Research article
08 Oct 2019
Research article
| 08 Oct 2019
Have trends changed over time? A study of UK peak flow data and sensitivity to observation period
Adam Griffin et al.
Related authors
Adam Griffin, Alison Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-243, https://doi.org/10.5194/hess-2022-243, 2022
Preprint under review for HESS
Short summary
Short summary
Widespread flooding is a major problem in the UK, and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) was used with a hydrological model (Grid-to-Grid) across the UK, and 14400 events were identified between two timeslices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future timeslice, and in the peak return periods.
Adam Griffin, Luke Shaw, and Elizabeth Stewart
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-325, https://doi.org/10.5194/hess-2018-325, 2018
Revised manuscript not accepted
Short summary
Short summary
To better estimate how big the
1-in-100-yearflood is, historical data such as newspaper archives and bridge markings are used to estimate floods before systematic records began. To incorporate this data, a method involving the use of simulated histories is applied to better estimate relevant statistics in a reliable and dependable way. In this paper, the authors focus on the case study of the Welsh Bridge in Shrewsbury on the Severn in the United Kingdom.
Adam Griffin, Alison Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-243, https://doi.org/10.5194/hess-2022-243, 2022
Preprint under review for HESS
Short summary
Short summary
Widespread flooding is a major problem in the UK, and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) was used with a hydrological model (Grid-to-Grid) across the UK, and 14400 events were identified between two timeslices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future timeslice, and in the peak return periods.
Adam Griffin, Luke Shaw, and Elizabeth Stewart
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-325, https://doi.org/10.5194/hess-2018-325, 2018
Revised manuscript not accepted
Short summary
Short summary
To better estimate how big the
1-in-100-yearflood is, historical data such as newspaper archives and bridge markings are used to estimate floods before systematic records began. To incorporate this data, a method involving the use of simulated histories is applied to better estimate relevant statistics in a reliable and dependable way. In this paper, the authors focus on the case study of the Welsh Bridge in Shrewsbury on the Severn in the United Kingdom.
Related subject area
Hydrological Hazards
Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Integrated drought risk assessment to support adaptive policymaking in the Netherlands
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Assessing flooding impact to riverine bridges: an integrated analysis
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
A performance-based approach to quantify atmospheric river flood risk
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme
Assessing flood hazard changes using climate model forcing
Extreme-coastal-water-level estimation and projection: a comparison of statistical methods
Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China
The Cambodian Mekong floodplain under future development plans and climate change
Comprehensive space-time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015)
Compound flood modeling framework for surface–subsurface water interactions
Effectiveness of Sentinel-1 and Sentinel-2 for Flood Detection Assessment in Europe
Assessing tropical cyclone compound flood risk using hydrodynamic modelling: a case study in Haikou City, China
An approach to identify the best climate models for the assessment of climate change impacts on meteorological and hydrological droughts
Flash flood warnings in context: combining local knowledge and large-scale hydro-meteorological patterns
A comparative flood damage and risk impact assessment of land use changes
Temporal changes in rainfall intensity–duration thresholds for post-wildfire flash floods in southern California
Brief communication – Impact Forecasting Could Substantially Improve the Emergency Management of Deadly Floods: Case Study July 2021 floods in Germany
Compound inland flood events: different pathways, different impacts and different coping options
Review article: Factors leading to the occurrence of flood fatalities: a systematic review of research papers published between 2010 and 2020
Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow
Brief communication: Western Europe flood in 2021: mapping agriculture flood exposure from SAR
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Evaluating integrated water management strategies to inform hydrological drought mitigation
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Global flood exposure from different sized rivers
A paradigm of extreme rainfall pluvial floods in complex urban areas: the flood event of 15 July 2020 in Palermo (Italy)
Space-time clustering of climate extremes amplify global climate impacts, leading to fat-tailed risk
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
Assessment of centennial (1918–2019) drought features in the Campania region by historical in situ measurements (southern Italy)
Selecting and analysing climate change adaptation measures at six research sites across Europe
Assessing local impacts of the 1700 CE Cascadia earthquake and tsunami using tree-ring growth histories: a case study in South Beach, Oregon, USA
Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling
Integrated mapping of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos
Soil moisture and streamflow deficit anomaly index: an approach to quantify drought hazards by combining deficit and anomaly
The uncertainty of flood frequency analyses in hydrodynamic model simulations
Flood risk assessment of the European road network
The impact of hydrological model structure on the simulation of extreme runoff events
