Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1459-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1459-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Department of Geohazards and Climate Change, Geological and Mining Institute of Spain (IGME-CSIC), Ríos Rosas 23, 28003 Madrid, Spain
Mauro Rossi
Research Institute for Geo-Hydrological Protection (IRPI-CNR), Via Madonna Alta 126, 06128 Perugia, Italy
Paola Reichenbach
Research Institute for Geo-Hydrological Protection (IRPI-CNR), Via Madonna Alta 126, 06128 Perugia, Italy
Rosa María Mateos
Department of Geohazards and Climate Change, Geological and Mining Institute of Spain (IGME-CSIC), Urb. Alcázar del Genil, Edificio Zulema, bajos, 18010 Granada, Spain
Related authors
Juan Antonio Luque-Espinar, Rosa María Mateos, Roberto Sarro, Eduardo Peña, Cristina Reyes-Carmona, and Mónica Martínez-Corbella
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-50, https://doi.org/10.5194/nhess-2022-50, 2022
Manuscript not accepted for further review
Short summary
Short summary
A spatio-temporal analysis of climate cycles on the island of Majorca (Spain) and their correlation with the landslide inventory is presented. Using spectral analysis techniques, the main climatic cycles that control the rainy periods on the island have been identified. Using geostatistical methods, the distribution of rainfall was mapped, as was the spatial representation of the statistical significance of the different natural cycles to define the areas of greatest danger from heavy rainfall.
Massimo Melillo, Stefano Luigi Gariano, Silvia Peruccacci, Roberto Sarro, Rosa Marìa Mateos, and Maria Teresa Brunetti
Nat. Hazards Earth Syst. Sci., 20, 2307–2317, https://doi.org/10.5194/nhess-20-2307-2020, https://doi.org/10.5194/nhess-20-2307-2020, 2020
Short summary
Short summary
In the Canary Islands, a link between rainfall and rockfall occurrence is found for most of the year, except for the warm season. Empirical rainfall thresholds for rockfalls are first proposed for Gran Canaria and Tenerife, and the dependence of the thresholds on the mean annual rainfall is discussed. The use of thresholds in early-warning systems might contribute to the mitigation of the rockfall hazard in the archipelago and reduce the associated risk.
Kelly Patricia Sandoval-Rincón, Julio Garrote-Revilla, Daniel Vázquez-Tarrío, Silvia Cervel, Jose Hernández-Manchado, Juan López-Vinielles, Rosa María Mateos, Juan Antonio Ballesteros-Cánovas, Gerardo Benito, and Andrés Díez-Herrero
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-549, https://doi.org/10.5194/essd-2024-549, 2025
Preprint under review for ESSD
Short summary
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-research communities such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible via ArcGIS Online. This database aims to support the revision of Potential Significant Flood Risk Areas, providing insights for regions not included in current national flood maps.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Oriol Monserrat, Anna Barra, Marta Béjar-Pizarro, Jonathan S. Rivera, Jorge Pedro Galve, Carolina Guardiola, Maria Cuevas-González, Rosa Maria Mateos, Pablo Ezquerro, Jose Miguel Azañon, Saeedeh Shahbazi, Jose Navarro, Michele Crosetto, and Guido Luzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 351–356, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-351-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-351-2024, 2024
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Juan Antonio Luque-Espinar, Rosa María Mateos, Roberto Sarro, Eduardo Peña, Cristina Reyes-Carmona, and Mónica Martínez-Corbella
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-50, https://doi.org/10.5194/nhess-2022-50, 2022
Manuscript not accepted for further review
Short summary
Short summary
A spatio-temporal analysis of climate cycles on the island of Majorca (Spain) and their correlation with the landslide inventory is presented. Using spectral analysis techniques, the main climatic cycles that control the rainy periods on the island have been identified. Using geostatistical methods, the distribution of rainfall was mapped, as was the spatial representation of the statistical significance of the different natural cycles to define the areas of greatest danger from heavy rainfall.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Massimo Melillo, Stefano Luigi Gariano, Silvia Peruccacci, Roberto Sarro, Rosa Marìa Mateos, and Maria Teresa Brunetti
Nat. Hazards Earth Syst. Sci., 20, 2307–2317, https://doi.org/10.5194/nhess-20-2307-2020, https://doi.org/10.5194/nhess-20-2307-2020, 2020
Short summary
Short summary
In the Canary Islands, a link between rainfall and rockfall occurrence is found for most of the year, except for the warm season. Empirical rainfall thresholds for rockfalls are first proposed for Gran Canaria and Tenerife, and the dependence of the thresholds on the mean annual rainfall is discussed. The use of thresholds in early-warning systems might contribute to the mitigation of the rockfall hazard in the archipelago and reduce the associated risk.
