese Aerospace Ex-
ploration Agency (JAXA) high-resolution land use and land
cover map of Japan (JAXA, 2018). Areas with this forest
cover, which we have mapped using Sentinel-2 imagery, are
outlined in white in Fig. 6b.

We hypothesise that this type of vegetation may have been
damaged by wind during Typhoon Jebi, which passed over
the area the day before the earthquake, causing a coherence
decrease that is similar to that caused by landsliding. This
type of forest has a comparatively high coherence in both
pre-event and post-event L-band interferograms, giving it a
strong signal in CECL, PECI, AC_sum and AC_max. This
effect may also explain why the low-coherence area extends
beyond the area affected by landslides (an effect visible in
our data and also observed by Fujiwara et al., 2019). Unfor-
tunately, none of the SAR data in this study were acquired
between the typhoon and the earthquake, which would have
allowed separation of the two events. However, these forest
patches have no signal in amplitude-based methods, which
has been observed in the study of Fransson et al. (2010) of
wind-damaged forest at this resolution. This lack of an am-
plitude signal may allow these false positives to be removed
through a combination of amplitude- and coherence-based
classification surfaces. Additionally, we observed that these
patches of forest are generally much larger than the land-
slides and so could perhaps be removed if object- rather than
pixel-based classification were used.
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5.2.3 Snow

Snow is a potential source of error when using SAR in land-
slide detection. There is a strong difference in SAR backscat-
tering properties between wet snow, dry snow and no snow
(Koskinen et al., 1997). As such, decreased coherence can
be caused by snowmelt, drift or fall between image acquisi-
tions. Examination of Sentinel-2 imagery shows there was no
snow cover at the time of the Hokkaido earthquake, and snow
is not likely in Lombok due to the high temperatures. We do
not have exact snow cover data for Nepal at the time of the
earthquake, but we expect that in April approximately one-
fifth of the country’s total area would have been covered in
snow (ICIMOD, 2013). Therefore at high altitudes, it is rea-
sonable to assume that some false positives may have been
caused by snow, particularly on track A129a due to the long
time interval between image acquisitions.

5.2.4 Rivers

The Bx—S method is effectively a spatial filter on co-event co-
herence, removing signals that cover a large area. Therefore
small, low-coherence objects will be identified as landslides.
This includes rivers, as demonstrated by Spaans and Hooper
(2016). As the low coherence caused by a river is not tempo-
rary, this should have less of an effect on the other coherence
methods tested here. However, changes in position or water
level are likely to result in false positives in all coherence-
based classifiers. A variety of methods could be used to iden-
tify and remove rivers from our analysis (including using a
pre-event Bx—S surface). However, since areas where land-
slides and rivers intersect are particularly hazardous due to
the potential for landslide dams and associated flash flood-
ing, we did not mask rivers in this study. We suggest that any
product based on SAR coherence supplied to emergency re-
sponse coordinators should have rivers overlaid. This would
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Figure 6. AC_sum classification surface calculated using ALOS-2 data displayed at 20 m x 22 m resolution with mapped landslide polygons
in black. The 10 % of pixels most likely to be landslide pixels are coloured from yellow (least likely) to red (most likely). (a) Lombok:
track A129a for the 5 August 2018 event (Ferrario, 2019). (b) Hokkaido: track A018d, landslide polygons from Zhang et al. (2019). White
polygons show the locations of forested areas mapped using Sentinel-2 data. (¢, d) Nepal: track A157a(C), landslide polygons from Roback

et al. (2018).

both mask false positives due to rivers and allow identifica-
tion of locations where rivers pass through areas of intense
landsliding.

5.2.5 Landslide density

When using the Bx—S method in Hokkaido, we found low
AUC values with both L-band and C-band SAR. Visual com-
parison of the boxcar and sibling coherence surfaces shows
that the area affected by landslides had a low coherence in
both rather than the expected case, where the boxcar coher-
ence is lower than the sibling coherence. We suggest this may
be due to the intensity of the damage caused by this event,
both in terms of the landslides, which had a much higher den-
sity than for Nepal or Lombok, and possibly also in terms of
vegetation damage caused by Typhoon Jebi. Since the Bx—S
method relies on siblings of a landslide pixel lying outside
the landslide, it may not work well in the case where many
landslides are close together. This is similar to the case found
by Burrows et al. (2019), where the Bx—S method was unable
to identify large landslides if the sibling search window was
not sufficiently large.

