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Abstract. Rockfall modelling is a common topic in the land-
slide literature, but a comprehensive workflow for rockfall
susceptibility zonation remains a challenge. Several aspects
of the modelling, such as rockfall runout simulation, are con-
solidated, but others still show inconsistencies and ambigu-
ities, such as the source area identification or the criteria to
obtain probabilistic susceptibility zonation. This study pro-
poses a workflow for rockfall susceptibility zonation at the
regional scale that integrates (i) source area identification cri-
teria, (ii) deterministic runout modelling, (iii) approaches for
the runout classification, and (iv) robust procedures for vali-
dation and comparison.

The workflow is tested on El Hierro Island (Canary Is-
lands, Spain) and considers the effect of different methods
to identify the rockfall source areas that are used as input
data for rockfall runout modelling. The runout outputs are
classified to derive rockfall susceptibility zonation consider-
ing different types of classification (i.e. supervised versus un-
supervised methods). The source area identification reflects
situations with limited data availability and scenarios with
a large amount of topographic, geological, and geomorpho-
logical information. The first approach is based on slope an-
gle thresholding, the second uses a statistical method based
on empirical cumulative distribution functions (ECDFs) of
slope angle values, and the third involves the combination of
multiple multivariate statistical classification models where
the source area is the dependent variable and thematic infor-
mation is the independent variables. The source area maps
obtained from the three methods are utilized as inputs for

a rockfall runout model (STONE) to derive rockfall trajec-
tory count maps. Two classification approaches are applied
to generate probabilistic susceptibility maps from the trajec-
tory counts: unsupervised and supervised statistical methods
using distribution functions. The unsupervised classification
employs only the rockfall trajectory counts as input, whereas
the supervised classification requires additional data on the
areas already affected by rockfalls. To complement the work-
flow, statistical methods and metrics are proposed to verify,
validate, and compare the susceptibility zonation.

1 Introduction

Rockfalls are dangerous natural hazards with a relevant so-
cioeconomic impact worldwide (Borella et al., 2019; Ma-
teos et al., 2020). Changes in environmental conditions re-
lated to the growth of the population, land use intensification,
and industrial development have the potential to increase the
impact of rockfalls in many different regions (Farvacque et
al., 2019; Othman et al., 2021; Santangelo et al., 2020). In
addition, climate change is expected to modify precipitation
patterns, which will have the effect of increasing the fre-
quency and extension of rockfalls (Gariano et al., 2015; Sarro
et al., 2021). As a consequence, there is an increasing in-
terest in improving the reliability and accuracy of tools and
products able to support rockfall management and mitigate
its impact (Noël et al., 2021; Omran et al., 2021; Santos et
al., 2024).
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A rockfall susceptibility estimate shows where rockfalls
are likely to occur. A susceptibility zonation is a map that
classifies the territory based on the likelihood of rockfall oc-
currence. Several techniques have been developed for rock-
fall susceptibility zonation, which can be broadly classified
into qualitative and quantitative approaches. Qualitative ap-
proaches may include geomorphological analysis and heuris-
tic techniques, whereas quantitative approaches are differ-
ent statistical or deterministic-based analyses (Reichenbach
et al., 2018).

Rockfall runout modelling allows us to obtain information
on the spatial distribution of boulder trajectories and their
velocity, energy, and heights (Carlà et al., 2019; Gallo et
al., 2021) and plays a relevant role in rockfall assessment,
supporting the identification of rockfall-prone areas and the
characterization of boulder behaviour (Crosta et al., 2015;
Pfeiffer, 2019). A wide range of algorithms or models is
currently available for the calculation of runout zones. Nev-
ertheless, deterministic modelling remains inherently uncer-
tain due to insufficient data on the mechanical and geomet-
rical properties of the terrain, limiting the reliability of tra-
jectory identification. To address this limitation, stochastic
approaches have been introduced to account for the variabil-
ity in the input parameters. In the literature, different mod-
elling approaches have been proposed based on data avail-
ability, the environmental setting, and the type of analysis.
An incomplete list consists of STONE (Guzzetti et al., 2003;
Sarro et al., 2020), RocPro3d (Sarro et al., 2014, 2018),
Hy-Stone (Dinçer et al., 2016; Lanfranconi et al., 2020),
RAMMS (Dhiman and Thakur, 2021), RockyFor3D (Fran-
cioni et al., 2020; Robiati et al., 2019), and RocFall (Kakavas
et al., 2023; Pérez-Rey et al., 2019).

The output of runout models is commonly used to estimate
the rockfall susceptibility degree by classifying rockfall tra-
jectory counts (Dorren et al., 2023; Nanehkaran et al., 2022;
Noël et al., 2023). This susceptibility measures the degree
to which terrain can be affected by future slope movements.
In other words, it is an estimate of “where” landslides are
likely to occur and, in mathematical language, can be defined
as the probability of the spatial occurrence of slope failures,
given a set of geo-environmental conditions (Reichenbach et
al., 2018).

Rockfall modelling, both stochastic and deterministic,
presents errors associated with the input data employed to
replicate the rockfall process (Straub and Schubert, 2008).
The inaccuracy in defining rockfall source areas is highly
relevant in modelling, since source areas provide the start-
ing state for rockfall trajectories (Frattini et al., 2013; Rossi
et al., 2020).

The location of source areas depends on several charac-
teristics, such as slope morphology, lithology, and geologi-
cal discontinuities (Alvioli et al., 2021; Sarro et al., 2018;
Yan et al., 2023). At the local scale, in situ analyses com-
monly involve discontinuity characterization and escarpment
recognition. Frequently, logistical and safety issues in the

field constrain these methods. Remote sensing techniques,
such as laser scanners and uncrewed-aerial-vehicle-based
(UAV-based) photogrammetry, are nowadays widely used to
address these limitations and obtain detailed observations
of slopes (Gallo et al., 2021; Giordan et al., 2020; Sarro
et al., 2018). Although both fieldwork and remote sensing
methods are successful at the local scale, their utility at the
regional scale is limited.