Cited articles
Alqadhi, S., Mallick, J., Talukdar, S., Bindajam, A. A., Van Hong, N., and Saha, T. K.: Selecting optimal conditioning parameters for landslide susceptibility: an experimental research on Aqabat Al-Sulbat, Saudi Arabia, Environ. Sci. Pollut. Res., 29, 3743–3762, https://doi.org/10.1007/s11356-021-15886-z, 2022.
Alvioli, M., Santangelo, M., Fiorucci, F., Cardinali, M., Marchesini, I., Reichenbach, P., Rossi, M., Guzzetti, F., and Peruccacci, S.: Rockfall susceptibility and network-ranked susceptibility along the Italian railway, Eng. Geol., 293, 106301, https://doi.org/10.1016/j.enggeo.2021.106301, 2021.
Baeza, C., Lantada, N., and Amorim, S.: Statistical and spatial analysis of landslide susceptibility maps with different classification systems, Environ. Earth Sci., 75, 1318, https://doi.org/10.1007/s12665-016-6124-1, 2016.
BDMoves: http://info.igme.es/BD2DMoves/ (last access: 14 May 2024), 2024.
Borella, J., Quigley, M., Krauss, Z., Lincoln, K., Attanayake, J., Stamp, L., Lanman, H., Levine, S., Hampton, S., and Gravley, D.: Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?, Nat. Hazards Earth Syst. Sci., 19, 2249–2280, https://doi.org/10.5194/nhess-19-2249-2019, 2019.
Cantarino, I., Carrion, M. A., Goerlich, F., and Martinez Ibañez, V.: A ROC analysis-based classification method for landslide susceptibility maps, Landslides, 16, 265–282, https://doi.org/10.1007/s10346-018-1063-4, 2019.
Carlà, T., Nolesini, T., Solari, L., Rivolta, C., Dei Cas, L., and Casagli, N.: Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry, Landslides, 16, 1425–1435, https://doi.org/10.1007/s10346-019-01190-y, 2019.
Centro de Descargas del CNIG (IGN): https://centrodedescargas.cnig.es/CentroDescargas/index.jsp (last access: 9 May 2024), 2024.
Crosta, G. B., Agliardi, F., Frattini, P., and Lari, S.: Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection, in: Engineering Geology for Society and Territory – Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer International Publishing, Cham, 43–58, https://doi.org/10.1007/978-3-319-09057-3_4, 2015.
Dhiman, R. K. and Thakur, M.: Rockfall Hazard Assessment Using RAMMS for the SE Facing Escarpment of Manikaran, Himachal Pradesh, India, in: Recent Technologies for Disaster Management and Risk Reduction: Sustainable Community Resilience & Responses, edited by: Rai, P. K., Singh, P., and Mishra, V. N., Springer International Publishing, Cham, 57–74, https://doi.org/10.1007/978-3-030-76116-5_4, 2021.
Dinçer, İ., Orhan, A., Frattini, P., and Crosta, G. B.: Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey), Nat. Hazards, 82, 1075–1098, https://doi.org/10.1007/s11069-016-2234-z, 2016.
Ding, Y., Wu, Y., Zhu, Q., Zhang, L., Sun, Q., and Wang, W.: Virtual geographic environment-based integrated rockfall risk simulation method for canyon bridges, T. GIS, 27, 797–820, https://doi.org/10.1111/tgis.13046, 2023.
