Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-515-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-515-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Computing the time-dependent activity rate using non-declustered and declustered catalogues – a first step towards time-dependent seismic hazard calculations for operational earthquake forecasting
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Sergio Molina
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Applied Physics, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Juan José Galiana-Merino
University Institute of Physics Applied to Sciences and Technologies, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Igor Gómez
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Applied Physics, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Alireza Kharazian
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Juan Luis Soler-Llorens
Department of Earth and Environmental Sciences, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
José Antonio Huesca-Tortosa
Department of Architectural Constructions, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Arianna Guardiola-Villora
Department of Continuum Mechanics and Theory of Structures, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Gonzalo Ortuño-Sáez
Municipality of Orihuela, 03300 Orihuela, Spain
Related authors
David Montiel-López, Antonella Peresan, Elisa Varini, and Sergio Molina
Nat. Hazards Earth Syst. Sci., 25, 3853–3878, https://doi.org/10.5194/nhess-25-3853-2025, https://doi.org/10.5194/nhess-25-3853-2025, 2025
Short summary
Short summary
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault data limit its use in seismic hazard assessment. This study applies the nearest-neighbour (NN) algorithm and graph theory to analyse clustering patterns. Two regions (western and eastern) with higher and lower (respectively) clustering complexities are identified. The results suggest alternative seismic zonation models, which could improve seismic hazard assessment.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
David Montiel-López, Antonella Peresan, Elisa Varini, and Sergio Molina
Nat. Hazards Earth Syst. Sci., 25, 3853–3878, https://doi.org/10.5194/nhess-25-3853-2025, https://doi.org/10.5194/nhess-25-3853-2025, 2025
Short summary
Short summary
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault data limit its use in seismic hazard assessment. This study applies the nearest-neighbour (NN) algorithm and graph theory to analyse clustering patterns. Two regions (western and eastern) with higher and lower (respectively) clustering complexities are identified. The results suggest alternative seismic zonation models, which could improve seismic hazard assessment.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
Cited articles
Akkar, S. and Bommer, J. J.: Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the mediterranean region, and the Middle East, Seismol. Res. Lett., 81, 195–206, https://doi.org/10.1785/gssrl.81.2.195, 2010. a
Akkar, S., Sandıkkaya, M., and Bommer, J. J.: Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East, Bull. Earthq. Eng., 12, 359–387, https://doi.org/10.1007/s10518-013-9461-4, 2014. a
Anderson, J. G. and Zaliapin, I.: Effects on Probabilistic Seismic Hazard Estimates That Result from Nonuniqueness in Declustering an Earthquake Catalog, Bull. Seismol. Soc. Am., 113, 2615–2630, https://doi.org/10.1785/0120220239, 2023. a
Basili, R., Danciu, L., Beauval, C., Sesetyan, K., Vilanova, S., Adamia, S., Arroucau, P., Atanackov, J., Baize, S., Canora, C., Caputo, R., Carafa, M., Cushing, M., Custódio, S., Demircioglu Tumsa, M., Duarte, J., Ganas, A., García-Mayordomo, J., Gómez de la Peña, L., Gràcia, E., Jamšek Rupnik, P., Jomard, H., Kastelic, V., Maesano, F. E., Martín-Banda, R., Martínez-Loriente, S., Neres, M., Perea, H., Sket-Motnikar, B., Tiberti, M. M., Tsereteli, N., Tsironi, V., Vallone, R., Vanneste, K., and Zupavcič, P.: European Fault-Source Model 2020 (EFSM20): online data on fault geometry and activity parameters, INGV – Istituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/efsm20, 2022. a
Budnitz, R. J., Apostolakis, G., and Boore, D. M.: Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, US NRC – Nuclear Regulatory Commission, USA, https://doi.org/10.2172/479072, 1997. a
Cabañas, L., Carreño, E., Izquierdo, A., Martínez, J. M., Capote, R., Martínez-Díaz, J., Benito, B., Gaspar-Escribano, J., Rivas-Medina, A., García-Mayordomo, J., Pérez, R., Rodríguez-Pascua, M. A., and Murphy, P.: Informe del sismo de Lorca del 11 de mayo de 2011, 1–138, https://digital.csic.es/handle/10261/62381 (last access: 3 February 2025), 2011. a, b