Many methods with different degrees of complexity have
been proposed to identify rockfall source areas at the re-
gional scale based on deterministic, probabilistic, or statis-
tical approaches (Muzzillo et al., 2018). Deterministic meth-
ods identify rockfall source or detachment locations us-
ing models based on mechanical principles, while statistical
methods are based on the analyses of historical catalogues
of past rockfall events. For the probabilistic identification
of source areas, supervised multivariate classification or ma-
chine learning models are employed to predict rockfall de-
tachment locations (i.e. the dependent or grouping variable)
based on a set of explanatory variables (i.e. independent vari-
ables).

Most of the approaches are based on the numerical anal-
ysis of digital elevation models (DEMs) and additional en-
vironmental datasets. Source areas can be identified by
analysing local topography using surface slope thresholds,
which denote the area with favourable conditions for boulder
detachment. Larcher et al. (2012) proposed an equation to
define rockfall source areas by linking the slope angle thresh-
old and the resolution of a DEM. Rockfall source areas can
also be identified empirically or derived from the decompo-
sition of slope frequency distributions using morphometric
methods based on the slope angle thresholds. Several studies
determined a correlation between this threshold and the an-
gle of internal friction of the rock massif (Loye et al., 2008;
Paredes et al., 2015). Thus, the evaluation of slope frequency
distributions can determine the angle of internal friction asso-
ciated with each lithological unit of the rock massif, and it is
used as the threshold beyond which the massif becomes un-
stable. In the same way, Loye et al. (2009) developed a model
based on the Gaussian distribution of the slope angle values.
According to the results of this slope angle distribution, for
each morphological unit, the steepest slopes are selected as
potential source areas (Zhan et al., 2022). Additionally, Wang
et al. (2021) identify rockfall source areas controlled by rock
mass strength using relief–slope angle relationships.

Other identification techniques at the regional scale are
based on the analysis of remote sensing multi-temporal im-
agery, such as interpretation of orthophotos from optical
aerial or satellite data. The use of distinctive imaging features
or signs, such as scars or deposits, has been shown to be fea-
sible in several different research projects (Liu et al., 2020;
Mateos et al., 2016; Scavia et al., 2020). However, this tech-
nique is limited by the availability of satellite data and the
difficulty of analysing some areas (shadowed slopes, steep
slopes, and/or vegetation). Moreover, photo interpretation is
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time-consuming, and this often hampers its application over
large areas (Alvioli et al., 2021).

Recently, advanced heuristic methods and statistical tools
were proposed to identify the location of source areas with
good results. A heuristic method depends on the site charac-
teristics, and its application requires validation and special
adaptation processes (Fernandez-Hernández et al., 2012).
Conversely, statistical methods can be performed to assess
different levels of likelihood based on geomorphological,
geological, and geo-environmental factors. These methods,
such as multivariate analysis, logistic regressions, or fre-
quency ratios, are more flexible than heuristic methods but
require training with representative data samples. Hybrid
methods combine statistical and experimental methods, such
as neural networks or machine learning decision analysis, to
reduce the amount of data required and improve the accuracy
of the results (Fanos and Pradhan, 2019; Rossi et al., 2020).

Rockfall modelling has seen considerable improvements
in recent years; however, a significant challenge remains con-
cerning the seamless integration of different modelling com-
ponents spanning the source area definition to the suscepti-
bility zonation. In addition, numerous studies have explored
methods to identify source areas, but there are no specific
studies that analyse how they influence the rockfall mod-
elling results.

This study proposes a workflow that combines existing
knowledge and new concepts and techniques to estimate
rockfall susceptibility and to enhance its robustness and ap-
plicability, moving beyond case-specific solutions to provide
a robust and transferable framework. The workflow inte-
grates (i) three source area identification criteria, (ii) deter-
ministic runout modelling, (iii) supervised and unsupervised
approaches for the runout classification, and (iv) statistical
methods and metrics to verify, validate, and compare the sus-
ceptibility zonation. The application at a regional scale on El
Hierro Island (Canary Islands, Spain) allowed a preliminary
evaluation of the workflow.

The article is organized as follows: Sect. 2 describes the
test area, Sect. 3 presents the variety of methodologies em-
ployed, Sect. 4 presents the results, and Sect. 5 discusses the
results and highlights the main conclusions.

2 Test site and data

2.1 Geographical and geological setting

The Canary Islands are a volcanic archipelago located in the
Atlantic Ocean, within the African plate. The archipelago is
made up of seven major islands (Fig. 1) and some smaller
ones, which, together with underwater reliefs, form an ex-
tensive volcanic domain. The islands are the result of a long
magmatic history that started 70 million years ago and has
continued to the present with the recent volcanic eruption on
La Palma (September 2021).

El Hierro is the westernmost and youngest island, with
an area of 268.71 km2 and a population of 11 147 inhabi-
tants (Instituto Canario de Estadística (ISTAC), 2021). The
climate is subtropical oceanic along the coast and is very
mild and sunny for most of the year, with rainfall concen-
trated in October to March. Heavy storms are frequent, asso-
ciated with intense rainfall and strong winds that often trigger
landslides. The average temperature ranges between 19 and
25 °C, with maximum values in August.