Dorren, L., Schaller, C., Erbach, A., and Moos, C.: Automated Delimitation of Rockfall Hazard Indication Zones Using High-Resolution Trajectory Modelling at Regional Scale, Geosciences, 13, 182, https://doi.org/10.3390/geosciences13060182, 2023.
Fanos, A. M. and Pradhan, B.: A Novel Hybrid Machine Learning-Based Model for Rockfall Source Identification in Presence of Other Landslide Types Using LiDAR and GIS, Earth Syst. Environ., 3, 491–506, https://doi.org/10.1007/s41748-019-00114-z, 2019.
Farvacque, M., Lopez-Saez, J., Corona, C., Toe, D., Bourrier, F., and Eckert, N.: How is rockfall risk impacted by land-use and land-cover changes? Insights from the French Alps, Global Planet. Change, 174, 138–152, https://doi.org/10.1016/j.gloplacha.2019.01.009, 2019.
Fernandez-Hernández, M., Paredes, C., Castedo, R., Llorente, M., and de la Vega-Panizo, R.: Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain, Nat. Hazards, 64, 1247–1271, https://doi.org/10.1007/s11069-012-0295-1, 2012.
Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., and Calamita, F.: Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations, Remote Sensing, 12, 2053, https://doi.org/10.3390/rs12122053, 2020.
Frattini, P., Crosta, G., Carrara, A., and Agliardi, F.: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches, Geomorphology, 94, 419–437, https://doi.org/10.1016/j.geomorph.2006.10.037, 2008.
Frattini, P., Crosta, G. B., and Agliardi, F.: Rockfall characterization and modeling, in: Landslides, edited by: Clague, J. J. and Stead, D., Cambridge University Press, https://doi.org/10.1017/cbo9780511740367.023, 2013.
Fu, H., Chen, W., and Fu, J.: Rockfall mechanisms and block theoretical stability analysis, in: Rock Mechanics and Engineering, Elsevier, 89–125, https://doi.org/10.1016/B978-0-12-822424-3.00003-7, 2021.
Gallo, I. G., Martínez-Corbella, M., Sarro, R., Iovine, G., López-Vinielles, J., Hérnandez, M., Robustelli, G., Mateos, R. M., and García-Davalillo, J. C.: An Integration of UAV-Based Photogrammetry and 3D Modelling for Rockfall Hazard Assessment: The Cárcavos Case in 2018 (Spain), Remote Sensing, 13, 3450, https://doi.org/10.3390/rs13173450, 2021.
Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C., and Guzzetti, F.: Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy, Geomorphology, 228, 653–665, https://doi.org/10.1016/j.geomorph.2014.10.019, 2015.
Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., De Berardinis, P., Dominici, D., Godone, D., Hobbs, P., Lechner, V., Niedzielski, T., Piras, M., Rotilio, M., Salvini, R., Segor, V., Sotier, B., and Troilo, F.: The use of unmanned aerial vehicles (UAVs) for engineering geology applications, B. Eng. Geol. Environ., 79, 3437–3481, https://doi.org/10.1007/s10064-020-01766-2, 2020.
Guzzetti, F., Crosta, G., Detti, R., and Agliardi, F.: STONE: a computer program for the three-dimensional simulation of rock-falls, Comput. Geosci., 28, 1079–1093, https://doi.org/10.1016/S0098-3004(02)00025-0, 2002.
Guzzetti, F., Reichenbach, P., and Wieczorek, G. F.: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA, Nat. Hazards Earth Syst. Sci., 3, 491–503, https://doi.org/10.5194/nhess-3-491-2003, 2003.
Instituto Canario de Estadística (ISTAC): http://www.gobiernodecanarias.org/istac/ (last access: 8 December 2021), 2021.
Jaboyedoff, M. and Labiouse, V.: Technical Note: Preliminary estimation of rockfall runout zones, Nat. Hazards Earth Syst. Sci., 11, 819–828, https://doi.org/10.5194/nhess-11-819-2011, 2011.
