Articles | Volume 20, issue 7
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, 2020
https://doi.org/10.5194/nhess-20-1941-2020
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, 2020
https://doi.org/10.5194/nhess-20-1941-2020

Research article 10 Jul 2020

Research article | 10 Jul 2020

On snow stability interpretation of extended column test results

Frank Techel et al.

Related authors

How is avalanche danger described in public avalanche forecasts? Analyzing textual descriptions of avalanche forecasts in Switzerland
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-160,https://doi.org/10.5194/nhess-2021-160, 2021
Preprint under review for NHESS
Short summary
Mapping avalanches with satellites – evaluation of performance and completeness
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021,https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Avalanche danger level characteristics from field observations of snow instability
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-350,https://doi.org/10.5194/tc-2020-350, 2020
Revised manuscript accepted for TC
Short summary
On the importance of snowpack stability, the frequency distribution of snowpack stability, and avalanche size in assessing the avalanche danger level
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020,https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
On the relation between avalanche occurrence and avalanche danger level
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020,https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Assessing the effect of lithological setting, block characteristics and slope topography on the runout length of rockfalls in the Alps and on the island of La Réunion
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021,https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Evolution of surface deformation related to salt-extraction-caused sinkholes in Solotvyno (Ukraine) revealed by Sentinel-1 radar interferometry
Eszter Szűcs, Sándor Gönczy, István Bozsó, László Bányai, Alexandru Szakacs, Csilla Szárnya, and Viktor Wesztergom
Nat. Hazards Earth Syst. Sci., 21, 977–993, https://doi.org/10.5194/nhess-21-977-2021,https://doi.org/10.5194/nhess-21-977-2021, 2021
Short summary
Attribution of the Australian bushfire risk to anthropogenic climate change
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021,https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021,https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021,https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary

Cited articles

Birkeland, K. and Chabot, D.: Minimizing “false-stable” stability test results: why digging more snowpits is a good idea, in: Proceedings ISSW 2006. International Snow Science Workshop, 1–6 October 2006, Telluride, Co., USA, 2006. a
Birkeland, K. and Chabot, D.: Changes in stability test usage by Snowpilot users, in: Proceedings ISSW 2012. International Snow Science Workshop, 16–21 September 2012, Anchorage, AK, USA, 2012. a
Blume, J.: Likelihood methods for measuring statistical evidence, Stat. Med., 21, 2563–2599, https://doi.org/10.1002/sim.1216, 2002. a
Brenner, H. and Gefeller, O.: Variations of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence, Stat. Med., 16, 981–991, https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N, 1997. a, b, c
CAA: Observation guidelines and recording standards for weather, snowpack and avalanches, Canadian Avalanche Association, NRCC Technical Memorandum No. 132, Revelstoke, B.C., Canada, 2014. a
Download
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Altmetrics
Final-revised paper
Preprint