Review article
17 Sep 2018
Review article | 17 Sep 2018
Review article: Climate change impacts on dam safety
Javier Fluixá-Sanmartín et al.
Related authors
Searching for the optimal drought index and timescale combination to detect drought: a case study from the lower Jinsha River basin, China
Javier Fluixá-Sanmartín, Deng Pan, Luzia Fischer, Boris Orlowsky, Javier García-Hernández, Frédéric Jordan, Christoph Haemmig, Fangwei Zhang, and Jijun Xu
Hydrol. Earth Syst. Sci., 22, 889–910, https://doi.org/10.5194/hess-22-889-2018,https://doi.org/10.5194/hess-22-889-2018, 2018
Short summary
Searching for the optimal drought index and timescale combination to detect drought: a case study from the lower Jinsha River basin, China
Javier Fluixá-Sanmartín, Deng Pan, Luzia Fischer, Boris Orlowsky, Javier García-Hernández, Frédéric Jordan, Christoph Haemmig, Fangwei Zhang, and Jijun Xu
Hydrol. Earth Syst. Sci., 22, 889–910, https://doi.org/10.5194/hess-22-889-2018,https://doi.org/10.5194/hess-22-889-2018, 2018
Short summary
Related subject area
Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020,https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
A multi-hazard risk prioritisation framework for cultural heritage assets
Giacomo Sevieri, Carmine Galasso, Dina D'Ayala, Richard De Jesus, Andres Oreta, Mary Earl Daryl A. Grio, and Rhodella Ibabao
Nat. Hazards Earth Syst. Sci., 20, 1391–1414, https://doi.org/10.5194/nhess-20-1391-2020,https://doi.org/10.5194/nhess-20-1391-2020, 2020
Short summary
Modeling of E. coli distribution for hazard assessment of bathing waters affected by combined sewer overflows
Luca Locatelli, Beniamino Russo, Alejandro Acero Oliete, Juan Carlos Sánchez Catalán, Eduardo Martínez-Gomariz, and Montse Martínez
Nat. Hazards Earth Syst. Sci., 20, 1219–1232, https://doi.org/10.5194/nhess-20-1219-2020,https://doi.org/10.5194/nhess-20-1219-2020, 2020
Short summary
Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards
Chenxiao Tang, Xinlei Liu, Yinghua Cai, Cees Van Westen, Yu Yang, Hai Tang, Chengzhang Yang, and Chuan Tang
Nat. Hazards Earth Syst. Sci., 20, 1163–1186, https://doi.org/10.5194/nhess-20-1163-2020,https://doi.org/10.5194/nhess-20-1163-2020, 2020
Short summary
Review article: Natural hazard risk assessments at the global scale
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020,https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures
Timothy Tiggeloven, Hans de Moel, Hessel C. Winsemius, Dirk Eilander, Gilles Erkens, Eskedar Gebremedhin, Andres Diaz Loaiza, Samantha Kuzma, Tianyi Luo, Charles Iceland, Arno Bouwman, Jolien van Huijstee, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 1025–1044, https://doi.org/10.5194/nhess-20-1025-2020,https://doi.org/10.5194/nhess-20-1025-2020, 2020
Short summary
Flood Vulnerability Assessment of Urban Traditional Buildings in Kuala Lumpur, Malaysia
Dina D'Ayala, Kai Wang, Yuan Yan, Helen Smith, Ashleigh Massam, Valeriya Filipova, and Joy Jacqueline Pereira
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-96,https://doi.org/10.5194/nhess-2020-96, 2020
Revised manuscript accepted for NHESS
Short summary
Linking drought indices to impacts to support drought risk assessment in Liaoning province, China
Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang, Hongquan Sun, Lucy J. Barker, Miaomiao Ma, Zhicheng Su, and Michael Eastman
Nat. Hazards Earth Syst. Sci., 20, 889–906, https://doi.org/10.5194/nhess-20-889-2020,https://doi.org/10.5194/nhess-20-889-2020, 2020
Short summary
Examining the sustainability and development challenge in agricultural-forest frontiers of the Amazon Basin through the eyes of locals
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020,https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Global-scale drought risk assessment for agricultural systems
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020,https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary
Assessing transportation vulnerability to tsunamis: utilising post-event field data from the 2011 Tōhoku tsunami, Japan, and the 2015 Illapel tsunami, Chile
James H. Williams, Thomas M. Wilson, Nick Horspool, Ryan Paulik, Liam Wotherspoon, Emily M. Lane, and Matthew W. Hughes
Nat. Hazards Earth Syst. Sci., 20, 451–470, https://doi.org/10.5194/nhess-20-451-2020,https://doi.org/10.5194/nhess-20-451-2020, 2020
Short summary
A flood-risk-oriented, dynamic protection motivation framework to explain risk reduction behaviours
Philippe Weyrich, Elena Mondino, Marco Borga, Giuliano Di Baldassarre, Anthony Patt, and Anna Scolobig
