Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-493-2025
https://doi.org/10.5194/nhess-25-493-2025
Research article
 | 
06 Feb 2025
Research article |  | 06 Feb 2025

A new method for calculating highway blocking due to high-impact weather conditions

Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu

Related authors

Effect of the boundary layer low-level jet on fast fog spatial propagation
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023,https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Radiation fog properties in two consecutive events under polluted and clean conditions in the Yangtze River Delta, China: a simulation study
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023,https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023,https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
The vertical variability of ammonia in urban Beijing, China
Yangyang Zhang, Aohan Tang, Dandan Wang, Qingqing Wang, Katie Benedict, Lin Zhang, Duanyang Liu, Yi Li, Jeffrey L. Collett Jr., Yele Sun, and Xuejun Liu
Atmos. Chem. Phys., 18, 16385–16398, https://doi.org/10.5194/acp-18-16385-2018,https://doi.org/10.5194/acp-18-16385-2018, 2018
Short summary
An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China
Jun Hu, Yichen Li, Tianliang Zhao, Jane Liu, Xiao-Ming Hu, Duanyang Liu, Yongcheng Jiang, Jianming Xu, and Luyu Chang
Atmos. Chem. Phys., 18, 16239–16251, https://doi.org/10.5194/acp-18-16239-2018,https://doi.org/10.5194/acp-18-16239-2018, 2018
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025,https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025,https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Ready, Set & Go! An anticipatory action system against droughts
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024,https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024,https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Flood risk assessment through large-scale modeling under uncertainty
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024,https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary

Cited articles

Ali, E. M., Ahmed, M., and Yang, G.: Normal and risky driving patterns identification in clear and rainy weather on freeway segments using vehicle kinematics trajectories and time series cluster analysis, IATSS Res., 45, 137–152, https://doi.org/10.1016/j.iatssr.2020.07.002, 2021. 
Andrey, J. and Yagar, S.: A temporal analysis of rain-related crash risk, Accident Anal. Prevent., 25, 465–472, https://doi.org/10.1016/0001-4575(93)90076-9, 1993. 
Andrey, J., Mills, B., Leahy, M., and Jeff, S.: Weather as a Chronic Hazard for Road Transportation in Canadian Cities, Nat. Hazards, 28, 319–343, https://doi.org/10.1023/A:1022934225431, 2003. 
Bergel-Hayat, R., Debbarh, M., Antoniou, C., and Yannis, G.: Explaining the road accident risk: Weather effects, Accident Anal. Prevent., 60, 456–465, https://doi.org/10.1016/j.aap.2013.03.006, 2013. 
Bhattacharyya, A., Soojin, Y., and Makarand H.: Economic impact assessment of severe weather-induced power outages in the US, J. Infrastruct. Syst., 27, 04021038, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000648, 2021. 
Download
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Share
Altmetrics
Final-revised paper
Preprint