The morphology of the island is the result of numerous
volcanic events associated with important geological fea-
tures. One of the most characteristic features of El Hierro is
the occurrence of large landslides, which correspond to the
escarpments of El Golfo, El Julan, and Las Playas, located
in the north, southwest, and southeast, respectively (Fig. 1).
The northern part, El Golfo, with cliffs that reach an ele-
vation of more than 1100 m, is a hazardous area for rock-
falls. During the period of 2011–2012, a submarine erup-
tion took place about 2.5 km off the coast near the village
of La Restinga. The highest seismicity was in the El Golfo
area, with two earthquakes of magnitude 4.4 and 4.6 in mid-
November 2011. The seismic events triggered rockfalls near
the Los Roquillos tunnel, one piece of strategic infrastructure
that connects the municipalities of Frontera and Valverde,
the most populous villages on the island. After the event, the
first field observations carried out by technicians of the Geo-
logical and Mining Institute of Spain (IGME-CSIC) allowed
us to evaluate the cliff stability along the road HI-5, where
the Roquillos tunnel is located. The report that was prepared
showed a complex scenario for the analysis of rockfall haz-
ard and the definition of source areas. The field surveys re-
vealed that the dikes that outcrop on the escarpments of El
Golfo and Las Playas are preferential rockfall source areas.
Recently, on 14 March 2021, a large rockfall along the El
Golfo escarpment alerted the population and caused a gen-
eral alarm.

2.2 Available data and products

For El Hierro Island, the following data are available: (1) a
digital elevation model (DEM) at a 5 m× 5 m resolution
(Centro de Descargas del CNIG (IGN), 2024) that was used
to compute morphometric parameters (elevation, slope, cur-
vature, landform classification, etc.) and (2) lithological in-
formation derived from the geological map provided by
IGME-CSIC at a scale of 1 : 25000. The map was reclassi-
fied into seven geotechnical classes (Sarro et al., 2020; Rossi
et al., 2020), ranging from class 1, which includes soft soils
(such as lapilli and sand), to class 7, which includes ex-
tremely hard rocks (dikes and volcanic breccias).

In this paper, we have used different thematic data to iden-
tify source areas and to perform rockfall modelling and sus-
ceptibility zonation. The methods to identify source areas
require diverse types of information. (i) Unsupervised slope
thresholding (STRSA) and slope angle empirical cumulative
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Figure 1. Areas used to classify and validate the simulated rockfall runout.

distribution functions (ECDFs) (CDFRSA) require only slope
data; (ii) supervised STRSA and CDFRSA require slope data
and the location of source areas (i.e. normally mapped in
the field; Rossi et al., 2020); and (iii) probabilistic iden-
tification (PROBRSA), together with the location of source
areas, exploits the following additional geo-environmental
information as conditioning factors: topography parameters
(i.e. slope, curvature, and aspect derived from the DEM),
lithology, and the presence of dikes (Rossi et al., 2020).

For the runout modelling, the following additional data
were used: (i) a sample of mapped rockfall deposits in poly-
gon format for the supervised cumulative distribution func-
tion (CDF) analyses of rockfall trajectories, (ii) a sample of
areas affected by or with no evidence of rockfalls for the

receiver-operating-characteristic-based (ROC-based) model
performance evaluation, and (iii) a sample of the rockfall
boulder locations (i.e. silent witnesses) for the violin plot and
boxplot susceptibility zonation.

The rockfall information used in the runout simulation
classification, and validation was derived using diversified
techniques and sources of information. Using field investi-
gations conducted from 2012 to 2018 (47 records), aerial im-
age interpretation (84 records), and data from the MOVES
database (BDMoves, 2024) (78 records), we have identified
rockfall deposits (red polygons in Fig. 1) that include sin-
gle detached boulders (i.e. mapped as points; black dots in
Fig. 1c) and talus deposits (i.e. mapped as polygons; blue
polygons in Fig. 1d). Additionally, areas with no evidence of
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rockfall activity were recognized in the field by experts, with
the support of geomorphological and topographical maps
(i.e. green polygons in Fig. 1).

3 Methodology

The methodology proposed in this study can be formalized
in a workflow that considers different steps (Fig. 2).

1. The first step is typical of any rockfall study, where
available relevant data are collected (field surveys,
photo interpretation, etc.).

2. The second step focuses on the identification of rockfall
source areas, a critical input for the subsequent analyses
performed using different approaches.

3. The third step is the deterministic rockfall runout mod-
elling using the source areas from step (2) as input. The
main output is a map of the cumulative count of rockfall
trajectories.

4. The fourth step derives probabilistic susceptibility zona-
tion through the classification of the trajectory count
values from step (3). Unsupervised and supervised clas-
sification approaches based on the empirical cumulative
distribution function (ECDF) are applied for this pur-
pose.

5. The fifth step validates and verifies the susceptibility
maps and assesses the reliability of susceptibility zona-
tion using quantitative multi-criterion evaluation tech-
niques and statistical metrics.

The five methodological steps, their application to the study
area, and the results are illustrated in the following sections.

3.1 Identification of rockfall source areas

The maps of the source areas are crucial data for the rock-
fall analysis. In our study area, we have used three different
approaches: (i) a morphometric schema based on the slope
thresholding, (ii) cumulative distribution functions (CDFs)
that consider slope information and geology, and (iii) a prob-
abilistic model.

3.1.1 Slope thresholding

This method (hereafter referred to as STRSA) relies on a sim-
ple morphometric approach, which identifies potential rock-
fall detachment zones as those areas with a slope angle above
a given threshold. Even though rockfalls initialize mainly on
steep slopes and the steepness of the hillslope surface can
be used to identify potential source areas, it is more realis-
tic to determine a slope threshold using distinctive evidence
(e.g. deposits, inventory) rather than arbitrarily establishing
one (Michoud et al., 2012).

According to Fu et al. (2021), more than 80 % of 2238
rockfall records collected in Sichuan (China) over the past
30 years occurred on hillslopes with slopes ranging between
30 and 50°, with most of them around 40°. As the result
of a historical rockfall study in the Yosemite Valley (Cali-
fornia, USA), Guzzetti et al. (2003) identified slopes above
60° as potential release points. In the region of Vaud county
(Switzerland), Jaboyedoff and Labiouse (2011) determined
slope thresholds between 47 and 54°. Based on the experi-
ence of the Trentino Geological Survey, Frattini et al. (2008)
selected as source area cells with slope angles over 37° in Val
di Fassa (Dolomites, eastern Italian Alps). Overall, most of
the previous studies cited reveal slope thresholds over 30°.