Console, R., Jackson, D. D., and Kagan, Y. Y.: Using the ETAS Model for Catalog Declustering and Seismic Background Assessment, Pure Appl. Geophys., 167, 819–830, https://doi.org/10.1007/s00024-010-0065-5, 2010. a
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, https://doi.org/10.1785/BSSA0580051583, 1968. a
Cornell, C. A. and Winterstein, S. R.: Temporal and Magnitude Dependence in Earthquake Recurrence Models, in: Stochastic Approaches in Earthquake Engineering, edited by: Lin, Y. K. and Minai, R., Springer, Berlin, Heidelberg, 18–39, ISBN 978-3-642-83252-9, 1987. a
Cosentino, P., Ficarra, V., and Luzio, D.: Truncated exponential frequency-magnitude relationship in earthquake statistics, Bull. Seismol. Soc. Am., 67, 1615–1623, https://doi.org/10.1785/BSSA0670061615, 1977. a
España. Dirección General del Instituto Geográfico Nacional: Norma de construcción sismorresistente (NCSE-02): parte general y edificación, Colección Normativa técnica, Ministerio de Fomento, Centro de Publicaciones, ISBN 9788495596352, https://www.mitma.gob.es/recursos_mfom/0820200.pdf (last access: 3 February 2025), 2002. a
España. Ministerio de Obras Públicas, Transportes y Medio Ambiente and Colegio Oficial de Arquitectos de Andalucía Oriental: Norma de construcción sismorresistente (NCSE-94): parte general y edificación, Colegio Oficial de Arquitectos de Andalucía Oriental, https://books.google.es/books?id=6F1zjgEACAAJ (last access: 4 February 2025), 1994. a
Frankel, A.: Mapping seismic hazard in the central and eastern United States, Seismol. Res. Lett., 66, 8–21, https://doi.org/10.1785/gssrl.66.4.8, 1995. a, b, c, d
García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J. A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M. A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E. S., Cabral, J., and QAFI compilers: The Quaternary Active Faults Database of Iberia (QAFI v.2.0), J. Iberian Geol., 38, 285–302, https://doi.org/10.5209/rev{_}JIGE.2012.v38.n1.39219, 2012. a, b
Gardner, J. K. and Knopoff, L.: Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seismol. Soc. Am., 64, 1363–1367, https://doi.org/10.1785/bssa0640051363, 1974. a
Gaspar-Escribano, J., Rivas-Medina, A., Parra, H., Cabañas, L., Benito, B., Ruiz, S., and Martínez-Solares, J. M.: Uncertainty assessment for the seismic hazard map of Spain, Eng. Geol., 199, 62–73, https://doi.org/10.1016/j.enggeo.2015.10.001, 2015. a, b
González, A.: The Spanish National Earthquake Catalogue: Evolution, precision and completeness, J. Seismol., 21, 435–471, https://doi.org/10.1007/s10950-016-9610-8, 2017. a, b
Gulia, L. and Wiemer, S.: Real-time discrimination of earthquake foreshocks and aftershocks, Nature, 574, 193–199, https://doi.org/10.1038/s41586-019-1606-4, 2019. a
Gutenberg, B. and Ritcher, C. F.: Magnitude and energy of earthquakes, Ann. Geophys., 9, 1–15, 1956. a
Helmstetter, A., Kagan, Y. Y., and Jackson, D. D.: Comparison of Short-Term and Time-Independent Earthquake Forecast Models for Southern California, Bull. Seismol. Soc. America, 96, 90–106, https://doi.org/10.1785/0120050067, 2006. a, b, c
Hiemer, S., Woessner, J., Basili, R., Danciu, L., Giardini, D., and Wiemer, S.: A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe, Geophys. J. Int., 198, 1159–1172, https://doi.org/10.1093/gji/ggu186, 2014. a, b
IGME: ZESIS: Base de Datos de Zonas Sismogénicas de la Península Ibérica y territorios de influencia para el cálculo de la peligrosidad sísmica en España, IGME – Insituto Geológico y Minero de España [data set], https://info.igme.es/zesis (last access: 5 February 2025), 2015. a
IGN – Instituto Geográfico Nacional: Catálogo de terremotos, IGN – Instituto Geográfico Nacional [data set], https://doi.org/10.7419/162.03.2022, 2022. a, b
ISIDe Working Group: Italian Seismological Instrumental and Parametric Database (ISIDe) (Version 1), INGV – Istituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/ISIDE, 2007. a
Izenman, A. J.: Recent Developments in Nonparametric Density Estimation, J. Am. Stat. Assoc., 86, 205–224, https://doi.org/10.2307/2289732, 1991. a
Kanamori, H. and Brodsky, E. E.: The physics of earthquakes, Rep. Prog. Phys., 67, 1429–1496, https://doi.org/10.1088/0034-4885/67/8/R03, 2004. a
Kharazian, A., Molina, S., Galiana-Merino, J. J., and Agea-Medina, N.: Risk-targeted hazard maps for Spain, Bull. Earthq. Eng., 19, 5369–5389, https://doi.org/10.1007/s10518-021-01189-8, 2021. a
Lolli, B., Randazzo, D., Vannucci, G., and Gasperini, P.: HORUS – HOmogenized instRUmental Seismic catalog, INGV – Istituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/HORUS, 2020. a, b, c
Marsan, D. and Lengliné, O.: Extending Earthquakes' Reach Through Cascading, Science, 319, 1076–1079, https://doi.org/10.1126/science.1148783, 2008. a
