Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1459-2025
https://doi.org/10.5194/nhess-25-1459-2025
Research article
 | 
16 Apr 2025
Research article |  | 16 Apr 2025

From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)

Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos

Related authors

Spatio-temporal analysis of the role of climate cycles on landslide activity: the case of Majorca (Spain)
Juan Antonio Luque-Espinar, Rosa María Mateos, Roberto Sarro, Eduardo Peña, Cristina Reyes-Carmona, and Mónica Martínez-Corbella
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-50,https://doi.org/10.5194/nhess-2022-50, 2022
Manuscript not accepted for further review
Short summary
Rainfall and rockfalls in the Canary Islands: assessing a seasonal link
Massimo Melillo, Stefano Luigi Gariano, Silvia Peruccacci, Roberto Sarro, Rosa Marìa Mateos, and Maria Teresa Brunetti
Nat. Hazards Earth Syst. Sci., 20, 2307–2317, https://doi.org/10.5194/nhess-20-2307-2020,https://doi.org/10.5194/nhess-20-2307-2020, 2020
Short summary

Cited articles

Alqadhi, S., Mallick, J., Talukdar, S., Bindajam, A. A., Van Hong, N., and Saha, T. K.: Selecting optimal conditioning parameters for landslide susceptibility: an experimental research on Aqabat Al-Sulbat, Saudi Arabia, Environ. Sci. Pollut. Res., 29, 3743–3762, https://doi.org/10.1007/s11356-021-15886-z, 2022. 
Alvioli, M., Santangelo, M., Fiorucci, F., Cardinali, M., Marchesini, I., Reichenbach, P., Rossi, M., Guzzetti, F., and Peruccacci, S.: Rockfall susceptibility and network-ranked susceptibility along the Italian railway, Eng. Geol., 293, 106301, https://doi.org/10.1016/j.enggeo.2021.106301, 2021. 
Baeza, C., Lantada, N., and Amorim, S.: Statistical and spatial analysis of landslide susceptibility maps with different classification systems, Environ. Earth Sci., 75, 1318, https://doi.org/10.1007/s12665-016-6124-1, 2016. 
BDMoves: http://info.igme.es/BD2DMoves/ (last access: 14 May 2024), 2024. 
Borella, J., Quigley, M., Krauss, Z., Lincoln, K., Attanayake, J., Stamp, L., Lanman, H., Levine, S., Hampton, S., and Gravley, D.: Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?, Nat. Hazards Earth Syst. Sci., 19, 2249–2280, https://doi.org/10.5194/nhess-19-2249-2019, 2019. 
Download
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Share
Altmetrics
Final-revised paper
Preprint