Kakavas, M. P., Nikolakopoulos, K. G., Kyriou, A., and Koukouvelas, I.: The Influence of the DSM Spatial Resolution in Rockfall Simulation and Validation with In Situ Data, Geosciences, 13, 57, https://doi.org/10.3390/geosciences13020057, 2023.
Lanfranconi, C., Sala, G., Frattini, P., Crosta, G. B., and Valagussa, A.: Assessing the rockfall protection efficiency of forests at the regional scale, Landslides, 17, 2703–2721, https://doi.org/10.1007/s10346-020-01458-8, 2020.
Larcher, V., Simoni, S., Pasquazzo, R., Strada, C., Zampedrio, G., and Berger, F.: PARAmount: WP6 Guidelines, Rockfall and Forecast systems, 2012.
Lee, J.-J., Song, M.-S., Yun, H.-S., and Yum, S.-G.: Dynamic landslide susceptibility analysis that combines rainfall period, accumulated rainfall, and geospatial information, Scientific Reports, 12, 18429, https://doi.org/10.1038/s41598-022-21795-z, 2022.
Liu, H., Wang, X., Liao, X., Sun, J., and Zhang, S.: Rockfall Investigation and Hazard Assessment from Nang County to Jiacha County in Tibet, Applied Sciences, 10, 247, https://doi.org/10.3390/app10010247, 2020.
Loye, A., Pedrazzini, A., and Jaboyedoff, M.: Regional indicative rockfall map using LIDAR based slope frequency histogram and conefall modelling, in: Interdisciplinary Workshop on Rockfall Protection: Morschach, Switzerland, Proceedings, 64–66, 2008.
Loye, A., Jaboyedoff, M., and Pedrazzini, A.: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis, Nat. Hazards Earth Syst. Sci., 9, 1643–1653, https://doi.org/10.5194/nhess-9-1643-2009, 2009.
Mateos, R. M., García-Moreno, I., Reichenbach, P., Herrera, G., Sarro, R., Rius, J., Aguiló, R., and Fiorucci, F.: Calibration and validation of rockfall modelling at regional scale: application along a roadway in Mallorca (Spain) and organization of its management, Landslides, 13, 751–763, https://doi.org/10.1007/s10346-015-0602-5, 2016.
Mateos, R. M., López-Vinielles, J., Poyiadji, E., Tsagkas, D., Sheehy, M., Hadjicharalambous, K., Liscák, P., Podolski, L., Laskowicz, I., Iadanza, C., Gauert, C., Todorović, S., Auflič, M. J., Maftei, R., Hermanns, R. L., Kociu, A., Sandić, C., Mauter, R., Sarro, R., Béjar, M., and Herrera, G.: Integration of landslide hazard into urban planning across Europe, Landscape Urban Plan., 196, 103740, https://doi.org/10.1016/j.landurbplan.2019.103740, 2020.
Michoud, C., Derron, M.-H., Horton, P., Jaboyedoff, M., Baillifard, F.-J., Loye, A., Nicolet, P., Pedrazzini, A., and Queyrel, A.: Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps, Nat. Hazards Earth Syst. Sci., 12, 615–629, https://doi.org/10.5194/nhess-12-615-2012, 2012.
Muzzillo, R., Losasso, L., and Sdao, F.: Rockfall Source Areas Assessment in an Area of the Pollino National Park (Southern Italy), in: Computational Science and Its Applications – ICCSA 2018, vol. 10962, edited by: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C. M., Rocha, A. M. A. C., Taniar, D., Apduhan, B. O., Tarantino, E., and Ryu, Y., Springer International Publishing, Cham, 366–379, https://doi.org/10.1007/978-3-319-95168-3_25, 2018.
Nanehkaran, Y. A., Licai, Z., Chen, J., Azarafza, M., and Yimin, M.: Application of artificial neural networks and geographic information system to provide hazard susceptibility maps for rockfall failures, Environ. Earth Sci., 81, 475, https://doi.org/10.1007/s12665-022-10603-6, 2022.