Sarro et al. (2020) proposed a slope threshold over 40°
on Gran Canaria (Canary Islands), an island with similar to-
pographical and geological conditions to El Hierro. Detailed
evaluations revealed that the source areas in Gran Canaria are
primarily associated with hard, very hard, and extremely hard
rocks, corresponding to geological types such as dikes and
breccia, phonolite, massive basalt, trachyte, and ignimbrite.
Considering that the geological context of El Hierro where
rockfalls are observed is similar to that of Gran Canaria, we
have defined the threshold above 40°. The map obtained us-
ing the slope thresholding method is binary, with 0 corre-
sponding to stable areas and 1 to rockfall-prone detachment
zones.

3.1.2 Statistical identification of rockfall source areas
using slope angle ECDFs

For the second identification of rockfall source areas,
we utilized the empirical cumulative distribution functions
(ECDFs) of slope angle values (hereafter referred to as
CDFRSA).

An ECDF function returns the probability that a ran-
dom variable is less than or equal to a given value (Lee
et al., 2022). In mathematical terms, this is expressed by
Eq. (1):

Fx(x)= P (X ≤ x)=
∑

t≤x
f (t) , (1)

where FX(x) denotes the ECDF of a random variable X,
whose probability distribution is f (x).

ECDF has lower and upper limits of 0 and 1, respectively,
and gives a cumulated probability that increases with the
x value. Equation (2) shows the values taken by ECDF or
FX(x) for infinite boundaries of the random variable and
Eq. (3) the relation between FX(x) values for successive val-
ues of x.

Fx (−∞)= 0, Fx (∞)= 1 , (2)

∀ xn+1 ≥ xn,Fx (xn+1)≥ Fx (xn) . (3)

In our study, we selected the slope value as the random vari-
able X, and using a supervised approach, we analysed only
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Figure 2. The rockfall modelling workflow.

the slope values corresponding to the mapped rockfall de-
tachment areas (source area inventory in Rossi et al., 2020)
to derive CDFRSA. Thus, CDFRSA gives the probability that
the slope in rockfall source areas is less than or equal to a
given value. This function represents the cumulative prob-
ability of the slope causing rockfalls and can be used as a
quantitative probabilistic estimation of rockfall detachment
for given slope values. The map of source areas obtained us-
ing the CDFRSA approach is a probabilistic map, with values
ranging from 0 to 1 for a 0 % probability or a 100 % proba-
bility of being a potential rockfall detachment area, respec-
tively. The slope values corresponding to a classification of 1
in the CDFRSA approach range from 62 to 85°, with a mean
slope of 77°. In contrast, the slope values associated with a
classification of 0 do not exceed 47.27°, exhibiting a mean
slope of 16°.

3.1.3 Probabilistic identification of rockfall source
areas using LAND-SUITE

The third method for the source area identification (hereafter
referred to as PROBRSA) proposes a probabilistic modelling
framework that applies a combination of multiple multivari-
ate statistical classification models, using the source area lo-
cations mapped in the field as the dependent variable and a
set of thematic data as independent variables (i.e. morpho-
metric data derived from DEMs and lithological data). The
model uses morphometric parameters derived from the digi-
tal elevation model and lithological data as an expression of
the mechanical behaviour of the rocks as input.

As described in detail in Rossi et al. (2020), we applied the
probabilistic framework using LAND-SUITE (LANDslide –
Susceptibility Inferential Tool Evaluator), an R-based open-
source program (Rossi et al., 2022; (Rossi and Bornaetxea,
2021). The software allowed us to obtain a probabilistic map
that expresses the probability of a certain area being a po-

tential rockfall source area. A logistic regression model in-
tegrated into the tool was used for the preliminary analysis
of different training and validation scenarios to determine
whether the model was sensitive to the selection of depen-
dent variables and to identify the best model training con-
figuration for application on the island. Four scenarios were
evaluated, incorporating variations in training and validation
areas, as well as the inclusion of active-source areas (areas
with recent geomorphological evidence of rockfall detach-
ments) and prone areas (geologically and geomorphologi-
cally susceptible to rockfalls but lacking recent detachment
evidence). The optimal scenario involved model training us-
ing data from four fieldwork sites (Sabinosa, El Golfo, Las
Playas, and La Estaca), with validation applied to the en-
tire island. This configuration achieved the best performance,
with an accuracy of 91.28 % in training and a small differ-
ence in validation (2.68 %), as well as an area under the curve
(AUCROC) of 0.954, the highest among all scenarios. There-
fore, the source map obtained using this scenario stands out
as the most consistent model, delivering the best performance
in island-wide validation.

The final source area zonation was prepared applying
a combination of different statistical modelling methods,
namely a linear discriminant analysis, a quadratic discrim-
inant analysis, and a logistic regression model. Then, differ-
ent LAND-SUITE tools were used to evaluate probabilistic
source area maps that resulted from different model appli-
cations and configurations to verify the modelling perfor-
mance and to estimate the associated uncertainty. The re-
sulting probabilistic source area zonation was evaluated by
integrating the output, expressing the variation for a variety
of probability thresholds. Specifically, contingency matrices
and plots along with model sensitivity, specificity, Cohen’s
kappa indices, and ROC curves with the corresponding area
under the curve (AUCROC) values were used to compare the
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Table 1. The table shows values of the coefficients (i.e. dynamic
rolling friction, normal energy restitution, and tangential energy
restitution) used in the rockfall modelling.

