Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-559-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Past and future trends in fire weather for the UK
Matthew C. Perry
CORRESPONDING AUTHOR
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Emilie Vanvyve
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Richard A. Betts
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
Erika J. Palin
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Related authors
No articles found.
Joao C. M. Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3066, https://doi.org/10.5194/egusphere-2025-3066, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Burnt areas produced by wildfires around the world are decreasing, especially in tropical regions, but many climate models fail to show this trend. Our study looks at whether adding a measure of human development to a fire model could improve its representation of these processes. We found that including these factors helped the model better match observations in many regions. This shows that human activity plays a key role in shaping fire trends.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Inika Taylor, Douglas I. Kelley, Camilla Mathison, Karina E. Williams, Andrew J. Hartley, Richard A. Betts, and Chantelle Burton
EGUsphere, https://doi.org/10.5194/egusphere-2025-720, https://doi.org/10.5194/egusphere-2025-720, 2025
Short summary
Short summary
Climate change is reshaping fire seasons worldwide and, in many places, increasing fire weather risk. We use climate model simulations to project future changes in fire danger at different levels of global warming, focusing on Australia, Brazil, and the USA. Keeping warming below 2 °C significantly limits the increase in fire risk, but even at 1.5 °C, fire seasons lengthen, with more extreme conditions. However, low-fire weather periods remain, offering critical windows for fire management.
Jessica Stacey, Richard Betts, Andrew Hartley, Lina Mercado, and Nicola Gedney
EGUsphere, https://doi.org/10.5194/egusphere-2025-51, https://doi.org/10.5194/egusphere-2025-51, 2025
Short summary
Short summary
Plants typically transpire less with rising atmospheric carbon dioxide, leaving more water in the ground for human use, but many future water scarcity assessments ignore this effect. We use a land surface model to examine how plant responses to carbon dioxide and climate change affect future water scarcity. Our results suggest that including these plant responses increases overall water availability for most people, highlighting the importance of their inclusion in future water scarcity studies.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Joao Carlos Martins Teixeira, Chantelle Burton, Douglas I. Kelly, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-136, https://doi.org/10.5194/bg-2023-136, 2023
Revised manuscript not accepted
Short summary
Short summary
Representing socio-economic impacts on fires is crucial to underpin the confidence in global fire models. Introducing these into INFERNO, reduces biases and improves the modelled burnt area (BA) trends when compared to observations. Including socio-economic factors in the representation of fires in Earth System Models is important for realistically simulating BA, quantifying trends in the recent past, and for understanding the main drivers of those at regional scales.
Julia F. Lockwood, Galina S. Guentchev, Alexander Alabaster, Simon J. Brown, Erika J. Palin, Malcolm J. Roberts, and Hazel E. Thornton
Nat. Hazards Earth Syst. Sci., 22, 3585–3606, https://doi.org/10.5194/nhess-22-3585-2022, https://doi.org/10.5194/nhess-22-3585-2022, 2022
Short summary
Short summary
We describe how we developed a set of 1300 years' worth of European winter windstorm footprints, using a multi-model ensemble of high-resolution global climate models, for use by the insurance industry to analyse windstorm risk. The large amount of data greatly reduces uncertainty on risk estimates compared to using shorter observational data sets and also allows the relationship between windstorm risk and predictable large-scale climate indices to be quantified.
Cited articles
Abatzoglou, J. T., Williams, A. P., and Barbero, R.:
Global emergence of anthropogenic climate change in fire weather indices,
Geophys. Res. Lett.,
46, 326–336, https://doi.org/10.1029/2018GL080959, 2019.
Albertson, K., Aylen, J., Cavan, G., and McMorrow, J.:
Climate change and the future occurrence of moorland wildfires in the Peak District of the UK,
Clim. Res.,
45, 105–118, https://doi.org/10.3354/cr00926, 2010.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G, Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.:
A human-driven decline in global burned area,
Science,
356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Arnell, N. W., Freeman, A., and Gazzard, R.:
The effect of climate change on indicators of fire danger in the UK,
Environ. Res. Lett.,
16, 044027, https://doi.org/10.1088/1748-9326/abd9f2, 2021.