Noël, F., Cloutier, C., Jaboyedoff, M., and Locat, J.: Impact-Detection Algorithm That Uses Point Clouds as Topographic Inputs for 3D Rockfall Simulations, Geosciences, 11, 188, https://doi.org/10.3390/geosciences11050188, 2021.
Noël, F., Nordang, S. F., Jaboyedoff, M., Digout, M., Guerin, A., Locat, J., and Matasci, B.: Comparing Flow-R, Rockyfor3D and RAMMS to Rockfalls from the Mel de la Niva Mountain: A Benchmarking Exercise, Geosciences, 13, 200, https://doi.org/10.3390/geosciences13070200, 2023.
Omran, A., Fahmida, K., Schröder, D., Arnous, M. O., El-Rayes, A. E., and Hochschild, V.: GIS-based rockfall hazard zones modeling along the coastal Gulf of Aqaba Region, Egypt, Earth Sci. Inform., 14, 691–709, https://doi.org/10.1007/s12145-021-00580-y, 2021.
Othman, A., Shaaban, F., Abotalib, A. Z., El-Saoud, W. A., Gabr, S. S., Habeebullah, T., and Hegazy, D.: Hazard Assessment of Rockfalls in Mountainous Urban Areas, Western Saudi Arabia, Arab. J. Sci. Eng., 46, 5717–5731, https://doi.org/10.1007/s13369-020-05098-x, 2021.
Paredes, C., Sarro, R., and Ramos, M.: Estimación preliminar de los alcances por caída de bloques en la sierra de La Cabrera, Madrid, España, Rev. Mex. Cienc. Geol., 32, 475–491, 2015.
Pérez-Rey, I., Riquelme, A., González-deSantos, L. M., Estévez-Ventosa, X., Tomás, R., and Alejano, L.: A multi-approach rockfall hazard assessment on a weathered granite natural rock slope, Landslides, 16, 2005–2015, https://doi.org/10.1007/s10346-019-01208-5, 2019.
Pfeiffer, T. J.: Application of Rockfall Simulation to Risk Analysis, 70th Highway Geology Symposium, Portland Oregon, United States, 21–24 October 2019, https://trid.trb.org/View/1692609 (last access: 15 April 2025), 2019.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Robiati, C., Eyre, M., Vanneschi, C., Francioni, M., Venn, A., and Coggan, J.: Application of Remote Sensing Data for Evaluation of Rockfall Potential within a Quarry Slope, ISPRS Int. J. Geo-Inf., 8, 367, https://doi.org/10.3390/ijgi8090367, 2019.
Rossi, M. and Bornaetxea, T.: LAND-SUITE V1.0: a suite of tools for statistically-based landslide susceptibility zonation, Version 1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5650810, 2021.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129–142, https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Rossi, M., Sarro, R., Reichenbach, P., and Mateos, R. M.: Probabilistic identification of rockfall source areas at regional scale in El Hierro (Canary Islands, Spain), Geomorphology, 381, 107661, https://doi.org/10.1016/j.geomorph.2021.107661, 2020.
Rossi, M., Bornaetxea, T., and Reichenbach, P.: LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation, Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, 2022.
Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Cavalli, M., Crema, S., Marchi, L., Alvioli, M., and Guzzetti, F.: Exposure to landslides in rural areas in Central Italy, J. Maps, 17, 124–132, https://doi.org/10.1080/17445647.2020.1746699, 2020.
Santos, P. P., Reyes-Carmona, C., Pereira, S., Sarro, R., Martínez-Corbella, M., Coll-Ramis, M. À., Zêzere, J. L., and Mateos, R. M.: Seasonal rockfall risk analysis in a touristic island: Application to the Tramuntana Range (Mallorca, Spain), Int. J. Disast. Risk Re., 101, 104264, https://doi.org/10.1016/j.ijdrr.2024.104264, 2024.