USDA classification Tangential Normal Rolling
restitution restitution friction

Extremely hard rock 89 64 0.35
Very hard rock 88 63 0.48
Hard rock 87 57 0.50
Moderate rock 78 46 0.55
Moderately soft rock 75 45 0.59
Soft rock 54 41 0.67
Soils 50 38 0.70

observed and modelled source areas and to quantitatively ex-
plore the performance of different model configurations, al-
lowing the selection of the best model and the corresponding
probabilistic source area map. See Rossi et al. (2022) for the
details on the training, validation, and combination proce-
dure.

Similarly to the previous identification approach, the map
of the source areas obtained using the method implemented
in LAND-SUITE is a probabilistic map, with values ranging
from 0 to 1 for a 0 % probability or a 100 % probability of
being a potential rockfall detachment area, respectively.

3.2 Deterministic rockfall runout modelling

The rockfall runout simulation is a core analysis in rockfall
modelling. On El Hierro Island, it was performed using a
physics-based model employing the maps described above
as input source areas (Fig. 3a, b, c). Such a model is based
on the fundamental principles of mass and energy conserva-
tion and is employed extensively worldwide to study rockfall
runout. In this study, we used STONE, a distributed three-
dimensional software based on physics-based simulations.
The software is raster based and applies a lumped mass ap-
proach to simulate boulder movement along the topography
described by a digital elevation model (Guzzetti et al., 2002).
The software requires four main inputs: (i) a digital elevation
model, (ii) three coefficients maps (i.e. dynamic rolling fric-
tion, normal energy restitution, and tangential energy restitu-
tion) that simulate the energy loss of a boulder when rolling
and bouncing at impact points, (iii) a map portraying the lo-
cation of the rockfall source areas, and (iv) a map of the num-
ber of simulations to be run during modelling (Table 1).

The three maps of the coefficients were estimated by con-
sidering the different lithological and geotechnical categories
reported on the geotechnical map of El Hierro and by se-
lecting values reported for similar lithologies in the litera-
ture (Alvioli et al., 2021; Guzzetti et al., 2003; Mateos et
al., 2016; Sarro et al., 2020).

The number of simulations run for each source area pixel
was obtained by multiplying the binary (i.e. 0 or 1) or proba-

bilistic (i.e. from 0 to 1) value of the source area maps by 10,
successively rounded to the closest integer value.

The main output of the runout modelling computed for the
three source area maps is the cumulative count of rockfall
trajectories (Fig. 3d, e, f).

3.3 Classification of rockfall runout for susceptibility
zonation, model comparison, and validation

The map of the rockfall trajectory counts estimates the possi-
bility of a specific pixel being impacted by a rockfall. To de-
rive rockfall susceptibility maps, the trajectory values can be
classified using different systems, including equal interval,
natural break, quantile, standard deviation, head/tail breaks,
and landslide percentage (Alqadhi et al., 2022; Baeza et
al., 2016; Cantarino et al., 2019; Tehrani et al., 2022; Wang
et al., 2016) in order to make a qualitative interpretation of
the results.

To generate a probabilistic susceptibility map, we em-
ployed two classification approaches based on the ECDF of
trajectory counts and considering an unsupervised and a su-
pervised method.

The unsupervised classification technique is based exclu-
sively on the raster map of rockfall trajectory counts. This
method classifies the map by utilizing the ECDF derived
from the values of counts obtained in the entire study area
with the rockfall runout model (i.e. cells with count values
greater than or equal to 1). The resulting map presents val-
ues ranging from 0 to 1, representing a probabilistic estimate
of the likelihood of each pixel being affected by a rockfall
event. Consequently, pixels equal to 1 indicate areas where
the susceptibility model predicts the highest probability of
rockfall occurrence.

The supervised classification method works similarly, but
in this case, the ECDF analysis considers only the count
of the trajectories together with the rockfall deposits and/or
rockfall talus mapped in the study area. The rockfall deposit
mapping can be affected by uncertainty and, to be reliable,
should be statistically representative of the different geo-
environmental settings controlling rockfall occurrence and
evolution.

This two-fold classification methodology was applied to
the maps of trajectory counts obtained by STONE using the
three maps of source areas as input (i.e. STRSA, CDFRSA
and PROBRSA). As a result, we obtained six ECDF graphs
and six susceptibility maps that we compared and analysed
using different analyses. The six susceptibility maps were
evaluated in pairs considering the three source area maps
and the two classification methods. To investigate and quan-
tify the diversity, we used maps of the differences and his-
tograms that enabled the identification of the locations where
the susceptibility maps show a higher (or a lower) likelihood
of rockfall occurrence. Additionally, two-dimensional (2D)
hexagonal bin count heat maps derived from the different
couplings of susceptibility maps were plotted to show the

https://doi.org/10.5194/nhess-25-1459-2025 Nat. Hazards Earth Syst. Sci., 25, 1459–1479, 2025



1466 R. Sarro et al.: From rockfall source area identification to susceptibility zonation

Figure 3. The column on the left shows the maps of the source areas identified using the three different approaches (a, STRSA; b, CDFRSA;
and c, PROBRSA), and the column on the right shows the cumulative counts of rockfall trajectories for each map (d, e, f). See Table 2 for the
pixel counts of each map of the source areas.

correlations between the model outcomes. Hexagonal bin-
ning for map comparison is a technique used in data visual-
ization, particularly when dealing with large datasets in 2D
scatter plots. It groups data points into hexagonal bins (rather
than traditional square bins) to provide a more structured
view of the data distribution. The hexagonal shape is often

preferred because it avoids the visual artefacts that can result
from aligning data into rectangular grids and provides a more
compact and efficient way of packing data points (Wickham,
2016).

