Articles | Volume 20, issue 9
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, 2020
https://doi.org/10.5194/nhess-20-2379-2020

Special issue: Groundbreaking technologies, big data, and innovation for...

Nat. Hazards Earth Syst. Sci., 20, 2379–2395, 2020
https://doi.org/10.5194/nhess-20-2379-2020
Research article
10 Sep 2020
Research article | 10 Sep 2020

A spaceborne SAR-based procedure to support the detection of landslides

Giuseppe Esposito et al.

Related authors

Integrated dataset of deformation measurements in fractured volcanic tuff and meteorological data (Coroglio coastal cliff, Naples, Italy)
Fabio Matano, Mauro Caccavale, Giuseppe Esposito, Alberto Fortelli, Germana Scepi, Maria Spano, and Marco Sacchi
Earth Syst. Sci. Data, 12, 321–344, https://doi.org/10.5194/essd-12-321-2020,https://doi.org/10.5194/essd-12-321-2020, 2020
Short summary
Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy)
Riccardo Salvini, Giovanni Mastrorocco, Giuseppe Esposito, Silvia Di Bartolo, John Coggan, and Claudio Vanneschi
Nat. Hazards Earth Syst. Sci., 18, 287–302, https://doi.org/10.5194/nhess-18-287-2018,https://doi.org/10.5194/nhess-18-287-2018, 2018
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022,https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Gridded flood depth estimates from satellite-derived inundations
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022,https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
ProbFire: a probabilistic fire early warning system for Indonesia
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022,https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022,https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Using single remote sensing image to calculate the height of the landslide dam and the maximum volume of the lake
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-35,https://doi.org/10.5194/nhess-2022-35, 2022
Revised manuscript accepted for NHESS
Short summary

Cited articles

Alvioli, M., Mondini, A. C., Fiorucci, F., Cardinali, M., and Marchesini, I.: Topography-driven satellite imagery analysis for landslide mapping, Geomat. Nat. Haz. Risk, 9, 544–567, https://doi.org/10.1080/19475705.2018.1458050, 2018. 
Blong, R. J.: Natural hazards in the Papua New Guinea highlands, Mt. Res. Dev., 6, 233–246, https://doi.org/10.2307/3673393, 1986. 
Bornaetxea, T., Rossi, M., Marchesini, I., and Alvioli, M.: Effective surveyed area and its role in statistical landslide susceptibility assessments, Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, 2018. 
Calò, F., Calcaterra, D., Iodice, A., Parise, M., and Ramondini, M.: Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques, Int. J. Remote Sens., 33, 3512–3530, https://doi.org/10.1080/01431161.2011.630331, 2012. 
Calvello, M., Peduto, D., and Arena, L.: Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides, Landslides, 14, 473–489, https://doi.org/10.1007/s10346-016-0722-6, 2017. 
Download
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Altmetrics
Final-revised paper
Preprint