Nat. Hazards Earth Syst. Sci., 20, 287–298, https://doi.org/10.5194/nhess-20-287-2020,https://doi.org/10.5194/nhess-20-287-2020, 2020
Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area
Laddaporn Ruangpan, Zoran Vojinovic, Silvana Di Sabatino, Laura Sandra Leo, Vittoria Capobianco, Amy M. P. Oen, Michael E. McClain, and Elena Lopez-Gunn
Nat. Hazards Earth Syst. Sci., 20, 243–270, https://doi.org/10.5194/nhess-20-243-2020,https://doi.org/10.5194/nhess-20-243-2020, 2020
Short summary
Multi-coverage optimal location model for emergency medical service (EMS) facilities under various disaster scenarios: a case study of urban fluvial floods in the Minhang district of Shanghai, China
Yuhan Yang, Jie Yin, Mingwu Ye, Dunxian She, and Jia Yu
Nat. Hazards Earth Syst. Sci., 20, 181–195, https://doi.org/10.5194/nhess-20-181-2020,https://doi.org/10.5194/nhess-20-181-2020, 2020
Short summary
Impact database application for natural and technological risk management
Nina Frolova, Valery Larionov, Jean Bonnin, Sergey Suchshev, Alexander Ugarov, and Nataliya Malaeva
Nat. Hazards Earth Syst. Sci., 20, 95–106, https://doi.org/10.5194/nhess-20-95-2020,https://doi.org/10.5194/nhess-20-95-2020, 2020
Short summary
Anomalies of dwellers' collective geotagged behaviors in response to rainstorms: a case study of eight cities in China using smartphone location data
Jiawei Yi, Yunyan Du, Fuyuan Liang, Tao Pei, Ting Ma, and Chenghu Zhou
Nat. Hazards Earth Syst. Sci., 19, 2169–2182, https://doi.org/10.5194/nhess-19-2169-2019,https://doi.org/10.5194/nhess-19-2169-2019, 2019
Short summary
Temporal variability of social vulnerability to storm surges in Shenzhen, China
Huaming Yu, Yuhang Shen, Ryan M. Kelly, Xin Qi, Kejian Wu, Songlin Li, Haiqing Yu, and Xianwen Bao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-293,https://doi.org/10.5194/nhess-2019-293, 2019
Revised manuscript accepted for NHESS
Short summary
Load-resistance analysis: an alternative approach to tsunami damage assessment applied to the 2011 Great East Japan tsunami
Anawat Suppasri, Kwanchai Pakoksung, Ingrid Charvet, Constance Ting Chua, Noriyuki Takahashi, Teraphan Ornthammarath, Panon Latcharote, Natt Leelawat, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 19, 1807–1822, https://doi.org/10.5194/nhess-19-1807-2019,https://doi.org/10.5194/nhess-19-1807-2019, 2019
Short summary
Fine-scale assessment of cross-boundary wildfire events in the western United States
Palaiologos Palaiologou, Alan A. Ager, Cody R. Evers, Max Nielsen-Pincus, Michelle A. Day, and Haiganoush K. Preisler
Nat. Hazards Earth Syst. Sci., 19, 1755–1777, https://doi.org/10.5194/nhess-19-1755-2019,https://doi.org/10.5194/nhess-19-1755-2019, 2019
Short summary
Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas
Johanna Englhardt, Hans de Moel, Charles K. Huyck, Marleen C. de Ruiter, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019,https://doi.org/10.5194/nhess-19-1703-2019, 2019
Short summary
Climate risks, digital media, and big data: following communication trails to investigate urban communities' resilience
Rosa Vicari, Ioulia Tchiguirinskaia, Bruno Tisserand, and Daniel Schertzer
Nat. Hazards Earth Syst. Sci., 19, 1485–1498, https://doi.org/10.5194/nhess-19-1485-2019,https://doi.org/10.5194/nhess-19-1485-2019, 2019
Short summary
Cited articles
Altarejos-García, L., Escuder-Bueno, I., Serrano-Lombillo, A., and
de Membrillera-Ortuño, M.: Methodology for estimating the probability of
failure by sliding in concrete gravity dams in the context of risk analysis,
Struct. Saf., 36–37, 1–13,
https://doi.org/10.1016/j.strusafe.2012.01.001, 2012.
a
ANCOLD: Guidelines on Risk Assessment, Tech. rep., Australian National
Committee on Large Dams, 2003.
a,
b
Anderson, B., Rutherfurd, I., and Western, A.: An analysis of the influence
of riparian vegetation on the propagation of flood waves,
Environ. Model. Softw., 21, 1290–1296,
https://doi.org/10.1016/j.envsoft.2005.04.027,
2006.
a
Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized
decision-support system for water-resources planning and operational
management, J. Hydrol., 177, 269–291,
https://doi.org/10.1016/0022-1694(95)02963-X,
1996.
a
Ardiles, L., Sanz, D., Moreno, P., Jenaro, E., Fleitz, J., and Escuder-Bueno,
I.: Risk Assessment and Management for 26 Dams Operated By the
Duero River Authority (Spain), in: 6th International
Conference
on Dam Engineering, edited by: Pina, C., Portela, E., Gomes, J., Lisbon, Portugal, 15–17 February 2011. a
Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high
flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst.
Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015. a
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A.,
Bülow Gregersen, I., Madsen, H., and Nguyen, V.-T.-V.: Impacts of climate
change on rainfall extremes and urban drainage systems: a review,
Water Sci. Technol., 68, 16–28,
https://doi.org/10.2166/wst.2013.251, 2013.
a
Atkins: Impact of Climate Change on Dams & Reservoirs, Final
Guidance Report FD2628, Department of Environment, Food and Rural
Affairs, 2013. a
Ayyub, B. M.: Elicitation of expert opinions for uncertainty and risks, CRC
Press, Boca Raton, Florida, 2001. a
Bahls, V. and Holman, K.: Climate Change in Hydrologic Hazard
Analyses: Friant Dam Pilot Study - Part I:
Hydrometeorological Model Inputs, Tech. rep., U.S. Department of the
Interior, Bureau of Reclamation, 2014.
a,
b
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards
Earth Syst. Sci., 9, 97-104, https://doi.org/10.5194/nhess-9-97-2009, 2009. a
Bates, B., Kundzewicz, Z., Wu, S., and Palutikof, J. (Eds.): Climate change
and water, Technical Paper of the Intergovernmental Panel on Climate
Change, Geneva, ipcc secretariat edn., 2008. a
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J.,
Vázquez-Cendón, E., Dolz, J., and Coll, A.: Iber: herramienta de
simulación numérica del flujo en ríos, Revista Internacional de
Métodos Numéricos para Cálculo y Diseño en Ingeniería,
30, 1–10,
https://doi.org/10.1016/j.rimni.2012.07.004, 2014.
a
Bornschein, A. and Pohl, R.: Land use influence on flood routing and
retention from the viewpoint of hydromechanics: Land use influence on flood
routing and retention, J. Flood Risk Manag., 11, 6–14,
https://doi.org/10.1111/jfr3.12289, 2018.
a
Bouwer, L. M., Bubeck, P., and Aerts, J. C.: Changes in future flood risk due
to climate and development in a Dutch polder area, Global Environ. Change,
20, 463–471,
https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010.
a
Bowles, D.: Advances in the practice and use of portfolio risk assessment,
in: ANCOLD Conference on Dams, 2000. a
Bowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A.,
Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety
management, Volume 1: Guide, Tech. Rep. SC090001/R1, Environment Agency,
Horison House, Deanery Road, Bristol, BS1 9AH, 2013a.
a,
b
Bowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A.,
Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety
management, Volume 2: Methodology and supporting information, Tech. Rep.
SC090001/R2, Environment Agency, Horison House, Deanery Road, Bristol, BS1
9AH, 2013b. a
Braud, I., Vich, A., Zuluaga, J., Fornero, L., and Pedrani, A.: Vegetation
influence on runoff and sediment yield in the Andes region: observation and
modelling, J. Hydrol., 254, 124–144,
https://doi.org/10.1016/S0022-1694(01)00500-5,
2001.
a
Cardona, O., van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez,
R., Pulwarty, R., Schipper, E., and Sinh, B.: Determinants of risk: exposure
and vulnerability, in: Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation, edited by: Field,
C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M.,
Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A
Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), Cambridge
University Press, Cambridge, UK, New York, NY, USA, 65–108, 2012. a
CH2014-Impacts: Toward quantitative scenarios of climate change impacts in
Switzerland, OCCR, FOEN, MeteoSwiss, C2SM, Agroscope and ProClim, Bern,
Switzerland, 2014. a
Chaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought
hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth
Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015. a
Changnon, S. A., Pielke, R. A., Changnon, D., Sylves, R. T., and Pulwarty,
R.: Human Factors Explain the Increased Losses from Weather and
Climate Extremes, B. Am. Meteorol. Soc., 81, 437–442,
https://doi.org/10.1175/1520-0477(2000)081<0437:HFETIL>2.3.CO;2, 2000.
a
Chernet, H. H., Alfredsen, K., and Midttømme, G. H.: Safety of
Hydropower Dams in a Changing Climate, J. Hydrol. Eng., 19, 569–582,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000836, 2014.
a,
b,
c
Choi, O. and Fischer, A.: The Impacts of Socioeconomic Development and
Climate Change on Severe Weather Catastrophe Losses:
Mid-Atlantic Region (MAR) And the U.S., Clim. Change, 58, 149–170,
https://doi.org/10.1023/A:1023459216609, 2003.
a
Damiano, E. and Mercogliano, P.: Potential Effects of Climate Change on
Slope Stability in Unsaturated Pyroclastic Soils, in: Landslide
Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa,
K., Springer Berlin Heidelberg, Berlin, Heidelberg, 15–25,
https://doi.org/10.1007/978-3-642-31337-0_2, 2013.
a
Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe:
An assessment based on high-resolution climate simulations, J. Geophys.
Res., 113, D19105,
https://doi.org/10.1029/2007JD009719, 2008.
a,
b
De Roo, A., Odijk, M., Schmuck, G., Koster, E., and Lucieer, A.: Assessing
the effects of land use changes on floods in the meuse and oder catchment,
Phys. Chem. Earth Pt. B, 26, 593–599,
https://doi.org/10.1016/S1464-1909(01)00054-5,
2001.
a
Dehn, M., Bürger, G., Buma, J., and Gasparetto, P.: Impact of climate
change on slope stability using expanded downscaling, Eng. Geol., 55,
193–204,
https://doi.org/10.1016/S0013-7952(99)00123-4, 2000.
a
DHI: MIKE FLOOD User Manual, Tech. rep., Danish Hydraulic Institute
– Water and Environment, Hørsholm, Denmark, 2014. a
Dixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A.,
Radhakrishnan, A., Balaji, V., and Gaitán, C. F.: Evaluating the
stationarity assumption in statistically downscaled climate projections: is
past performance an indicator of future results?, Clim. Change, 135,
395–408,
https://doi.org/10.1007/s10584-016-1598-0, 2016.
