Articles | Volume 20, issue 7
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, 2020
https://doi.org/10.5194/nhess-20-1941-2020
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, 2020
https://doi.org/10.5194/nhess-20-1941-2020
Research article
10 Jul 2020
Research article | 10 Jul 2020

On snow stability interpretation of extended column test results

Frank Techel et al.

Related authors

Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022,https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022,https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
A random forest model to assess snow instability from simulated snow stratigraphy
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-34,https://doi.org/10.5194/tc-2022-34, 2022
Revised manuscript accepted for TC
Short summary
How is avalanche danger described in textual descriptions in avalanche forecasts in Switzerland? Consistency between forecasters and avalanche danger
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021,https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Avalanche danger level characteristics from field observations of snow instability
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021,https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
The impact of terrain model source and resolution on snow avalanche modeling
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022,https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022,https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022,https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022,https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Automated avalanche hazard indication mapping on a statewide scale
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022,https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary

Cited articles

Birkeland, K. and Chabot, D.: Minimizing “false-stable” stability test results: why digging more snowpits is a good idea, in: Proceedings ISSW 2006. International Snow Science Workshop, 1–6 October 2006, Telluride, Co., USA, 2006. a
Birkeland, K. and Chabot, D.: Changes in stability test usage by Snowpilot users, in: Proceedings ISSW 2012. International Snow Science Workshop, 16–21 September 2012, Anchorage, AK, USA, 2012. a
Blume, J.: Likelihood methods for measuring statistical evidence, Stat. Med., 21, 2563–2599, https://doi.org/10.1002/sim.1216, 2002. a
Brenner, H. and Gefeller, O.: Variations of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence, Stat. Med., 16, 981–991, https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N, 1997. a, b, c
CAA: Observation guidelines and recording standards for weather, snowpack and avalanches, Canadian Avalanche Association, NRCC Technical Memorandum No. 132, Revelstoke, B.C., Canada, 2014. a
Download
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Altmetrics
Final-revised paper
Preprint