Hydrometeorological analysis and forecasting of a 3 d flash-flood-triggering desert rainstorm
Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory
Joseph T. D. Lucey and Timu W. Gallien
Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, https://doi.org/10.5194/nhess-22-2145-2022, 2022
Short summary
Short summary
Coastal flooding can result from multiple flood drivers (e.g., tides, waves, river flows, rainfall) occurring at the same time. This study characterizes flooding events caused by high marine water levels and rain. Results show that wet-season coinciding sampling may better describe extreme flooding events in a dry, tidally dominated region. A joint-probability-based function is then used to estimate sea wall impacts on urban coastal flooding.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Marjolein J. P. Mens, Gigi van Rhee, Femke Schasfoort, and Neeltje Kielen
Nat. Hazards Earth Syst. Sci., 22, 1763–1776, https://doi.org/10.5194/nhess-22-1763-2022, https://doi.org/10.5194/nhess-22-1763-2022, 2022
Short summary
Short summary
Many countries have to prepare for droughts by proposing policy actions to increase water supply, reduce water demand, or limit the societal impact. Societal cost–benefit analysis is required to support decision-making for a range of future scenarios, accounting for climate change and socio-economic developments. This paper presents a framework to assess drought policy actions based on quantification of drought risk and exemplifies it for the Netherlands’ drought risk management strategy.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022, https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
Short summary
The impact of extreme events is increasing with global warming. Based on future scenario data and an improved quantitative assessment model of natural-disaster risk, this study analyses the spatial and temporal patterns of floods in China at 1.5 °C and 2 °C of global warming, quantitatively assesses the socioeconomic risks posed by floods, and determines the integrated risk levels. Global warming of 1.5 °C can effectively reduce the population affected and the economic risks of floods.
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022, https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Short summary
Current vulnerability methods, as tools to protect groundwater resources from pollution, present some limitations and drawbacks: the roles of population and economic activities are not considered by such methods. The methodology presented in this work combines natural characteristics and human-driven conditions of a given region to improve the process of groundwater vulnerability analysis. Results indicate the reliability of this alternative method to improve groundwater protection strategies.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Corinne Bowers, Katherine A. Serafin, and Jack Baker
Nat. Hazards Earth Syst. Sci., 22, 1371–1393, https://doi.org/10.5194/nhess-22-1371-2022, https://doi.org/10.5194/nhess-22-1371-2022, 2022
Short summary
Short summary
Atmospheric rivers (ARs) cause significant flooding on the US west coast. We present a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that connects models of atmospheric forcings, hydrologic impacts, and economic consequences to better estimate losses from AR-induced river flooding. We apply the PARRA framework to a case study in Sonoma County, CA, USA, and show that the framework can quantify the potential benefit of flood mitigation actions such as home elevation.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
David Patrick Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-84, https://doi.org/10.5194/nhess-2022-84, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
A new method was developed to estimate changes of flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method on the lower floodplain of the Gwydir Valley with changes of flood hazard provided over the next 90 years compared to the previous 50 years. We find that changes in flood hazard reduces over time within the Gwydir Valley floodplain.
Maria Francesca Caruso and Marco Marani
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, https://doi.org/10.5194/nhess-22-1109-2022, https://doi.org/10.5194/nhess-22-1109-2022, 2022
Short summary
Short summary
We comparatively evaluate the predictive performance of traditional and new approaches to estimate the probability distributions of extreme coastal water levels. The metastatistical approach maximizes the use of observational information and provides reliable estimates of high quantiles with respect to traditional methods. Leveraging the increased estimation accuracy afforded by this approach, we investigate future changes in the frequency of extreme total water levels.
Shupeng Yue, Xiaodan Sheng, and Fengtian Yang
Nat. Hazards Earth Syst. Sci., 22, 995–1014, https://doi.org/10.5194/nhess-22-995-2022, https://doi.org/10.5194/nhess-22-995-2022, 2022
Short summary
Short summary
To develop drought assessment and early warning systems, it is necessary to explore the characteristics of drought and its propagation process. In this article, a generalized and efficient drought research framework is studied and verified. It includes the evaluation of the spatiotemporal evolution, the construction of the return period calculation model, and the quantitative analysis of the meteorological trigger conditions of drought based on an improved Bayesian network model.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-99, https://doi.org/10.5194/nhess-2022-99, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
It is difficult to estimate the magnitude of rare to very rare floods due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and precipitation amounts vary considerably over the course of an event, and floods from different parts of the basin coincide. We show that computer models can provide plausible results in this setting, and can thus inform flood risk and safety assessments for critical infrastructure.
