Articles | Volume 13, issue 11
https://doi.org/10.5194/nhess-13-2815-2013
https://doi.org/10.5194/nhess-13-2815-2013
Research article
 | 
13 Nov 2013
Research article |  | 13 Nov 2013

Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues

F. Catani, D. Lagomarsino, S. Segoni, and V. Tofani

Related authors

Sentinel-1 SAR-based Globally Distributed Co-Seismic Landslide Detection by Deep Neural Networks
Lorenzo Nava, Alessandro Mondini, Kushanav Bhuyan, Chengyong Fang, Oriol Monserrat, Alessandro Novellino, and Filippo Catani
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-230,https://doi.org/10.5194/gmd-2024-230, 2025
Preprint under review for GMD
Short summary
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024,https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Brief Communication: AI-driven rapid landslides mapping following the 2024 Hualien City Earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-146,https://doi.org/10.5194/nhess-2024-146, 2024
Preprint under review for NHESS
Short summary
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023,https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022,https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary

Cited articles

Akgün, A.: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision and likelihood ratio methods: case study at Izmir, Turkey, Landslides, 9, 93–106, 2012.
Aleotti, P. and Chowdhury, R.: Landslide Hazard Assessment: Summary, Review and New Perspectives, Bull. Eng. Geol. Environ., 58, 21–44, 1999.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002.
Atkinson, P. M. and Massari, R.: Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy, Comput. Geosci., 24, 373–385, 1998.
Bachmair, S. and Weiler, M.: Hillslope characteristics as controls of subsurface flow variability, Hydrol. Earth Syst. Sci., 16, 3699–3715, https://doi.org/10.5194/hess-16-3699-2012, 2012.
Download
Share
Altmetrics
Final-revised paper
Preprint