a
Dobler, C., Bürger, G., and Stötter, J.: Simulating future
precipitation extremes in a complex Alpine catchment, Nat. Hazards Earth
Syst. Sci., 13, 263–277, https://doi.org/10.5194/nhess-13-263-2013, 2013.
a,
b
Duan, J. G., Bai, Y., Dominguez, F., Rivera, E., and Meixner, T.: Framework
for incorporating climate change on flood magnitude and frequency analysis in
the upper Santa Cruz River, J. Hydrol., 549, 194–207,
https://doi.org/10.1016/j.jhydrol.2017.03.042, 2017.
a,
b
Escuder-Bueno, I. and González-Pérez, J.: Metodología para la
evaluación del riesgo hidrológico de presas y priorización de
medidas correctoras, Colegio de Ingeniero de Caminos, Canales y Puertos,
Madrid, Spain, 2014. a
Escuder-Bueno, I., Castillo-Rodriguez, J., Perales-Momparler, S., and
Morales-Torres, A.: SUFRI methodology for pluvial and river flooding risk
assessment in urban areas to inform decision-making, SUFRI project, WP3,
final report, Tech. rep., available at:
http://www.edams.upv.es/docs/2011_July_SUFRI_WP3_Final
Report.pdf (last access: 13 September 2018), 2011. a
Escuder-Bueno, I., Castillo-Rodríguez, J. T., Zechner, S., Jöbstl,
C., Perales-Momparler, S., and Petaccia, G.: A quantitative flood risk
analysis methodology for urban areas with integration of social research
data, Nat. Hazards Earth Syst. Sci., 12, 2843–2863,
https://doi.org/10.5194/nhess-12-2843-2012, 2012. a
European Commission: An EU Strategy on adaptation to climate change,
available at:
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52009DC0147&from=EN (last access: 13 September 2018), 2013. a
Fassnacht, S. R. and Records, R. M.: Large snowmelt versus rainfall events in
the mountains: Big Mountain Snowmelt vs Rainfall Events, J.
Geophys. Res.-Atmos., 120, 2375–2381,
https://doi.org/10.1002/2014JD022753, 2015.
a
FEMA: Federal Guidelines for Dam Safety Risk Management, FEMA
P-1025, Federal Emergency Management Agency, 2015. a
FERC: Arch Dams, in: Engineering Guidelines for the Evaluation of
Hydropower Projects, Federal Energy Regulatory Commission, Division of
Dam Safety and Inspections, Washington, DC, 1999. a
FERC: Engineering Guidelines for the Evaluation of Hydropower
Projects, in: Dam Safety Performance Monitoring Program, Federal
Energy Regulatory Commission, 2005. a
Feyen, L., Barredo, J., and Dankers, R.: Implications of global warming and
urban land use change on flooding in Europe, in: Water and Urban
Development Paradigms: Towards an Integration of Engineering,
Design and Management Approaches, CRC Press, Boca Raton, Florida,
217–225, 2008. a
Fischer, G., Tubiello, F. N., van Velthuizen, H., and Wiberg, D. A.: Climate
change impacts on irrigation water requirements: Effects of mitigation,
1990–2080, Technol. Forecast. Soc., 74, 1083–1107,
https://doi.org/10.1016/j.techfore.2006.05.021, 2007.
a
García-Kabbabe, L., Chaparro-Carrasquel, L., Escuder-Bueno, I., and
Serrano-Lombillo, A.: Metodología para estructurar modos de fallo en
sistemas presa-embalse, Valladolid, Spain, 2010. a
Girón, F.: The evacuation of floods during the operation of reservoir,
in: 16th ICOLD Congress, International Commission
on large dams (ICOLD), San Francisco, USA, 1988. a
Handmer, J., Honda, Y., Kundzewicz, Z., Arnell, N., Benito, G., Hatfield, J.,
Mohamed, I., Peduzzi, P., Wu, S., Sherstyukov, B., Takahashi, K., and Yan,
Z.: Changes in impacts of climate extremes: human systems and ecosystems, in:
Managing the Risks of Extreme Events and Disasters to Advance Climate Change
Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken,
D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor,
M., and Midgley, P., A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press,
Cambridge, UK, New York, NY, USA, 231–290, 2012. a
Hannaford, J. and Marsh, T. J.: High–flow and flood trends in a network of
undisturbed catchments in the UK, Int. J. Climatol., 28, 1325–1338,
https://doi.org/10.1002/joc.1643, 2008.
a
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage
database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925,
https://doi.org/10.5194/nhess-9-913-2009, 2009. a
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change,
Nat. Clim. Change, 3, 816–821,
https://doi.org/10.1038/nclimate1911, 2013.
a,
b
Huggel, C., Caplan-Auerbach, J., and Wessels, R.: Recent Extreme
Avalanches: Triggered by Climate Change?, Eos T. Am. Geophys. Un., 89,
469–470,
https://doi.org/10.1029/2008EO470001, 2008.
a
Huss, M.: Present and future contribution of glacier storage change to runoff
from macroscale drainage basins in Europe, Water Resour. Res., 47, W07511,
https://doi.org/10.1029/2010WR010299, 2011.
a
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain
hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst.
