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Abstract. Reservoirs play a key role in many human soci-
eties due to their capability to manage water resources. In
addition to their role in water supply and hydropower pro-
duction, their ability to retain water and control the flow
makes them a valuable asset for flood mitigation. This is a
key function, since extreme events have increased in the last
few decades as a result of climate change, and therefore, the
application of mechanisms capable of mitigating flood dam-
age will be key in the coming decades. Having a good esti-
mation of the outflow of a reservoir can be an advantage for
water management or early warning systems. When histori-
cal data are available, data-driven models have been proven
a useful tool for different hydrological applications. In this
sense, this study analyzes the efficiency of different machine
learning techniques to predict reservoir outflow, namely mul-
tivariate linear regression (MLR) and three artificial neu-
ral networks: multilayer perceptron (MLP), nonlinear au-
toregressive exogenous (NARX) and long short-term mem-
ory (LSTM). These techniques were applied to forecast the
outflow of eight water reservoirs of different characteristics
located in the Miño River (northwest of Spain). In general,
the results obtained showed that the proposed models pro-
vided a good estimation of the outflow of the reservoirs, im-
proving the results obtained with classical approaches such
as to consider reservoir outflow equal to that of the previous
day. Among the different machine learning techniques ana-

lyzed, the NARX approach was the option that provided the
best estimations on average.

1 Introduction

Humankind has been creating reservoirs since ancient times
(Baba et al., 2018). The purpose of these bodies of water are
varied and include irrigation, flood protection, power gener-
ation and control of the natural flow of rivers, among others
(Lee et al., 2009). Reservoirs are created through the con-
struction of dams, which are complex structures that retain
water and are capable of controlling the water flow. This
ability to control the flow permits the management of wa-
ter resources, allowing the storage of water for consumption,
electricity production and protection against floods. They
are, therefore, important agents that affect the economy, hu-
man population, and fauna and flora in their area of influ-
ence (Castelletti et al., 2008). In a river basin, it is usual to
find several of these structures along the course of the river;
thus, the operation of the upstream reservoirs affects all the
downstream activities. Therefore, communication and coor-
dination among the different dams present in the river course
are desirable for the optimal management of water resources
(Marques and Tilmant, 2013; Jeuland et al., 2014; Quinn et
al., 2019; Rougé et al., 2021). However, this is not always
possible as there may be different barriers and trade-offs that
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hinder such coordination. It is not unusual for rivers to pass
through different countries or administrative regions with
different policies and regulations. It is also common for dams
to be operated by private companies with different operating
policies and interests. The operation of these structures de-
pends not only on natural factors and well-defined operating
rules but also on external demand. These aspects can also
hinder access to or the utilization of the operation rules of
the reservoir. This adds a significant amount of uncertainty
in predicting the outflow of a reservoir at any given time,
making it difficult to incorporate into physics-based models,
which is a disadvantage in water resource management and
flood risk prevention.

Different aspects of water reservoirs will be of increas-
ing importance in the future. One of the most important
is the key role that dams play in protection against floods,
which are one of the most dangerous natural catastrophes,
being the cause of tremendous loss of lives (Jonkman, 2005)
and billions of euros in economic losses (Hallegatte, 2012;
Wallemacq et al., 2018) worldwide. Unfortunately, several
studies predict a worsening scenario for the future, increasing
the frequency and severity of these phenomena (Berghuijs et
al., 2017; Passerotti et al., 2020). Several factors affect this
trend, with climate change (Arnell and Gosling, 2016; Liu et
al., 2018) and modifications in land use (Booth and Bledsoe,
2009; Bradshaw et al., 2007; de la Paix et al., 2013; Ros-
burg et al., 2017), being two of the most important ones. In
response to these worrying reports, the scientific community
established that flood mitigation is one of the most impor-
tant challenges to be addressed in the coming decades (Field
et al., 2012), and dams can play a key role in this sense. In
addition, in the context of climate change, hydropower gen-
eration also plays an important role. Hydropower generation
is expected to increase significantly in the future in a scenario
of increasing demand for renewable energies (Adaramola,
2016), although climate change may affect river flow and
thus the availability of water for power generation (Berga,
2016). Issues related to water availability in future scenarios
are also a major concern for such important sectors as agri-
culture, which negatively affect food production (Alcamo et
al., 2007; Elliott et al., 2014; Xiong et al., 2009). Optimizing
the management of water resources and more specifically the
reservoir operations will be essential to mitigate these effects.

