Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-3859-2022
https://doi.org/10.5194/nhess-22-3859-2022
Research article
 | 
01 Dec 2022
Research article |  | 01 Dec 2022

Comparison of machine learning techniques for reservoir outflow forecasting

Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira

Related authors

How to mitigate flood events similar to the 1979 catastrophic floods in the lower Tagus
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024,https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Diego Fernández-Nóvoa, Orlando García-Feal, José González-Cao, Maite deCastro, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3957–3972, https://doi.org/10.5194/nhess-22-3957-2022,https://doi.org/10.5194/nhess-22-3957-2022, 2022
Short summary
Towards an automatic early warning system of flood hazards based on precipitation forecast: the case of the Miño River (NW Spain)
José González-Cao, Orlando García-Feal, Diego Fernández-Nóvoa, José Manuel Domínguez-Alonso, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 19, 2583–2595, https://doi.org/10.5194/nhess-19-2583-2019,https://doi.org/10.5194/nhess-19-2583-2019, 2019
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024,https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
AscDAMs: Advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877,https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149,https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024,https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary

Cited articles

Adaramola, M.: Climate Change And The Future Of Sustainability: The Impact on Renewable Resources, CRC Press, 1–336, https://doi.org/10.1201/9781315366050, 2016. 
Alcamo, J., Dronin, N., Endejan, M., Golubev, G., and Kirilenko, A.: A new assessment of climate change impacts on food production shortfalls and water availability in Russia, Global Environ. Change, 17, 429–444, https://doi.org/10.1016/j.gloenvcha.2006.12.006, 2007. 
Amirkhani, S., Tootchi, A., and Chaibakhsh, A.: Fault detection and isolation of gas turbine using series–parallel NARX model, ISA Trans., 120, 205–221, https://doi.org/10.1016/j.isatra.2021.03.019, 2022. 
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, https://doi.org/10.1007/s10584-014-1084-5, 2016. 
Baba, A., Tsatsanifos, C., el Gohary, F., Palerm, J., Khan, S., Mahmoudian, S. A., Ahmed, A. T., Tayfur, G., Dialynas, Y. G., and Angelakis, A. N.: Developments in water dams and water harvesting systems throughout history in different civilizations, Int. J. Hydrol., 2, 155–171, https://doi.org/10.15406/ijh.2018.02.00064, 2018. 
Download
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Altmetrics
Final-revised paper
Preprint