To validate the models, we used two rockfall inventories:
(i) a polygon-type inventory with zones reached by rockfall
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boulders and zones without any significant evidence of po-
tential boulders having reached them (i.e. red and green poly-
gons in Fig. 1) and (ii) a point-type inventory with the loca-
tions of isolated rockfall boulders at their final reaches after
runout (i.e. silent witnesses; black dots in Fig. 1c). We first
used the polygon-type inventory to derive ROC plots (Rossi
et al., 2010, 2022; Rossi and Reichenbach, 2016) and the cor-
responding area under the curve (AUCROC) in order to show
the differences between the modelled and observed suscepti-
bility values and provide quantitative estimates of the final
rockfall susceptibility zonation performance, regardless of
the classification approach adopted. Successively, we anal-
ysed the distribution of average susceptibility values (i.e. vi-
olin plots and boxplots) within circular buffers of different
sizes built around the boulder locations reported in the point-
type inventory to verify the ability of the models to discern
susceptible conditions corresponding to and in the vicini-
ties of mapped rockfall boulders. Different buffer sizes allow
us to consider uncertainty due to local conditions and boul-
der locations. In the proposed approach, the location of the
mapped boulders is used to evaluate the rockfall susceptibil-
ity zonation. Commonly, this information is used to evaluate
runout models, verifying whether simulations reach the boul-
der locations entirely or partially. The violin plots show the
distributions of the susceptibility data and specifically their
probability density, and together with boxplots, they help vi-
sualize summary data statistics such as median values and
interquartile ranges.

4 Results

4.1 Comparison of different maps of the source area

Following the steps of the methodology, we first compared
the maps of the source areas prepared using three different
approaches (see Sect. 3.1), which cover the entire island with
consistent and equal spatial coverage.

For the slope thresholding approach (STRSA), we deter-
mined a threshold of 40° by combining geomorphological
data, geological analysis, and historical rockfall events. In
this case, for the entire island, a total of 727 603 px were
identified as being prone to rockfall detachments, corre-
sponding to 18.19 km2 (6.8 % of the island, Table 2). To carry
out the rockfall simulation, the binary map was multiplied
by 10, resulting in two distinct values: 10 simulations corre-
sponding to the rockfall source areas and 0 elsewhere.

In the second approach, we used CDFRSA to obtain a prob-
abilistic source map with values ranging from 0 to 1, respec-
tively, for a 0 % probability or a 100 % probability of the
area being a potential rockfall detachment area. Unlike the
binary values in the STRSA map, this probabilistic informa-
tion allows us to identify the source areas with different lev-
els of certainty. The map shows that 1 628 048 px have non-
zero probability of being a potential detachment area, twice

Table 2. The table shows the spatial extension of the source ar-
eas identified by the three approaches (i.e. STRSA, CDFRSA, and
PROBRSA).

Source area Number of Total area Percentage of
approach pixels (km2) El Hierro Island

(268.71 km2)

STRSA 727 603 18.19 6.8 %
CDFRSA 162 8048 40.70 15.1 %
PROBRSA 339 9686 84.99 31.6 %

the number of pixels identified using the slope thresholding
approach (STRSA). Source areas identified through CDFRSA
cover a total area of 40.70 km2, around 15 % of the island’s
surface. In this case, the map of the number of runout simu-
lations has integer values ranging from 0 to 10.

The third source area map obtained using the PROBRSA
method shows a total of 3 339 686 px with a non-zero prob-
ability of being a potential detachment area, which is equiv-
alent to 84.99 km2 or approximately 31.6 % of the entire is-
land surface. Similarly to the CDFRSA case, the resulting map
of the number of simulations has integer values ranging from
0 to 10.

The comparison of source areas identified using the three
methods was performed using a spatial overlay in raster for-
mat and using frequency-based criteria. The three maps show
a diversified spatial arrangement: a total of 727 423 px were
recognized as source areas through the three different meth-
ods, with the matching areas mostly located on steep slopes
(Fig. 4). No pixels were identified as a source area by STRSA
alone, as they were always associated with either CDFRSA
or PROBRSA. The number of pixels identified by PROBRSA
alone is 1 855 918, corresponding to more than 55 % of the
pixels identified using other methods or combinations of
methods (Table 3).

The largest RSA match is observed between CDFRSA and
PROBRSA, 816 278 px (20.40 km2), while the largest mis-
match was for STRSA and PROBRSA, with a deviation of
2 672 196 px (66.80 km2) detected by PROBRSA but not by
STRSA. This provides evidence that the PROBRSA tends to
identify a larger number of source areas, covering a larger
portion of the study area (1 855 918 px and 46.39 km2).

An additional analysis to evaluate the possible relation
with the geotechnical classes revealed that only STRSA is
able to identify source areas in regions with soft and hard
soils.

4.2 Comparison of rockfall simulation and
susceptibility maps

The output of the runout simulations (Fig. 3d, e, f) shows di-
verse spatial distributions of rockfall trajectory counts, pro-
viding potentially different information on the susceptibil-
ity to rockfalls. To obtain comparable rockfall susceptibil-
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Figure 4. The map shows the spatial comparison of the source areas identified using the three different approaches (i.e. STRSA, CDFRSA,
and PROBRSA).

Table 3. This table shows the differences in the spatial distribution of source areas identified by the three approaches (i.e. STRSA, CDFRSA,
and PROBRSA).

Comparison of Total Intersection Only Only
RSA maps (RSA-1 ∪ RSA-2) (RSA-1 ∩ RSA-2) RSA-1 RSA-2

RSA-1 RSA-2 Pixels Area Pixels Area Pixels Area Pixels Area
(number) (km2) (number) (km2) (number) (km2) (number) (km2)

STRSA CDFRSA 1 628 115 40.70 727 536 18.19 67 0.0017 900 512 22.51
STRSA PROBRSA 3 399 705 84.99 727 490 18.19 19 0.005 2 672 196 66.80
CDFRSA PROBRSA 3 482 657 87.06 1 543 701 38.59 82971 2.07 1 855 985 46.40

ity maps, we classified the trajectory count maps using un-
supervised and supervised ECDF analyses (Figs. 5 and 6).
The application of the ECDFs to the relative trajectory count
maps allows us to derive the six probabilistic susceptibil-
ity maps shown in Fig. 5. The figure reveals evident dif-
ferences between the maps derived from the unsupervised
ECDFs (Fig. 5a, b, c) that are reduced when considering the
supervised alternatives (Fig. 5d, e, f).