This research paper focuses on the development of mod-
els capable of forecasting the outflow of a reservoir. These
models could be an advantage when incorporated into cur-
rent or newly developed water management systems, improv-
ing their operation. This includes flood early warning sys-
tems and reservoir management systems, among others. In
order to forecast the outflow of a reservoir, the most sim-
plistic approach involves assuming that the outflow would
be equal to the inflow. Although this approach is an over-
simplification of river dynamics, it can be a reasonable ap-
proximation under very specific conditions, for example, in
relatively small reservoirs during wet seasons when they are

close to the spillway capacity after a period of high inflows
and therefore have little margin to alter the natural flow of
the river. Another simplistic approximation would be assum-
ing that the outflow of the reservoir for a given day d will
be the same as on day d − 1. This can provide acceptable
approximations under normal conditions when the flow does
not vary significantly from day to day. This procedure can
be improved by applying multivariate solutions that assume
different weights to several known variables. In this case,
the approach will be to establish a relation between the out-
flow on a given day d with the known outflow, inflow and
reservoir level on day d − 1. One approach to improve these
simpler solutions is to develop data-driven models based on
the analysis of the data of a specific system, being able to
find relations between the input and output variables of the
system. These models have been complementing or replac-
ing physics-based models (e.g., hydrodynamic models) in
the last few years (Solomatine and Ostfeld, 2008). Data-
driven modeling uses machine learning (ML) techniques to
build models for a specific system from existing data. Ac-
cording to Rashidi et al. (2019), machine learning is an ap-
plication of artificial intelligence (AI) that enables the au-
tomatic learning of computer systems, all based on experi-
ence without explicit programming. Machine learning tech-
niques have been successfully applied in many hydrological
applications (Le et al., 2019; Xiang et al., 2020; Kratzert et
al., 2018; Rjeily et al., 2017; Guzman et al., 2017; Lee and
Tuan Resdi, 2016; Taghi Sattari et al., 2012; Ghorbani et al.,
2019; Emami and Parsa, 2020; Sammen et al., 2017) in the
last few years. In this paper, several methodologies based
on machine learning techniques are proposed for the time
series forecasting of reservoir outflow. The ML techniques
used for this task are included under the category of super-
vised learning, meaning that the ML algorithm will be fed
with data that include the desired solutions (Géron, 2019),
in this case, the future outflow of a reservoir. The task to be
performed by the ML model is a regression in which a target
outflow value will be predicted from a series of input vari-
ables or features. This research paper will cover several tech-
niques ranging from multivariate linear regression (MLR) to
several artificial neuron network (ANN) techniques (a feed-
forward neural network with a back propagation algorithm
(multilayer perceptron, MLP), nonlinear autoregressive ex-
ogenous (NARX) and a long short-term memory network
model (LSTM)) to forecast the outflow for different impor-
tant dams located in the Miño–Sil basin (Galicia, Spain).
However, it is worth noting that the results obtained in this
study may not be completely extrapolated to other areas with
larger reservoirs and/or dry climatic conditions. Also, it is
important to clarify that the operation strategies of the dam
are key to determine its outflow and they can be used in
different ways to improve the prediction models. However,
this research focuses on the capabilities of different machine
learning approaches to forecast the total outflow of the next
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Table 1. List of dams analyzed in the study (data provided by Con-
federación Hidrográfica del Miño-Sil).

Reservoir Capacity Year Catchment
name (hm3) built area (km2)

Belesar 655 1963 4290
Peares 182 1955 4533
Velle 17 1966 12 530
Castrelo 60 1969 13 180
Frieira 44 1970 15 160
Santo Estevo 213 1955 7216
San Martiño should be preferred. 10 1956 4740
Barcena 341 1960 832

24 h period and therefore infer the operation strategies from
the data.

The research paper is structured as follows: in Sect. 2 the
characteristics of the area of study and the different ML mod-
els employed will be presented. Section 3 will analyze and
discuss the results obtained. And last, in Sect. 4 the main
conclusions of the study will be discussed.

