Articles | Volume 20, issue 7
https://doi.org/10.5194/nhess-20-1941-2020
https://doi.org/10.5194/nhess-20-1941-2020
Research article
 | 
10 Jul 2020
Research article |  | 10 Jul 2020

On snow stability interpretation of extended column test results

Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer

Related authors

Tracking the slopes: A spatio-temporal prediction model for backcountry skiing activity in the Swiss Alps using UGC
Leonie Schäfer, Frank Techel, Günter Schmudlach, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2344,https://doi.org/10.5194/egusphere-2025-2344, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Forecasting avalanche danger: human-made forecasts vs. fully automated model-driven predictions
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158,https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript under review for NHESS
Short summary
An updated EAWS matrix to determine the avalanche danger level: derivation, usage, and consistency
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48,https://doi.org/10.5194/nhess-2024-48, 2024
Preprint under review for NHESS
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025,https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Proglacial lake development and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025,https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac glacial lake outburst flood (GLOF), Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025,https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary

Cited articles

Birkeland, K. and Chabot, D.: Minimizing “false-stable” stability test results: why digging more snowpits is a good idea, in: Proceedings ISSW 2006. International Snow Science Workshop, 1–6 October 2006, Telluride, Co., USA, 2006. a
Birkeland, K. and Chabot, D.: Changes in stability test usage by Snowpilot users, in: Proceedings ISSW 2012. International Snow Science Workshop, 16–21 September 2012, Anchorage, AK, USA, 2012. a
Blume, J.: Likelihood methods for measuring statistical evidence, Stat. Med., 21, 2563–2599, https://doi.org/10.1002/sim.1216, 2002. a
Brenner, H. and Gefeller, O.: Variations of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence, Stat. Med., 16, 981–991, https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N, 1997. a, b, c
CAA: Observation guidelines and recording standards for weather, snowpack and avalanches, Canadian Avalanche Association, NRCC Technical Memorandum No. 132, Revelstoke, B.C., Canada, 2014. a
Download
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Share
Altmetrics
Final-revised paper
Preprint