Nat. Hazards Earth Syst. Sci., 20, 3197-3214, 2020

5.3 Future work

We have demonstrated that the classification ability of a
method can vary significantly based on the data used, the na-
ture of the triggering event and the resolution of the analysis.
For example, the Bx—S method performed significantly bet-
ter in the case of Nepal than Hokkaido, and CECL was up
to 32 % more successful when using ALOS-2 compared to
Sentinel-1 data with the same event and look direction. Thus,
it is clear that any future SAR-based classification method
must be widely tested on multiple events, and it cannot be as-
sumed that a method performing well with one SAR dataset
will be equally successful using data from a different sensor.

While we tested ascending and descending tracks sepa-
rately, a more complete picture would be obtained through
combining these two tracks as hillslopes that are un-
favourably oriented to the satellite in one track are likely
to be more favourably oriented in the other track. A com-
plete map would be easier to interpret for emergency respon-
ders than two maps, each of which is missing landslides on
unfavourably oriented slopes. This is particularly important
since landslides are most likely on steep slopes, where these
orientation effects are likely to be most severe.
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Although we selected earthquakes to use as case stud-
ies, SAR methods could be equally useful in the case of
rainfall-triggered landslides, where cloud cover may also
cause delays to mapping using optical satellite imagery. We
have shown that SAR methods performed well in Hokkaido,
where the co-event coherence maps spanned both an earth-
quake and a typhoon. This demonstrates that the alter-
ations in SAR coherence and amplitude that can result from
changes in soil moisture content are not prohibitive to the
application of SAR methods to rainfall-triggered landslides,
although some false positives may have been caused by wind
damage.

The Lombok case studies demonstrate the importance of
knowing the timing of the landslides when applying current
methods. When moving from Lombok-1, in which all land-
slides were assumed to have been triggered by a single earth-
quake, to Lombok-2, which contained landslides triggered
by a series of earthquakes over a 2-week period, it was nec-
essary to increase the time span of the Sentinel-1 co-event in-
terferograms from 6 to 24 d on track S032d and 18 d on track
S156a, which significantly reduced the AUC of the classifi-
cation methods. Therefore, if we wish to apply radar methods
more widely to landslide triggering events that are dispersed
through time, such as long rainfall events (e.g. those associ-
ated with the monsoon) or earthquake sequences, more work
will be required on the characterisation of the signals of land-
slides in radar imagery through time.

Finally, here we assessed classifier performance using
ROC analysis, which does not require a threshold to be ap-
plied to the classification surface. However, if SAR methods
are to be applied to future events for emergency response, it
will be necessary to set a threshold between “landslide” and
“non-landslide”. In this study, the time between image ac-
quisitions varied significantly between events, making it un-
likely that a threshold could be selected that would work well
for both Sentinel-1 and ALOS-2 across all events. However,
this may be possible in the future when more events have
been studied, and SAR data with more regular acquisitions
are available. Further work is therefore needed to establish
such thresholds, which will be determined according to the
requirements of emergency responders and their relative tol-
erance for false positives and false negatives.

6 Conclusions

We have demonstrated that it is possible to generate landslide
density information from SAR coherence within a typical 2-
week emergency response time frame and at a useful spa-
tial resolution. The best-performing method is dependent on
the wavelength of the available imagery and the number of
post-event images available during the emergency response.
The CECL method is the best-performing method when only
one post-event L-band image is available (ROC AUC =0.7-
0.89), and this method could be applied within 2 weeks for
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three out of our four case study events. However, Sentinel-1
data were available earlier than ALOS-2 for all of the events
studied here, with the first image available within 4 d of each
earthquake. Using the first post-event Sentinel-1 image ac-
quired, the best method is the Bx—S method, with AUC be-
tween 0.58-0.74. Methods that use a second post-event im-
age improve overall accuracy by an average of 10% and
are more consistently reliable across event and sensor type.
These approaches could be valuable for landslide mapping
when latency is less important, but the additional waiting
time for the second post-event image is a disadvantage in an
emergency response situation.
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first, the inventory of Ferrario (2019), which is available as a
Supplement to that publication; second, the inventory of Zhang
et al. (2019) available at https://doi.org/10.5281/zenodo.2577300;
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