Bärring, L. and Strandberg, G.:
Does the projected pathway to global warming targets matter?,
Environ. Res. Lett.,
13, 024029, https://doi.org/10.1088/1748-9326/aa9f72, 2018.
BBC News:
Why are there UK wildfires in February?,
https://www.bbc.co.uk/news/science-environment-47389480 (last access: 12 May 2021), 2019a.
BBC News:
Crews' fifth full day fighting wildfire in Sutherland,
https://www.bbc.co.uk/news/uk-scotland-highlands-islands-48308196 (last access: 12 May 2021), 2019b.
Belcher, C. M., Brown, I., Clay, G. D., Doerr, S. H., Elliott, A., Gazzard, R., Kettridge, N., Morison, J., Perry, M., Santin, C., and Smith, T.:
UK wildfires and their climate challenges, Expert led report prepared for the third Climate Change Risk Assessment (CCRA3), UK Climate Risk, https://www.ukclimaterisk.org/independent-assessment-ccra3/research-supporting-analysis/ (last access: 11 February 2022), 2021.
Betts, R. A.: High-end climate change and adaptation. Science for Adaptation Policy Brief 3, The World Adaptation Science Programme (WASP) Secretariat, UNEP, Nairobi,
https://wedocs.unep.org/bitstream/handle/20.500.11822/34437/WASP3.pdf (last access: 11 February 2022), 2020.
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber, M. K.:
Global validation of the collection 6 MODIS burned area product,
Remote Sens. Environ.,
235, 111490, https://doi.org/10.1016/j.rse.2019.111490, 2019.
Brown, I., Thompson, D., Bardgett, R., Berry, P., Crute, I., Morison, J., Morecroft, M., Pinnegar, J., Reeder, T., and Topp, K.:
UK climate change risk assessment evidence report: Chapter 3, Natural environment and natural assets,
Report prepared for the adaptation sub-committee of the Committee on Climate Change, London,
https://www.theccc.org.uk/wp-content/uploads/2016/07/UK-CCRA-2017-Chapter-3-Natural-environment-and-natural-
assets.pdf (last access: 11 February 2022), 2016.
Burgan, R. E., Klaver, R. W., and Klaver J. M.:
Fuel models and fire potential from satellite and surface observations,
Int. J. Wildland Fire,
8, 159–170, https://doi.org/10.1071/WF9980159, 1998.
Calheiros, T., Pereira, M. G., and Nunes, J. P.:
Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula,
Sci. Total Environ.,
754, 142233, https://doi.org/10.1016/j.scitotenv.2020.142233, 2021.
Casanueva, A., Bedia, J., Herrera, S., Fernández, J., and Gutiérrez, J. M.:
Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool,
Climatic Change,
147, 411–425, https://doi.org/10.1007/s10584-018-2167-5, 2018.
Committee on Climate Change:
UK Climate Change Risk Assessment 2017. Synthesis Report: Priorities for the next 5 years, Committee on Climate Change, London,
https://www.theccc.org.uk/uk-climate-change-risk-assessment-2017 (last access: 11 February 2022), 2017.
Copernicus: Fire danger indices historical data from the Copernicus Emergency Management Service, Climate Data Store [data set], https://doi.org/10.24381/cds.0e89c522, 2019 (data available at: https://cds.climate.copernicus.eu/, last access: 11 February 2022).
Davies, G. M. and Legg, C. J.:
Regional variation in fire weather controls the reported occurrence of Scottish wildfires,
PeerJ,
4, e2649. https://doi.org/10.7717/peerj.2649, 2016.
Davies, G. M., Gray, A., Hamilton, A., and Legg, C. J.:
The future of fire management in the British uplands,
Int. J. Biodivers. Sci. Manag.,
4, 127–147, https://doi.org/10.3843/Biodiv.4.3:1, 2008.
de Jong, M. C., Wooster, M. J., Kitchen, K., Manley, C., Gazzard, R., and McCall, F. F.: Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom, Nat. Hazards Earth Syst. Sci., 16, 1217–1237, https://doi.org/10.5194/nhess-16-1217-2016, 2016.