Sci., 14, 815-829, https://doi.org/10.5194/hess-14-815-2010, 2010. a
Hutton, G., Haller, L., and Bartram, J.: Global cost-benefit analysis of
water supply and sanitation interventions, J. Water Health, 5, 481–502,
https://doi.org/10.2166/wh.2007.009, 2007.
a
ICOLD: Bulletin on risk assessment in dam safety management, Tech. rep.,
International Commission on Large Dams, 2003. a
ICOLD: Risk assessment in dam safety management, A reconnaissance of
benefits, methods and current applications, Bulletin 130, International
Commission on Large Dams, 2005. a
IPCC: Glossary of terms, in: Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros,
V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K.,
Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of
Working Groups I and II of the Intergovernmental Panel on Climate Change
(IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA,
555–564, 2012a. a
IPCC: Managing the risks of extreme events and disasters to advance climate
change adaptation: special report of the Intergovernmental Panel on Climate
Change, Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 1st publ.
edn., 2012b.
a,
b
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY,
USA, 2013. a
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A:
Global and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
Univ. Press, Cambridge, UK, New York, NY, USA, 2014.
a,
b,
c
James, L. and Lee, R.: Economics of water resources planning, McGraw-Hill
series in water resources and environmental engineering, McGraw-Hill Book
Co., 615 pp., 1970. a
Kay, A. L., Reynard, N. S., and Jones, R. G.: RCM rainfall for UK flood
frequency estimation. I. Method and validation, J. Hydrol., 318,
151–162,
https://doi.org/10.1016/j.jhydrol.2005.06.012, 2006.
a
Kazem, M., McPhee, D., Torkaman Rashid, A., and Kazem, A.: Climate change and
economic approaches into water allocation: optimization via direct benefits
of water – the case study of Rudbar Lorestan hydropower dam (Iran),
Sustain. Water Resour. Manage., 2, 461–472,
https://doi.org/10.1007/s40899-016-0067-2,
2016.
a
Khaliq, M., Ouarda, T., Ondo, J.-C., Gachon, P., and Bobée, B.: Frequency
analysis of a sequence of dependent and/or non-stationary
hydro-meteorological observations: A review, J. Hydrol., 329, 534–552,
https://doi.org/10.1016/j.jhydrol.2006.03.004, 2006.
a
Khazaei, M. R., Zahabiyoun, B., and Saghafian, B.: Assessment of climate
change impact on floods using weather generator and continuous
rainfall-runoff model, Int. J. Climatol., 32, 1997–2006,
https://doi.org/10.1002/joc.2416, 2012.
a
Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell,
N. W.: Uncertainty in the estimation of potential evapotranspiration under
climate change, Geophys. Res. Lett., 36, L20403,
https://doi.org/10.1029/2009GL040267,
2009.
a
Kjeldsen, T., Macdonald, N., Lang, M., Mediero, L., Albuquerque, T.,
Bogdanowicz, E., Brázdil, R., Castellarin, A., David, V., Fleig, A.,
Gül, G., Kriauciuniene, J., Kohnová, S., Merz, B., Nicholson, O.,
Roald, L., Salinas, J., Sarauskiene, D., Šraj, M., Strupczewski, W.,
Szolgay, J., Toumazis, A., Vanneuville, W., Veijalainen, N., and Wilson, D.:
Documentary evidence of past floods in Europe and their utility in flood
frequency estimation, J. Hydrol., 517, 963–973,
https://doi.org/10.1016/j.jhydrol.2014.06.038, 2014.
a
Klipsch, J. and Hurst, M.: HEC-ResSim Reservoir System Simulation
User's Manual, Tech. rep., USACE, Institute for Water Resources,
Hydrologic Engineering Center, Davis, CA, 2007. a
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges
in Combining Projections from Multiple Climate Models, J. Climate,
23, 2739–2758,
https://doi.org/10.1175/2009JCLI3361.1, 2010.
a
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang,
J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi,
T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T.:
Sustainable sediment management in reservoirs and regulated rivers:
Experiences from five continents, Earth's Future, 2, 256–280,
https://doi.org/10.1002/2013EF000184, 2014.
a
Kundzewicz, Z., Mata, L., Arnell, N., Doll, P., Kabat, P., Jimenez, B.,
Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: Freshwater resources and
their management, in: Climate Change 2007, Impacts, Adaptation and
Vulnerability. Contribution of Working Group II to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Parry,
M., Canziani, O., Palutikof, J., Van Der Linde, P., and Hanson, C.,
Cambridge, UK, Cambridge University Press edition, 173–210, 2007. a
Lanzante, J. R., Dixon, K. W., Nath, M. J., Whitlock, C. E., and Adams-Smith,
D.: Some Pitfalls in Statistical Downscaling of Future Climate, B.