Eva Boisson, Bruno Wilhelm, Emmanuel Garnier, Alain Mélo, Sandrine Anquetin, and Isabelle Ruin
Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, https://doi.org/10.5194/nhess-22-831-2022, 2022
Short summary
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
Francisco Peña, Fernando Nardi, Assefa Melesse, Jayantha Obeysekera, Fabio Castelli, René M. Price, Todd Crowl, and Noemi Gonzalez-Ramirez
Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, https://doi.org/10.5194/nhess-22-775-2022, 2022
Short summary
Short summary
Groundwater-induced flooding, a rare phenomenon that is increasing in low-elevation coastal cities due to higher water tables, is often neglected in flood risk mapping due to its sporadic frequency and considerably lower severity with respect to other flood hazards. A loosely coupled flood model is used to simulate the interplay between surface and subsurface flooding mechanisms simultaneously. This work opens new horizons on the development of compound flood models from a holistic perspective.
Angelica Tarpanelli, Alessandro Cesare Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-63, https://doi.org/10.5194/nhess-2022-63, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
We analysed ten years of river discharge data over almost 2000 sites in Europe and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they could be able to observe. Results show that on average the 58 % of flood events are potentially observable by Sentinel-1 and only the 28 % by Sentinel-2 due to the obstacle of cloud coverage.
Qing Liu, Hanqing Xu, and Jun Wang
Nat. Hazards Earth Syst. Sci., 22, 665–675, https://doi.org/10.5194/nhess-22-665-2022, https://doi.org/10.5194/nhess-22-665-2022, 2022
Short summary
Short summary
The coastal area is a major floodplain in compound flood events in coastal cities, primarily due to storm tide, with the inundation severity positively correlated with the height of the storm tide. Simply accumulating every single-driven flood hazard (rainstorm inundation and storm tide flooding) to define the compound flood hazard may cause underestimation. The assessment of tropical cyclone compound flood risk can provide vital insight for research on coastal flooding prevention.
Antonio-Juan Collados-Lara, Juan-de-Dios Gómez-Gómez, David Pulido-Velazquez, and Eulogio Pardo-Igúzquiza
Nat. Hazards Earth Syst. Sci., 22, 599–616, https://doi.org/10.5194/nhess-22-599-2022, https://doi.org/10.5194/nhess-22-599-2022, 2022
Short summary
Short summary
This work studies the benefit of using more reliable local climate scenarios to analyse hydrological impacts. It has been applied in the Cenajo basin (south-eastern Spain), where we showed that the best approximations of the historical meteorology also provide the best approximations of the hydrology. The two selected climate models predict worrying changes in precipitation, temperature, streamflows and meteorological and hydrological droughts for the period 2071–2100 under the RCP8.5.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci., 22, 461–480, https://doi.org/10.5194/nhess-22-461-2022, https://doi.org/10.5194/nhess-22-461-2022, 2022
Short summary
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022, https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary
Short summary
A well-constrained rainfall-runoff model forced by radar-derived precipitation is used to define rainfall intensity-duration (ID) thresholds for flash floods. The rainfall ID doubles in 5 years after a severe wildfire in a watershed in southern California, USA. Rainfall ID performs stably well for intense pulses of rainfall over durations of 30-60 minutes that cover at least 15%-25% of the watershed. This finding could help issuing flash flood warnings based on radar-derived precipitation.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-33, https://doi.org/10.5194/nhess-2022-33, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
The manuscript presents a fast simulation model for flood propagation, that enables operational forecasts of spatially distributed inundation depths, flood extent and flow velocities and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step foreward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and earliy warning.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Olga Petrucci
Nat. Hazards Earth Syst. Sci., 22, 71–83, https://doi.org/10.5194/nhess-22-71-2022, https://doi.org/10.5194/nhess-22-71-2022, 2022
Short summary
Short summary
This systematic review highlights flood mortality factors and the strategies to mitigate them, as obtained from 44 scientific articles published between 2010 and 2020. The findings are the classification of flood mortality drivers in two groups and the identification of strategies to cope with them. Future studies should fill the data gaps regarding flood fatalities in developing countries and information on people who have survived floods, which can be useful in educational campaigns.