Deb, P., Moradkhani, H., Abbaszadeh, P., Kiem, A. S., Engström, J., Keelings, D., and Sharma, A.:
Causes of the widespread 2019–2020 Australian bushfire season,
Earths Future,
8, e2020EF001671, https://doi.org/10.1029/2020EF001671, 2020.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., and Zolina, O.:
Water cycle changes,
in: Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzall, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/ (last access: 11 February 2022), 2021.
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., and Blyth, A. M.:
A projected decrease in lightning under climate change,
Nat. Clim. Change,
8, 210–213, https://doi.org/10.1038/s41558-018-0072-6, 2018.
Forestry Commission England:
Wildfire statistics for England 2009-10 to 2016–17,
Forestry Commission England, Bristol, 60 pp., 2019.
Fung, F., Lowe, J., Mitchell, J. F. B., Murphy, J., Bernie, D., Gohar, L., Harris, G., Howard, T., Kendon, E., Maisey, P., Palmer, M., and Sexton, D.:
UKCP18 Guidance: How to use the UKCP18 Land Projections,
Met Office Hadley Centre, Exeter, 2018.
Gazzard, R., McMorrow, J., and Aylen, J.: Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups, Philos. T. R. Soc. B, 371, 20150341, https://doi.org/10.1098/rstb.2015.0341, 2016.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product,
Remote Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018 (data available at: https://lpdaacsvc.cr.usgs.gov/appeears/, last access: 11 February 2022).
Gohar, L., Bernie, D., Good, P., and Lowe, J. A.:
UKCP18 derived projections of future climate over the UK,
Met Office, Exeter, 2018.
Hemingway, R. and Gunawan, O.:
The Natural Hazards Partnership: a public-sector collaboration across the UK for natural hazard disaster risk reduction,
Int. J. Disast. Risk Re.,
27, 499–511, https://doi.org/10.1016/j.ijdrr.2017.11.014, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, F., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Humber, M. L., Boschetti, L., Giglio, L., and Justice, C. O.: Spatial and temporal intercomparison of four global burned area products, Int. J. Digit. Earth, 12, 460–484, https://doi.org/10.1080/17538947.2018.1433727, 2018.
Kitchen, K.:
Fire danger class study,
Met Office, Exeter, 2010.
Lowe, J. A., Bernie D., Bett P., Bricheno L., Brown S., Calvert D., Clark, R., Eagle, K., Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, T., Kaye, N., Kendon, E., Krijnen, J., Maisey, P., McDonald, R., McInnes, R., McSweeney, C., Mitchell, J., Murphy, J., Palmer, M., Roberts, C., Rostron, J., Sexton, D., Thornton, H., Tinker, J., Tucker, S., Yamazaki, K., and Belcher, S.:
UKCP18 science overview report,
Met Office, Exeter, 2018.
Matthews, S., Fox-Hughes, P., Grootemaat, S., Hollis, J. J., Kenny, B. J., and Sauvage, S.:
Australian Fire Danger Rating System: research prototype, NSW Rural Fire Service, Lidcombe, NSW, https://www.afac.com.au/docs/default-source/afdrs/afdrs_research_prototype_report_2019.pdf?sfvrsn=6 (last access: 11 February 2022), 2019.
Met Office:
The Met Office Fire Severity Index for England and Wales, prepared for the Countryside Agency, Countryside Council for Wales and the Forestry Commission,
Met Office, Exeter, 2005.
Met Office:
UK temperature, rainfall and sunshine time series,
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-temperature-rainfall-and-sunshine-time-series (last access: 12 May 2021).
Met Office Hadley Centre: UKCP18 regional projections on a 12 km grid over the UK for 1980–2080, Centre for Environmental Data Analysis [data set],
https://catalogue.ceda.ac.uk/uuid/589211abeb844070a95d061c8cc7f604 (last access: 11 February 2022), 2018.
Milne, R. and Brown, T. A.:
Carbon in the vegetation and soils of Great Britain,
J. Environ. Manage.,
49, 413–433, https://doi.org/10.1006/jema.1995.0118, 1997.
Murphy, J. M., Harris, G. R., Sexton, D. M. H., Kendon, E. J., Bett, P. E., Clark, R. T., Eagle, K. E., Fosser, G., Fung, F., Lowe, J. A., McDonald, R. E., McInness, R. N., McSweeney, C. F., Mitchell, J. F. B., Rostron, J. W., Thornton, H. E, Tucker, S., and Yamazaki, K.:
UKCP18 land projections science report,
Met Office Hadley Centre, Exeter, 2018.