Am. Meteorol. Soc., 99, 791–803,
https://doi.org/10.1175/BAMS-D-17-0046.1, 2018.
a
Lawrence, D., Paquet, E., Gailhard, J., and Fleig, A. K.: Stochastic
semi-continuous simulation for extreme flood estimation in catchments with
combined rainfall–snowmelt flood regimes, Nat. Hazards Earth Syst. Sci., 14,
1283–1298, https://doi.org/10.5194/nhess-14-1283-2014, 2014. a
Lewin, J., Ballard, G., and Bowles, D.: Spillway gate reliability in the
context of overall dam failure risk, in: USSD Annual Lecture,
Charleston, South Carolina, 2003.
a,
b
Liu, Y.-J., Wang, T.-W., Cai, C.-F., Li, Z.-X., and Cheng, D.-B.: Effects of
vegetation on runoff generation, sediment yield and soil shear strength on
road-side slopes under a simulation rainfall test in the Three Gorges
Reservoir Area, China, Sci. Total Environ., 485–486, 93–102,
https://doi.org/10.1016/j.scitotenv.2014.03.053, 2014.
a
López, J. and Francés, F.: Non-stationary flood frequency analysis in
continental Sp
anish rivers, using climate and reservoir indices as external
covariates, Hydrol. Earth Syst. Sci., 17, 3189–3203,
https://doi.org/10.5194/hess-17-3189-2013, 2013. a
Maaskant, B., Jonkman, S. N., and Bouwer, L. M.: Future risk of flooding: an
analysis of changes in potential loss of life in South Holland (The
Netherlands), Environ. Sci. Policy, 12, 157–169,
https://doi.org/10.1016/j.envsci.2008.11.004, 2009.
a
Malm, R.: Guidelines for FE Analyses of Concrete Dams, Tech. rep.,
ENERGIFORSK, 2016. a
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation
uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth
Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004. a
Merz, B., Hall, J., Disse, M., and Schumann, A.: Fluvial flood risk
management in a changing world, Nat. Hazards Earth Syst. Sci., 10, 509–527,
https://doi.org/10.5194/nhess-10-509-2010, 2010. a
Miller, S., Muir-Wood, R., and Boisonnade, A.: An exploration of trends in
normalised weather-related catastrophe losses, in: Climate Extremes and
Society, edited by: Diaz, H. and Murnane, R., Cambridge University Press,
Cambridge, UK, 225–247, 2008. a
Mostbauer, K., Kaitna, R., Prenner, D., and Hrachowitz, M.: The temporally
varying roles of rainfall, snowmelt and soil moisture for debris flow
initiation in a snow-dominated system, Hydrol. Earth Syst. Sci., 22,
3493–3513, https://doi.org/10.5194/hess-22-3493-2018, 2018. a
National Research Council: Informing decisions in a changing climate,
National Academies Press, Washington, DC, https://doi.org/10.17226/12626,
2009. a
Novembre, N., Holman, K., and Bahls, V.: Climate Change in Hydrologic Hazard
Analyses: Friant Dam Pilot Study – Part II: Using the SEFM with
Climate-Adjusted Hydrometeorological Inputs, Technical Memorandum
8250-2015-010, U.S. Department of the Interior, Bureau of Reclamation, 2015. a
OECC: Plan Nacional de Adaptación al Cambio Climático,
Tech. rep., Oficina Española de Cambio Climático, Ministerio de
Agricultura y Pesca, Alimentación y Medio Ambiente, available at:
https://www.mapama.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/pna_v3_tcm7-12445_tcm30-70393.pdf (last access: 13 September 2018), 2008. a
OECD: GDP long-term forecast (indicator), available at:
https://data.oecd.org/gdp/gdp-long-term-forecast.htm (last access: 13 September 2018), 2018. a
OFEV (Ed.): Adaptation aux changements climatiques en Suisse, Plan
d'action 2014–2019, Deuxième volet de la stratégie du Conseil
fédéral du 9 avril 2014, Bern, Switzerland, 2014. a
Our World in Data: Future Population Growth, available at:
https://ourworldindata.org/future-population-growth (last access: 13 September 2018), 2018. a
Paxson, G., McCann, M., and Landis, M.: A Risk Based Framework for
Evaluating Gated Spillway Operations, in: 6th International
Symposium on Hydraulic Structures, USU Libraries, Portland, Oregon,
USA, 630–640,
https://doi.org/10.15142/T3730628160853, 2016.
a
Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global exposure
and vulnerability towards natural hazards: the Disaster Risk Index, Nat.
Hazards Earth Syst. Sci., 9, 1149–1159,
https://doi.org/10.5194/nhess-9-1149-2009, 2009. a
Pereira-Cardenal, S. J., Madsen, H., Arnbjerg-Nielsen, K., Riegels, N.,
Jensen, R., Mo, B., Wangensteen, I., and Bauer-Gottwein, P.: Assessing
climate change impacts on the Iberian power system using a coupled
water-power model, Clim. Change, 126, 351–364,
https://doi.org/10.1007/s10584-014-1221-1, 2014.
a
Peñuelas, J., Gordon, C., Llorens, L., Nielsen, T., Tietema, A., Beier,
C., Bruna, P., Emmett, B., Estiarte, M., and Gorissen, A.: Nonintrusive Field
Experiments Show Different Plant Responses to Warming and Drought Among
Sites, Seasons, and Species in a North–South European Gradient, Ecosystems,
7, 598–612,
https://doi.org/10.1007/s10021-004-0179-7, 2004.
a
Pielke Jr., R. A.: Future economic damage from tropical cyclones:
sensitivities to societal and climate changes, Philos. T. Roy. Soc. A, 365,
2717–2729,
https://doi.org/10.1098/rsta.2007.2086, 2007.