Different plot representations were used to compare the
six maps and to understand their differences. Figure 6 shows
the unsupervised and supervised ECDF functions derived
from the outputs obtained using the three source area maps.
The unsupervised distributions show larger ranges and a

higher number of cells with low trajectory counts (i.e. val-
ues close to 0). Additionally, the comparison of the unsuper-
vised ECDFs (Fig. 6a, b, c) reveals a larger number of cells
with high count values for STRSA followed by CDFRSA and
PROBRSA; this behaviour is reversed when considering the
supervised ECDFs (Fig. 6d, e, f).

Figures 7 and 8 show the pairwise differences in
susceptibility maps obtained using different source area
maps and the diversified classification method. Specifi-
cally, the figure portrays the following six pairs of re-
sults: (a) STRSA-unsup − CDFRSA-unsup, (b) STRSA-unsup
− PROBRSA-unsup, (c) CDFRSA-unsup − PROBRSA-unsup,
(d) STRSA-sup − CDFRSA-sup, (e) STRSA-sup − PROBRSA-sup,
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Figure 5. Probabilistic susceptibility maps derived from the application of unsupervised (a, b, c) and supervised (d, e, f) ECDF functions
(Fig. 6).
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Figure 6. Unsupervised (a b, c) and supervised (d, e, f) ECDF functions derived for outputs obtained from the different source area identifi-
cation methods.

and (f) CDFRSA-sup − PROBRSA-sup. The lighter colours
(i.e. lower absolute difference values) between supervised
map pairs and the frequency counts of the corresponding his-
tograms highlight lower differences between the susceptibil-
ity outputs obtained by applying supervised ECDFs.

The 2D hexagonal bin count heat maps (Fig. 9) derived
for the different pairs of susceptibility maps confirm these
results, showing a better alignment along the bisector of the
higher frequency counts obtained for supervised susceptibil-
ity maps (Fig. 5d, e, f). These plots are divided into hexag-
onal bins, and each bin is coloured based on the count of
the susceptibility map values. Dark-reddish shades indicate a
higher frequency of measurements within the corresponding
hexagon, while lighter areas may indicate sparse values.

In addition, the comparison of the trajectory maps with the
simplified geotechnical classes (Fig. 1 in Rossi et al., 2020)

reveals that the trajectories mainly cross over hard and very
hard rocks and only occasionally cross over moderately soft
rocks. In the unsupervised maps, very hard rocks are af-
fected by rockfall trajectories approximately 19 %, 25 %, and
42 % of the time, corresponding to STRSA, CDFRSA, and
PROBRSA, whereas for hard rocks, the percentages decrease
to 7 %, 17 %, and 37 %. These percentages can be explained
by the geological and morphological setting. Furthermore,
the hard-soil class shows considerable percentages above
70 %. This distribution can be justified by their position on
the lower part of the slopes, where trajectory paths com-
monly stop. Trajectories do not cross over soft soils, which
are mainly located in flat areas. In the supervised maps, the
very hard and hard rocks are passed over by the majority
of the trajectories (i.e. 81 %, 81 %, and 88 % for STRSA,
CDFRSA, and PROBRSA).
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Figure 7. Maps of the pairwise differences in susceptibility maps obtained for different source area identification methods (rows) and
diversified classification methods (columns). Negative values indicate a higher probability for the second of the two methods compared.
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Figure 8. Histograms of the pairwise differences in susceptibil-
ity maps obtained for different source area identification methods
(rows) and diversified classification methods (columns).

4.3 Rockfall susceptibility model validation

Figure 10 shows the results of the ROC analysis com-
paring the different susceptibility maps (Fig. 5) and
field observations. The graphs show that the model with
the best performance is obtained using the PROBRSA
source areas (AUCROC= 0.88) followed by the CDFRSA
(AUCROC= 0.84), with STRSA performing the worst
(AUCROC= 0.78).

For the same maps, Fig. 11 shows the distributions of the
average values within circular buffers of 5, 50, and 100 m
defined around the observed boulder locations. Susceptibil-
ity median and maximum values increase with the decrease
in the buffer size. The distributions of values change signif-
icantly for different source areas when the susceptibility is
classified using the unsupervised EDCF, whereas they tend
to be more homogeneous when the supervised ECDF is ap-
plied.

5 Discussion and conclusions

Rockfall modelling is complex and requires a set of dedi-
cated methodological choices and assumptions. Despite spe-
cific aspects of the modelling having been largely resolved
in the literature (Ding et al., 2023; Noël et al., 2023; Yan et
al., 2023; Yang et al., 2021; Žabota et al., 2019), a compre-
hensive methodology to assess susceptibility to rockfalls is
still missing. To fill this gap, we have proposed a workflow
that includes methods for the source area identification, the
deterministic runout modelling, the classification of runout
output to derive objective rockfall probabilistic susceptibility
zonation, and finally the comparison and validation of the re-
sults. The methodology was applied on El Hierro Island (Ca-
nary Islands, Spain), where rockfalls pose a significant threat
to structures, infrastructure, and the population. We have pre-
sented three methods to identify source areas of increas-
ing complexity, namely STRSA, CDFRSA, and PROBRSA,
which require diversified input. Table 3 and Fig. 4 show how
these methods may provide different inputs (i.e. source area
and number of simulations) for deterministic rockfall runout
modelling, impacting the rockfall trajectory simulations and
the corresponding susceptibility zonation (Fig. 5).