Sarro, R., Mateos, R. M., García-Moreno, I., Herrera, G., Reichenbach, P., Laín, L., and Paredes, C.: The Son Poc rockfall (Mallorca, Spain) on the 6th of March 2013: 3D simulation, Landslides, 11, 493–503, https://doi.org/10.1007/s10346-014-0487-8, 2014.
Sarro, R., Riquelme, A., García-Davalillo, J. C., Mateos, R. M., Tomás, R., Pastor, J. L., Cano, M., and Herrera, G.: Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: Application at a cultural heritage site, Remote Sens., 10, 1923, https://doi.org/10.3390/rs10121923, 2018.
Sarro, R., Mateos, R. M., Reichenbach, P., Aguilera, H., Riquelme, A., Hernández-Gutiérrez, L. E., Martín, A., Barra, A., Solari, L., Monserrat, O., Alvioli, M., Fernández-Merodo, J. A., López-Vinielles, J., and Herrera, G.: Geotechnics for rockfall assessment in the volcanic island of Gran Canaria (Canary Islands, Spain), J. Maps, 16, 605–613, https://doi.org/10.1080/17445647.2020.1806125, 2020.
Sarro, R., Pérez-Rey, I., Tomás, R., Alejano, L. R., Hernández-Gutiérrez, L. E., and Mateos, R. M.: Effects of Wildfire on Rockfall Occurrence: A Review through Actual Cases in Spain, Appl. Sci., 11, 2545, https://doi.org/10.3390/app11062545, 2021.
Scavia, C., Barbero, M., Castelli, M., Marchelli, M., Peila, D., Torsello, G., and Vallero, G.: Evaluating Rockfall Risk: Some Critical Aspects, Geosciences, 10, 98, https://doi.org/10.3390/geosciences10030098, 2020.
Straub, D. and Schubert, M.: Modeling and managing uncertainties in rock-fall hazards, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2, 1–15, https://doi.org/10.1080/17499510701835696, 2008.
Tehrani, F. S., Calvello, M., Liu, Z., Zhang, L., and Lacasse, S.: Machine learning and landslide studies: recent advances and applications, Nat. Hazards, 114, 1197–1245, https://doi.org/10.1007/s11069-022-05423-7, 2022.
Wang, L.-J., Guo, M., Sawada, K., Lin, J., and Zhang, J.: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network, Geosci. J., 20, 117–136, https://doi.org/10.1007/s12303-015-0026-1, 2016.
Wang, X., Liu, H., and Sun, J.: A New Approach for Identification of Potential Rockfall Source Areas Controlled by Rock Mass Strength at a Regional Scale, Remote Sensing, 13, 938, https://doi.org/10.3390/rs13050938, 2021.
Wickham, H.: Data Analysis, in: ggplot2, Springer International Publishing, Cham, 189–201, https://doi.org/10.1007/978-3-319-24277-4_9, 2016.
Yan, J., Chen, J., Tan, C., Zhang, Y., Liu, Y., Zhao, X., and Wang, Q.: Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses, Eng. Geol., 313, 106993, https://doi.org/10.1016/j.enggeo.2023.106993, 2023.
Yang, X., Zhang, G., Yu, Y., Yu, Q., Lei, M., and Ding, B.: Factors Influencing the Coefficient of Restitution in Rockfall Impacts, Nat. Hazards Rev., 22, 04021024, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000454, 2021.
Žabota, B., Repe, B., and Kobal, M.: Influence of digital elevation model resolution on rockfall modelling, Geomorphology, 328, 183–195, https://doi.org/10.1016/j.geomorph.2018.12.029, 2019.
Zhan, J., Yu, Z., Lv, Y., Peng, J., Song, S., and Yao, Z.: Rockfall Hazard Assessment in the Taihang Grand Canyon Scenic Area Integrating Regional-Scale Identification of Potential Rockfall Sources, Remote Sensing, 14, 3021, https://doi.org/10.3390/rs14133021, 2022.
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
This study proposes a novel systematic workflow that integrates source area identification,...
Altmetrics
Final-revised paper
Preprint