a
Pielke Jr., R. A., Agrawala, S., Bouwer, L. M., Burton, I., Changnon, S.,
Glantz, M. H., Hooke, W. H., Klein, R. J. T., Kunkel, K., Mileti, D.,
Sarewitz, D., Thompkins, E. L., Stehr, N., and von Storch, H.: Clarifying the
Attribution of Recent Disaster Losses: A Response to Epstein
and McCarthy, B. Am. Meteorol. Soc., 86, 1481–1483,
https://doi.org/10.1175/BAMS-86-10-1481, 2005.
a
Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change
impact analyses on the river flow regimes in the UK. Part 2: future
climate, Clim. Change, 93, 197–222,
https://doi.org/10.1007/s10584-008-9461-6, 2009.
a
Quiroga, S., Garrote, L., Iglesias, A., Fernández-Haddad, Z.,
Schlickenrieder, J., de Lama, B., Mosso, C., and Sánchez-Arcilla, A.: The
economic value of drought information for water management under climate
change: a case study in the Ebro basin, Nat. Hazards Earth Syst. Sci., 11,
643–657, https://doi.org/10.5194/nhess-11-643-2011, 2011. a
Raff, D. A., Pruitt, T., and Brekke, L. D.: A framework for assessing flood
frequency based on climate projection information, Hydrol. Earth Syst. Sci.,
13, 2119–2136, https://doi.org/10.5194/hess-13-2119-2009, 2009.
a,
b
Requena, A. I., Mediero, L., and Garrote, L.: A bivariate return period based
on copulas for hydrologic dam design: accounting for reservoir routing in
risk estimation, Hydrol. Earth Syst. Sci., 17, 3023–3038,
https://doi.org/10.5194/hess-17-3023-2013, 2013. a
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F.,
Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy,
land use, and greenhouse gas emissions implications: An overview, Global
Environ. Change, 42, 153–168,
https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
a
Rodríguez Díaz, J. A., Weatherhead, E. K., Knox, J. W., and
Camacho, E.: Climate change impacts on irrigation water requirements in the
Guadalquivir river basin in Spain, Reg. Environ. Change, 7, 149–159,
https://doi.org/10.1007/s10113-007-0035-3, 2007.
a
Sarr, M., Seidou, O., Tramblay, Y., and El Adlouni, S.: Comparison of
downscaling methods for mean and extreme precipitation in Senegal, J.
Hydrol., 4, 369–385,
https://doi.org/10.1016/j.ejrh.2015.06.005, 2015.
a,
b
Schmidt, S., Kemfert, C., and Faust, E.: Simulation of Economic Losses
from Tropical Cyclones in the Years 2015 and 2050: The Effects of
Anthropogenic Climate Change and Growing Wealth, Discussion paper
914, German Institute for Economic Research, Berlin, Germany, 2009. a
Schneider, D., Huggel, C., Haeberli, W., and Kaitna, R.: Unraveling driving
factors for large rock-ice avalanche mobility: UNRAVELING DRIVING
FACTORS FOR LARGE ROCK-ICE AVALANCHE MOBILITY, Earth Surf.
Proc. Land., 36, 1948–1966,
https://doi.org/10.1002/esp.2218, 2011.
a
Schotten, K., Goetgeluk, R., Hilferink, M., Rietveld, P., and Scholten, H.:
Residential Construction, Land Use and the Environment. Simulations
for the Netherlands Using a GIS-Based Land Use Model, Environ.
Model. Assess., 6, 133–143,
https://doi.org/10.1023/A:1011531120436, 2001.
a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
a
Serrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G.,
and Altarejos-García, L.: Methodology for the Calculation of
Annualized Incremental Risks in Systems of Dams: Risk
Calculation for Systems of Dams, Risk Anal., 31, 1000–1015,
https://doi.org/10.1111/j.1539-6924.2010.01547.x, 2011.
a
Shamir, E., Megdal, S. B., Carrillo, C., Castro, C. L., Chang, H.-I., Chief,
K., Corkhill, F. E., Eden, S., Georgakakos, K. P., Nelson, K. M., and
Prietto, J.: Climate change and water resources management in the Upper
Santa Cruz River, Arizona, J. Hydrol., 521, 18–33,
https://doi.org/10.1016/j.jhydrol.2014.11.062, 2015.
a
Solaun, K. and Cerdá, E.: The Impact of Climate Change on the
Generation of Hydroelectric Power–A Case Study in Southern
Spain, Energies, 10, 1343,
https://doi.org/10.3390/en10091343, 2017.
a
SPANCOLD: Risk Analysis as Applied to Dam Safety, Technical
Guide on Operation of Dams and Reservoirs, Professional Association
of Civil Engineers, Spanish National Committe on Large Dams, Madrid,
available at:
http://www.spancold.es/Archivos/Monograph_Risk_Analysis.pdf (last access: 13 September 2018), 2012.
a,
b,
c,
d,
e,
f,
g
Šraj, M., Viglione, A., Parajka, J., and Blöschl, G.: The influence
of non-stationarity in extreme hydrological events on flood frequency
estimation, J. Hydrol. Hydromech., 64, 426–437,
https://doi.org/10.1515/johh-2016-0032, 2016.