Yuhan Yang, Jie Yin, Weiguo Zhang, Yan Zhang, Yi Lu, Yufan Liu, Aoyue Xiao, Yunxiao Wang, and Wenming Song
Nat. Hazards Earth Syst. Sci., 21, 3563–3572, https://doi.org/10.5194/nhess-21-3563-2021, https://doi.org/10.5194/nhess-21-3563-2021, 2021
Short summary
Short summary
This is the first time the compound flooding process of heavy rain and levee-breach-induced flooding has been modeled. Real-life cases of historical flooding events have been adequately investigated. Our results provide a comprehensive view of the spatial patterns of the flood evolution, the dynamic process, and mechanism of these cases, which can help decision makers to develop effective emergency response plans and flood adaptation strategies.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-307, https://doi.org/10.5194/nhess-2021-307, 2021
Preprint under review for NHESS
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021, and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 2470 km2, of which 1680 km2 is in France. Around 57 % of the inundated area is agricultural land.we expect that the agricultural productivity in western Europe will be severely impacted.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021, https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Short summary
Taking a single flood disaster in Lishui city as an example, a rapid and refined assessment of economic loss is studied and verified, which can effectively simulate the distribution of loss ratio and loss value. It includes the construction of land use type and value based on data fusion and an expert questionnaire survey, the fitting and calibration of vulnerability curves based on an existing database and disaster loss reporting, and estimation of loss ratio and loss value by spatial analysis.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021, https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary
Short summary
The use of different global datasets to calculate flood exposure can lead to differences in global flood exposure estimates. In this study, we use three global population datasets and a simple measure of a river’s flood susceptibility (based on the terrain alone) to explore how the choice of population data and the size of river represented in global flood models affect global and national flood exposure estimates.
Antonio Francipane, Dario Pumo, Marco Sinagra, Goffredo La Loggia, and Leonardo Valerio Noto
Nat. Hazards Earth Syst. Sci., 21, 2563–2580, https://doi.org/10.5194/nhess-21-2563-2021, https://doi.org/10.5194/nhess-21-2563-2021, 2021
Short summary
Short summary
In the last few years, some cities in the Mediterranean area have witnessed an increase in extreme rainfall events such as urban floods. The study focuses on a particularly intense urban flood that occurred in Palermo on 15 July 2020, which highlighted the need for a shift in the way stormwater in urban settlements is managed. We think that the framework used to study the impacts of the event and some conclusive remarks could be easily transferred to other urban contexts.
Luc Bonnafous and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 21, 2277–2284, https://doi.org/10.5194/nhess-21-2277-2021, https://doi.org/10.5194/nhess-21-2277-2021, 2021
Short summary
Short summary
Extreme climate events can cause human and economic catastrophe at the global scale. For specific sectors, such as humanitarian aid or insurance, being able to understand how (i.e., with which frequency and intensity) these events can occur simultaneously at different locations or several times in a given amount of time and hit critical assets is all-important to design contingency plans. Here we develop an indicator to study co-occurence in space and time of wet and dry extremes.
Colin Keating, Donghoon Lee, Juan Bazo, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 2215–2231, https://doi.org/10.5194/nhess-21-2215-2021, https://doi.org/10.5194/nhess-21-2215-2021, 2021
Short summary
Short summary
Disaster planning has historically underallocated resources for flood preparedness, but evidence supports reduced vulnerability via early actions. We evaluate the ability of multiple season-ahead streamflow prediction models to appropriately trigger early actions for the flood-prone Marañón River and Piura River in Peru. Our findings suggest that locally tailored statistical models may offer improved performance compared to operational physically based global models in low-data environments.
Antonia Longobardi, Ouafik Boulariah, and Paolo Villani
Nat. Hazards Earth Syst. Sci., 21, 2181–2196, https://doi.org/10.5194/nhess-21-2181-2021, https://doi.org/10.5194/nhess-21-2181-2021, 2021
Short summary
Short summary
The current research was aimed at the description of historical drought periods that have characterized a broad area of the Mediterranean Basin and the Campania region, located in southern Italy. Knowledge of the past conditions would increase the awareness of the communities with respect to the frequency and severity of critical conditions which have affected and might further affect the environment in which they live.
