Articles | Volume 23, issue 12
https://doi.org/10.5194/nhess-23-3863-2023
https://doi.org/10.5194/nhess-23-3863-2023
Research article
 | 
18 Dec 2023
Research article |  | 18 Dec 2023

Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic characteristics and agricultural and hydrological drought severity: case of study Cesar River basin

Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine

Related authors

Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024,https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Machine Learning and Committee Models for Improving ECMWF Subseasonal to Seasonal (S2S) Precipitation Forecast
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-98,https://doi.org/10.5194/hess-2023-98, 2023
Revised manuscript not accepted
Short summary
Machine Learning and Committee Models for Improving ECMWF Subseasonal to Seasonal (S2S) Precipitation Forecast
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-348,https://doi.org/10.5194/hess-2022-348, 2022
Manuscript not accepted for further review
Short summary
Spatiotemporal changes of drought area as input for a machine-learning approach for crop yield prediction
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-252,https://doi.org/10.5194/hess-2022-252, 2022
Preprint withdrawn
Short summary
Machine-learning approach to crop yield prediction with the spatial extent of drought
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-600,https://doi.org/10.5194/hess-2021-600, 2021
Preprint withdrawn
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Abbaspour, K. C., Vaghefi, S. A., and Srinivasan, R.: A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference, Water (Basel), 10, 6, https://doi.org/10.3390/w10010006, 2018. 
ASABE: Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models, American Society of Agricultural and Biological Engineers, https://doi.org/10.13031/trans.12806, 2017. 
Bertels, D. and Willems, P.: Physics-informed machine learning method for modelling transport of a conservative pollutant in surface water systems, J. Hydrol., 619, 129354, https://doi.org/10.1016/j.jhydrol.2023.129354, 2023. 
Borcard, D., Gillet, F., and Legendre, P.: Cluster analysis, in: Numerical Ecology with R. Use R!, Springer, Cham, https://doi.org/10.1007/978-3-319-71404-2_4, 2018. 
Download
Short summary
This study uses a machine learning technique, the multivariate regression tree approach, to assess the hydroclimatic characteristics that govern agricultural and hydrological drought severity. The results show that the employed technique successfully identified the primary drivers of droughts and their critical thresholds. In addition, it provides relevant information to identify the areas most vulnerable to droughts and design strategies and interventions for drought management.
Altmetrics
Final-revised paper
Preprint