Noble, I. R., Gill, A. M., and Bary, G. A. V.:
McArthur's fire-danger meters expressed as equations,
Aust. J. Ecol.,
5, 201–203, https://doi.org/10.1111/j.1442-9993.1980.tb01243.x, 1980.
Read, N., Duff, T. J., and Taylor, P. G. A.:
A lightning-caused wildfire ignition forecasting model for operational use,
Agr. Forest Meteorol.,
253–254, 233–246, https://doi.org/10.1016/j.agrformet.2018.01.037, 2018.
Sibley, A. M.:
Wildfire outbreaks across the United Kingdom during summer 2018,
Weather,
74, 397–402, https://doi.org/10.1002/wea.3614, 2019.
Smith, A. J. P., Jones, M. W., Abatzoglou, J. T., Canadell, J. G., and Betts, R. A.:
Climate change increases the risk of wildfires, Science Brief Review, University of East Anglia, UK,
https://news.sciencebrief.org/wildfires-sep2020-update/ (last access: 11 February 2022), 2020.
Van Wagner, C. E.:
Development and structure of the Canadian forest Fire Weather Index system, Forestry Technical Report 35,
Canadian Forest Service, Ottawa, 1987.
Vitolo, C., Di Giuseppe, F., Barnard, C., Coughlan, R., San-Miguel-Ayanz, J., Libertá, G., Krzeminski, B.:
ERA5-based global meteorological wildfire danger maps,
Sci. Data,
7, 216, https://doi.org/10.1038/s41597-020-0554-z, 2020.
Wang, D., Guan, D., Zhu, S., MacKinnon, M., Geng, G., Zhang, Q., Lei, T., Shao, S., Gong, P., and Davis, S. J.:
Economic footprint of California wildfires in 2018,
Nature Sustainability,
4, 252–260, https://doi.org/10.1038/s41893-020-00646-7, 2021.
Wang, X., Parisien, M.-A., Taylor, S. W., Candau, J.-N., Stralberg, D., Marshall, G. A., Little, J. M., and Flannigan, M. D.:
Projected changes in daily fire spread across Canada over the next century,
Environ. Res. Lett.,
12, 025005, https://doi.org/10.1088/1748-9326/aa5835, 2017.
Wang, Y., Anderson, K. R., and Suddaby, R. M.:
Updated source code for calculating fire danger indices in the Canadian Forest Fire Weather Index System, Information Report NOR-X-424,
Canadian Forest Service, Ottawa, 2015.
Wartenburger, R., Hirschi, M., Donat, M. G., Greve, P., Pitman, A. J., and Seneviratne, S. I.: Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework, Geosci. Model Dev., 10, 3609–3634, https://doi.org/10.5194/gmd-10-3609-2017, 2017.
Willett, K. M., Dunn, R. J. H., Kennedy, J. J., and Berry, D. I.: Development of the HadISDH.marine humidity climate monitoring dataset, Earth Syst. Sci. Data, 12, 2853–2880, https://doi.org/10.5194/essd-12-2853-2020, 2020.
Wu, C., Venevsky, S., Sitch, S., Mercado, L. M., Huntingford, C., and Staver, A. C.:
Historical and future global burned area with changing climate and human demography,
One Earth,
4, 1–14, https://doi.org/10.1016/j.oneear.2021.03.002, 2021.
Wu, M., Knorr, W., Thonicke, K., Schurgers, G., Camia, A., and Arneth, A.:
Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: a comparison of two fire-vegetation models,
JGR Biosciences,
120, 2256–2272, https://doi.org/10.1002/2015JG003036, 2015.
Short summary
In the past, wildfires in the UK have occurred mainly in spring, with occasional events during hot, dry summers. Climate models predict a large future increase in hazardous fire weather conditions in summer. Wildfire can be considered an
emergent riskfor the UK, as past events have not had widespread major impacts, but this could change. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.
In the past, wildfires in the UK have occurred mainly in spring, with occasional events during...
Altmetrics
Final-revised paper
Preprint