Henk-Jan van Alphen, Clemens Strehl, Fabian Vollmer, Eduard Interwies, Anasha Petersen, Stefan Görlitz, Luca Locatelli, Montse Martinez Puentes, Maria Guerrero Hidalga, Elias Giannakis, Teun Spek, Marc Scheibel, Erle Kristvik, Fernanda Rocha, and Emmy Bergsma
Nat. Hazards Earth Syst. Sci., 21, 2145–2161, https://doi.org/10.5194/nhess-21-2145-2021, https://doi.org/10.5194/nhess-21-2145-2021, 2021
Short summary
Short summary
This paper presents an approach to selecting and analysing climate change adaptation measures, using a combination of scientific analysis and stakeholder interaction. This approach was applied in six cases across Europe, concerning drought and extreme precipitation. Although the cases vary widely, the approach yielded decision-relevant outcomes for the development of adaptation strategies, regarding socio-economic impacts of measures and potential barriers to implementation.
Robert P. Dziak, Bryan A. Black, Yong Wei, and Susan G. Merle
Nat. Hazards Earth Syst. Sci., 21, 1971–1982, https://doi.org/10.5194/nhess-21-1971-2021, https://doi.org/10.5194/nhess-21-1971-2021, 2021
Short summary
Short summary
On 26 January 1700 CE, a massive earthquake and tsunami struck the US Pacific Northwest west coast. The tsunami caused severe damage to coastal forests in Washington State. However, evidence of the impact on coastal Oregon trees has been difficult to find. We present some of the first evidence of tree-ring growth changes caused by the 1700 tsunami from an old-growth Douglas-fir stand located in South Beach, Oregon. We also present a tsunami inundation model of the 1700 earthquake.
Tigstu T. Dullo, George K. Darkwah, Sudershan Gangrade, Mario Morales-Hernández, M. Bulbul Sharif, Alfred J. Kalyanapu, Shih-Chieh Kao, Sheikh Ghafoor, and Moetasim Ashfaq
Nat. Hazards Earth Syst. Sci., 21, 1739–1757, https://doi.org/10.5194/nhess-21-1739-2021, https://doi.org/10.5194/nhess-21-1739-2021, 2021
Short summary
Short summary
We studied the effect of potential future climate change on floods, flood protection, and electricity infrastructure in the Conasauga River watershed in the US using ensemble hydrodynamic modeling. We used a GPU-accelerated Two-dimensional Runoff Inundation Toolkit for Operational Needs (TRITON) hydrodynamic model to simulate floods. Overall, this study demonstrates how a fast hydrodynamic model can enhance flood frequency maps and vulnerability assessment under changing climatic conditions.
Sengphrachanh Phakonkham, So Kazama, and Daisuke Komori
Nat. Hazards Earth Syst. Sci., 21, 1551–1567, https://doi.org/10.5194/nhess-21-1551-2021, https://doi.org/10.5194/nhess-21-1551-2021, 2021
Short summary
Short summary
The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. The results from integrated hazard maps can identify dangerous areas from both individual and integrated hazards.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, https://doi.org/10.5194/nhess-21-1337-2021, 2021
Short summary
Short summary
Two drought hazard indices are presented that combine drought deficit and anomaly aspects: one for soil moisture drought (SMDAI) where we simplified the DSI and the other for streamflow drought (QDAI), which is to our knowledge the first ever deficit anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, providing more differentiated spatial and temporal patterns distinguishing the actual degree of respective drought hazard.
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Cited articles
Barker, L., Hannaford, J., Muchan, K., Turner, S., and Parry, S.: The winter
2015/2016 floods in the UK: a hydrological appraisal, Weather, 71, 324–333,
https://doi.org/10.1002/wea.2822, 2016.
Coles, S: An Introduction to Statistical Modelling of Extreme Values, Springer Series in Statistics, Springer London, London, 2001.
Collet, L., Harrigan, S., Prudhomme, C., Formetta, G., and Beevers, L.: Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment, Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018, 2018.
Cunderlik, J. M. and Burn, D. H.: Non-stationary pooled flood frequency
analysis, J. Hydrol., 276, 210–223, https://doi.org/10.1016/S0022-1694(03)00062-3, 2003.
Defra: National Flood Resilience Review, UK Government, London, 2016.