Montiel-López, D.: Repository for the manuscript `Computing time-dependent activity rate using non-declustered and declustered catalogues. A first step towards time-dependent seismic hazard calculations for operational earthquake forecasting', Zenodo [data set], https://doi.org/10.5281/zenodo.13735833, 2025. a
Montiel-López, D., Molina, S., Galiana-Merino, J. J., and Gómez, I.: On the calculation of smoothing kernels for seismic parameter spatial mapping: methodology and examples, Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, 2023. a, b
Murru, M., Taroni, M., Akinci, A., and Falcone, G.: What is the impact of the August 24, 2016 Amatrice earthquake on the seismic hazard assessment in central Italy?, Ann. Geophys., 59, 1–9, https://doi.org/10.4401/ag-7209, 2016. a
Musson, R. M. W.: Probabilistic seismic hazard maps for the North Balkan Region, Annali Di Geofisica, 42, 1109–1124, https://doi.org/10.4401/ag-3772, 1999. a
Ogata, Y.: Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, J. Am. Stat. Assoc., 83, 9–27, https://doi.org/10.1080/01621459.1988.10478560, 1988. a
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., and Vigano, D.: OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014. a, b
Pandolfi, C., Taroni, M., de Nardis, R., Lavecchia, G., and Akinci, A.: Combining Seismotectonic and Catalog‐Based 3D Models for Advanced Smoothed Seismicity Computations, Seismol. Res. Lett., 95, 10–20, https://doi.org/10.1785/0220230088, 2023. a
Peláez, J. A. and López Casado, C.: Seismic Hazard Estimate at the Iberian Peninsula, Pure Appl. Geophys., 159, 2699–2713, https://doi.org/10.1007/s00024-002-8754-3, 2002. a, b
Reasenberg, P. A. and Jones, L. M.: Earthquake Hazard After a Mainshock in California, Science, 243, 1173–1176, https://doi.org/10.1126/science.243.4895.1173, 1989. a, b
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian earthquake catalogue CPTI15, Bull. Earthq. Eng., 18, 2953–2984, https://doi.org/10.1007/s10518-020-00818-y, 2020. a
Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., and Antonucci, A. (Eds.): Italian Parametric Earthquake Catalogue (CPTI15), version 4.0, INGV, https://doi.org/10.13127/CPTI/CPTI15.4, 2022. a
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res.-Solid, 89, 5681–5698, https://doi.org/10.1029/JB089iB07p05681, 1984. a
Scudero, S., Marcocci, C., and D'Alessandro, A.: Insights on the Italian Seismic Network from location uncertainties, J. Seismol., 25, 1061–1076, https://doi.org/10.1007/s10950-021-10011-6, 2021. a
Taroni, M. and Akinci, A.: A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw≥5.5 Seismicity, Appl. Sci., 11, 10899–10910, https://doi.org/10.3390/app112210899, 2021. a, b
Taroni, M., Zhuang, J., and Marzocchi, W.: High‐Definition Mapping of the Gutenberg–Richter b‐Value and Its Relevance: A Case Study in Italy, Seismol. Res. Lett., 92, 3778–3784, https://doi.org/10.1785/0220210017, 2021. a, b, c, d
Taroni, M., Zhuang, J., and Marzocchi, W.: Reply to “Comment on `High‐Definition Mapping of the Gutenberg–Richter b‐Value and Its Relevance: A Case Study in Italy' by M. Taroni, J. Zhuang, and W. Marzocchi” by Laura Gulia, Paolo Gasperini, and Stefan Wiemer, Seismol. Res. Lett., 93, 1095–1097, https://doi.org/10.1785/0220210244, 2022. a
Weichert, D.: Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am., 70, 1337–1346, https://doi.org/10.1785/bssa0700041337, 1980. a
Wiemer, S.: A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72, 373–382, https://doi.org/10.1785/gssrl.72.3.373, 2001. a
Woo, G.: Kernel estimation methods for seismic hazard area source modeling, Bull. Seismol. Soc. Am., 86, 353–362, https://doi.org/10.1785/BSSA0860020353, 1996. a
Zaliapin, I. and Ben-Zion, Y.: Earthquake Declustering Using the Nearest-Neighbor Approach in Space-Time-Magnitude Domain, J. Geophys. Res.-Solid, 125, 373–382, https://doi.org/10.1029/2018JB017120, 2020. a
Zhuang, J., Ogata, Y., and Vere-Jones, D.: Stochastic Declustering of Space-Time Earthquake Occurrences, J. Am. Stat. Assoc., 97, 369–380, 2002. a
Short summary
We presents a comparison between different methods of computing the seismic activity rate in the time-dependent annual probability of exceedance (TD-APE) for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the TD-APE are seen in Italy before the L'Aquila earthquake, which can be related to foreshocks. In the case of Spain subtle changes are seen before some earthquakes. This approach could enable operational earthquake forecasting.
We presents a comparison between different methods of computing the seismic activity rate in the...
Altmetrics
Final-revised paper
Preprint