a
Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., and
Railsback, J.: Fault tree handbook with aerospace applications, Tech. rep.,
NASA Office of Safety and Mission Assurance, 2002. a
Sunyer, M., Madsen, H., and Ang, P.: A comparison of different regional
climate models and statistical downscaling methods for extreme rainfall
estimation under climate change, Atmos. Res., 103, 119–128,
https://doi.org/10.1016/j.atmosres.2011.06.011, 2012.
a
Swiss Re: Natural catastrophes and man-made disasters in 2015: Asia
suffers substantial losses, Tech. Rep. 1/2016, Swiss Reinsurance Company,
Zurich, Switzerland, 2016. a
Taye, M. T., Ntegeka, V., Ogiramoi, N. P., and Willems, P.: Assessment of
climate change impact on hydrological extremes in two source regions of the
Nile River Basin, Hydrol. Earth Syst. Sci., 15, 209–222,
https://doi.org/10.5194/hess-15-209-2011, 2011. a
UK Climate Impacts Programme: Socio-economic scenarios for climate change
impact assessment: a guide to their use in the UK Climate Impacts
Programme, Tech. rep., UKCIP, Oxford, 2000. a
UNISDR: Global Assessment Report on Disaster Risk Reduction,
United Nations International Strategy for Disaster Reduction Secretariat,
Geneva, Switzerland, green ink, UK edition, 2009. a
United Nations: World Population Prospects: The 2017 Revision,
Tech. rep., Department of Economic and Social Affairs, Population Division,
available at:
https://esa.un.org/unpd/wpp/Download/Standard/Population/ (last access: 13 September 2018), 2017. a
U.S. Government Accountability Office: Climate Change, Federal
Efforts Under Way to Assess Water Infrastructure
Vulnerabilities and Address Adaptation Challenges, Tech. Rep.
GAO-14-23, 2013. a
USACE: HEC-GeoRAS, GIS Tools for Support of HEC-RAS using ArcGIS, User's
Manual, United States Army Corps of Engineers, Computer Program
Documentation, Davis, CA, 2011a. a
USACE: Safety of dams – Policy and procedures, Tech. Rep. ER 1110-2-
1156, United States Army Corps of Engineers, Washington, DC, 2011b. a
USACE: Climate Change Adaptation Plan, Tech. rep., United States Army
Corps of Engineers, Committee on Climate Preparedness and Resilience, 2014. a
USACE: Guidance for Incorporating Climate Change Impacts to
Inland Hydrology in Civil Works Studies, Designs, and Projects,
United States Army Corps of Engineers, EBC 2016-25, 2016. a
USBR: Hydrology, hydraulics, and sediment studies for the Matilija Dam
Ecosystem Restoration Project,United States Bureau of Reclamation,
Ventura, CA – DRAFT Report, Tech. rep., Denver, CO, 2006. a
USBR: Climate Change Adaptation Strategy, Tech. rep., U.S. Department
of the Interior, United States Bureau of Reclamation, 2014.
a,
b
USBR: Climate Change Adaptation Strategy: 2016 Progress Report,
Tech. rep., U.S. Department of the Interior, United States Bureau of
Reclamation, 2016. a
Villarini, G., Serinaldi, F., Smith, J. A., and Krajewski, W. F.: On the
stationarity of annual flood peaks in the continental United States
during the 20th century, Water Resour. Res., 45, W08417,
https://doi.org/10.1029/2008WR007645, 2009.
a
Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G.,
Thorne, P., Vose, R., Wehner, M., Willis, J., Anderson, D., Doney, S., Feely,
R., Hennon, P., Kharin, V., Knutson, T., Landerer, F., Lenton, T., Kennedy,
J., and Somerville, R.: Our Changing Climate, chap. 2, in: Climate
Change Impacts in the United States: The Third National
Climate Assessment, edited by: Melillo, J. M., Richmond, T., and Yohe, G.
W., U.S. Global Change Research Program, 19–67,
https://doi.org/10.7930/J0KW5CXT,
2014.
a
Wilks, D. S.: Use of stochastic weathergenerators for precipitation
downscaling: Use of stochastic precipitation generators, WIRES Clim.
Change, 1, 898–907,
https://doi.org/10.1002/wcc.85, 2010.
a
Willems, P. (Ed.): Impacts of climate change on rainfall extremes and urban
drainage systems, IWA Publishing, London, ISBN: 9781780401256 , 2012. a
Wobus, C., Gutmann, E., Jones, R., Rissing, M., Mizukami, N., Lorie, M.,
Mahoney, H., Wood, A. W., Mills, D., and Martinich, J.: Climate change
impacts on flood risk and asset damages within mapped 100-year floodplains of
the contiguous United States, Nat. Hazards Earth Syst. Sci., 17, 2199–2211,
https://doi.org/10.5194/nhess-17-2199-2017, 2017. a
World Meteorological Organization: Guide to hydrological practices, vol.
II: Management of Water Resources and Application of Hydrological Practices,
World Meteorological Organization, Geneva, 2008. a
Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K.: Global potential
soil erosion with reference to land use and climate changes, Hydrol.
Process., 17, 2913–2928,
https://doi.org/10.1002/hyp.1441, 2003.
a
Zhang, Q., Gu, X., Singh, V. P., Xiao, M., and Chen, X.: Evaluation of flood
frequency under non-stationarity resulting from climate indices and reservoir
indices in the East River basin, China, J. Hydrol., 527, 565–575,
https://doi.org/10.1016/j.jhydrol.2015.05.029, 2015.
a