Eastoe, E. F.: Nonstationarity in peaks-over-threshold river flows: A
regional random effects model, Environmetrics, e2560, https://doi.org/10.1002/env.2560,
2019.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hannaford, J. and Marsh, T.: An assessment of trends in UK runoff and low
flows using a network of undisturbed catchments, Int. J. Climatol., 26, 1237–1253,
https://doi.org/10.1002/joc.1303, 2006.
Harrigan, S., Hannaford, J., Muchan, K., and Marsh, T. J.: Designation and
trend analysis of the updated UK Benchmark Network of river flow stations:
The UKBN2 dataset, Hydrol. Res., 49, 552–567, https://doi.org/10.2166/nh.2017.058, 2018.
Hirsch, R. M. and Archfield, S. A.: Not higher but more often, Nat. Clim. Change, 5,
198–199, https://doi.org/10.1038/nclimate2551, 2015.
Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis, Cambridge University
Press, Cambridge, 1997.
Hu, Y., Liang, Z., Singh, V. P., Zhang, X., Wang, J., Li, B., and Wang, H.:
Concept of Equivalent Reliability for Estimating the Design Flood under
Non-stationary Conditions, Water Resour. Manag., 32, 552–567, https://doi.org/10.1007/s11269-017-1851-y, 2018.
IPCC: Climate Change 2013 – The Physical Science Basis, Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Science Basis., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9781107415324, 2014.
Kay, A. L. and Jones, D. A.: Transient changes in flood frequency and
timing in Britain under potential projections of climate change, Int. J. Climatol., 32,
489–502, https://doi.org/10.1002/joc.2288, 2012.
Kjeldsen, T. R. and Prosdocimi, I.: Assessing the element of surprise of
record-breaking flood events, J. Flood Risk Manag., 11, S541–S553., https://doi.org/10.1111/jfr3.12260, 2018.
Leclerc, M. and Ouarda, T. B. M. J: Non-stationary regional flood frequency
analysis at ungauged sites, J. Hydrol., 343, 254–265,
https://doi.org/10.1016/j.jhydrol.2007.06.021, 2007.
Marsh, T. J., Kirby, C., Barker, L., Henderson, E., and Hannaford, J.: The winter floods of 2015/2016 in the UK – a review,
Centre for Ecology & Hydrology, Wallingford, 2016.
NRFA: National River Flow Archive, available at: http://nrfa.ceh.ac.uk/data, last access: 20 November 2018.
O'Brien, N. L. and Burn, D. H.: A non-stationary index-flood technique for
estimating extreme quantiles for annual maximum streamflow, J. Hydrol., 519,
2040–2048, https://doi.org/10.1016/j.jhydrol.2014.09.041, 2014.
Prosdocimi, I., Kjeldsen, T. R., and Svensson, C.: Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK, Nat. Hazards Earth Syst. Sci., 14, 1125–1144, https://doi.org/10.5194/nhess-14-1125-2014, 2014.
Reynard, N. S., Kay, A. L., Anderson, M., Donovan, B., and Duckworth, C.:
The evolution of climate change guidance for fluvial flood risk management
in England, Prog. Phys. Geog., 41, 222–237, https://doi.org/10.1177/0309133317702566, 2017.
Robson, A. J. and Reed, D. W.: Statistical procedures for flood frequency
estimation, Flood Estimation Handbook (Vol. 3), Institute of Hydrology, Wallingford, 1999.
Salas, J. D. and Obeysekera, J.: Revisiting the Concepts of Return Period
and Risk for Non-stationary Hydrologic Extreme Events, J. Hydrol. Eng., 19, 554–568,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.
Spencer, P., Faulkner, D., Perkins, I., Lindsay, D., Dixon, G., Parkes, M.,
Lowe, A., Asadullah, A., Hearn, K., Gaffney, L., Parkes, A., and James, R.: The
floods of December 2015 in northern England: description of the events and
possible implications for flood hydrology in the UK, Hydrol. Res., 49, 568–596,
https://doi.org/10.2166/nh.2017.092, 2018.
Short summary
Classical statistical methods for flood frequency estimation assume flooding characteristics do not change over time. Recent focus on climate change has raised questions of the validity of such assumptions. Near-natural catchments are used to focus on climate (not land-use) change, investigating the sensitivity of trend estimates to the period of record. Some key statistics were very sensitive, but conclusive spatial patterns were not found. Smaller floods were most affected by these trends.
Classical statistical methods for flood frequency estimation assume flooding characteristics do...
Altmetrics
Final-revised paper
Preprint