To derive probabilistic susceptibility maps, we propose the
use of unsupervised and supervised ECDFs of the trajectory
counts. We demonstrate with quantitative metrics (Figs. 8
and 9) how the use of the supervised ECDF approach helps to
reduce differences and homogenize zonation at the expense
of a dedicated mapping effort to derive a rockfall inventory
(Fig. 1). This is a significant methodological finding of this
work and shows that even when using simple source area
identification methods, such as STRSA or CDFRSA, the super-
vised ECDF application guarantees a reliable and unbiased
zonation of rockfall susceptibility. Traditionally, information
on rockfall deposits is mainly used to validate the rockfall
modelling results. In this study, we also show the relevance of
mapping areas not affected by rockfalls to improve the relia-
bility and robustness of the susceptibility zonation. This can
be as relevant as the source area mapping and identification.
In fact, the application of this workflow demonstrated that
such data play a key role in susceptibility zonation classifica-
tion, preventing overestimation of the results and enhancing
their utility for decision-makers.

This study also explores the strategies to validate the rock-
fall susceptibility outputs using different types of inventory,
such as (i) polygon-type maps portraying the zones reached
by rockfall boulders and zones without any significant ev-
idence of having been reached by potential boulders and
(ii) point-type inventories with the locations of isolated rock-
fall boulders at the end of the runout (i.e. silent witnesses).
Metrics comparing modelled and observed values (i.e. ROC
plots and the corresponding AUCROC) can be used to show
the performances of susceptibility models quantitatively, re-
gardless of the classification approach adopted (Fig. 10).
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Figure 9. The 2D hexagonal bin count heat maps derived for the different pairs of susceptibility maps obtained by applying unsuper-
vised (a, b, c) and supervised (d, e, f) ECDF functions. Dark-reddish shades indicate a higher frequency of measurements within the corre-
sponding hexagon.

The ROC analysis reveals differences in the performance
of the three source area identification methods. However,
identical AUCROC values are obtained for unsupervised and
supervised ECDFs when the same source area identification

method is used. This highlights the fact that the method used
to classify the maps of trajectory counts and derive the sus-
ceptibility zonation is crucial. The ROC analysis is sensitive
to methodological choices and helped us to select PROBRSA
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Figure 10. ROC plots and corresponding AUCROC values for the six susceptibility maps shown in Fig. 5. The points show values of the hit
rate (also referred to as the true-positive rate or sensitivity) and the false-alarm rate (also referred to as the false-positive rate equivalent to 1
– specificity) for a set of probability threshold reference values.
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Figure 11. Violin plots and boxplots derived for the average val-
ues of susceptibility within buffers defined around rockfall boulder
locations. Plots correspond to the six susceptibility maps shown in
Fig. 5.

(followed by CDFRSA and STRSA) as the preferred method to
identify rockfall source areas. Such results can be explained
by the greater statistical robustness of this method (Rossi et
al., 2020), which requires dedicated mapping, a set of the-
matic information, and the use of specific statistical soft-
ware (Rossi et al., 2022). In general, the results of the multi-
criterion techniques used to validate the outcomes and assess
the reliability of the susceptibility zonation demonstrate that
the larger the effort in the identification of source areas, the
more reliable and accurate the rockfall susceptibility zona-
tion. They also highlight the importance of selecting appro-
priate source area identification methods and incorporating
supervised classification to improve rockfall susceptibility
zonation. Furthermore, the study highlights the fact that su-
pervised approaches provide added value by fine-tuning the
modelling outputs.

Rockfall point-type inventories can be used for a basic ver-
ification of the ability of models to discern susceptible condi-
tions corresponding to and in the vicinities of the mapped or
observed boulders. This can be performed by analysing the
distribution of susceptibility values within circular buffers of
different sizes built around boulder locations. Such distribu-
tions can be visualized with violin plots (Fig. 11) that show
the effects of different classification approaches for rock-
fall susceptibility zonation. Figure 11 reveals that suscepti-
bility zonation values vary largely within buffers and tend
to increase in the vicinity of the boulder locations mapped.
Significant distribution differences can be observed among
the susceptibility classification approaches and the source
area identification criteria. Unsupervised ECDFs (Fig. 11a,
b, c) show diversified shapes, with PROBRSA characterized
by more uniform distributions and higher susceptibility val-
ues. Conversely, supervised ECDFs (Fig. 11d, e, f) mini-
mize these differences, reshaping the distributions and mak-
ing them more similar. This means that supervised ECDFs
should be preferred because they reduce the effect of the cri-
teria used to identify source areas on the final susceptibility
zonation considerably.

In the analysis of rockfall susceptibility at the regional
scale, the access to comprehensive data is frequently lim-
ited. This constraint impacts the choice of the methodologies
employed to define source areas. When only a digital eleva-
tion model (DEM) and bibliographic resources are available,
the slope thresholding method is preferred. Where additional
data, such as geological or geomorphological information,
are accessible, investing time in mapping source areas en-
ables the application of probabilistic methods that yield more
robust results. Furthermore, maps of trajectory counts are of-
ten considered the final modelling outputs; nevertheless we
propose performing a supervised analysis to classify them for
more reliable susceptibility zonation. Combining probabilis-
tic methods for the source area identification with supervised
classification of trajectory counts ensures a more accurate
and balanced susceptibility zonation, enhancing its utility for
decision-making processes in rockfall hazard management.

Despite the availability of various kinds of software and
methods for rockfall runout simulation, we have selected
STONE due to its previous use, validation, and application
in the study area. Nonetheless, we recognize that the method-
ological framework proposed in this study remains relevant
even when employing other rockfall modelling software. The
unsupervised and supervised ECDF analyses are applicable
to the trajectory counts generated by any software.

The proposed methodology provides possible guidance for
objective and reliable rockfall modelling that is able to sup-
port civil protection, emergency authorities, and decision-
makers in evaluating and assessing potential rockfall im-
pacts, and it can be a potential strategic support for rockfall
warning systems.
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