2 Material and methods

2.1 Area of study

Figure 1 shows the area of study and the location of the reser-
voirs employed in the present work. The eight reservoirs are
located in the Miño–Sil River basin, situated in the north-
west of the Iberian Peninsula. The basin has a total area of
around 17 000 km2 (Confederación Hidrográfica del Miño-
Sil, 2016) and constitutes an important region of hydroelec-
tric generation. The Miño–Sil River system is one of the most
important in the Iberian Peninsula and has the highest runoff-
to-surface ratio. It is characterized by a pluvial regime with a
maximum water flow in the winter season and a minimum in
summer (Fernández-Nóvoa et al., 2017), presenting average
annual precipitation of 1184 mm (Confederación Hidrográ-
fica del Miño-Sil, 2016). Eight reservoirs were selected from
the Miño–Sil River system with capacities ranging from 10 to
655 hm3 (see Table 1 for a summary of their main character-
istics).

A total of 19 years of data on a daily scale were pro-
vided, after request, by the Miño-Sil River Basin Author-
ity (Confederación Hidrográfica del Miño-Sil, https://www.
chminosil.es, last access: 29 November 2022) for the reser-
voirs under study. The period analyzed spans from 1 Octo-
ber 2000 to 30 September 2019. The time series data include
the percentage of filled volume, the inflow and the outflow of
the reservoir.

2.2 Machine learning models

The available dataset was divided into three different sub-
sets, using roughly the first 70 % of the data range for the
training subset (from 1 October 2000 to 30 September 2013),
the following 15 % for the validation subset (from 1 Octo-
ber 2013 to 30 September 2016) and the remaining 15 % for
the test subset (from 1 October 2016 to 30 September 2019).
This criterion has been chosen for better interpretation and
comparison of the output series produced by the models. Ta-
ble 2 shows the statistics of the subsets for each reservoir
and variable. Once the training phase is completed, the unbi-
ased model performance is tested against the test subset. This
approach can help to identify overfitting problems, where a
model offers good performance with the dataset used during
the training phase but is not able to generalize with new in-
put data. For all the models, the inflow, outflow and volume
percent values are used as input data to predict the outflow of
the next day. Figure 2 shows the correlation between the vari-
ables involved for each of the analyzed reservoirs. It can be
observed that there is a strong correlation between the inflow
and the outflow variables. However, the two largest reservoirs
analyzed (Barcena and Belesar) show a lower correlation be-
tween inflow and outflow, which is in concordance with their
higher capacity and lower average occupation. The correla-
tion between volume percent and the outflow is low in all the
cases but slightly higher in Barcena and Belesar.

2.2.1 Multivariate linear regression

The first ML technique based on multivariate linear regres-
sion was chosen to test complex neural network-based tech-
niques against more conventional techniques. MLR can per-
form better than ANN in certain applications where the num-
ber of sample data available are small (Markham and Rakes,
1998); in this sense, this model can help to assess if the
dataset available is big enough to use ANN-based models.
A relation was established between the outflow and inflow
measured at day d, with respect to the outflow of the next
day d+ 1, which corresponds to the day under prediction. In
addition, this adjustment was carried out not only for each
dam but also for different filling levels, in order to also take
into account this variable, which plays a key role in the dam’s
capacity to retain water. In this case, percentage sections of
10 % filling of the dam were considered, which means an ad-
justment when the occupied volume of the dam is less than
10 %, another when the occupied volume is between 10 %–
20 % and so on.

Thus, for each dam, 10 adjustments define the outflow pre-
diction attending to the different level of occupation, as the
next equation indicates:

ŷd+1 = c0+ c1rd + c2yd , (1)

where ŷd+1 is the predicted outflow for day d+1, with yd and
rd being the measured outflow and inflow for day d. The
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Figure 1. Location of the reservoirs analyzed in this study.

Figure 2. Correlation heatmaps for each of the analyzed reservoirs.

three coefficients (c0, c1 and c2) were obtained from the lin-
ear fitting depending on the measured filling level of the cor-
responding dam.

The equation and procedure described above were applied
to each dam, using in all cases the first 70 % of the data to ob-
tain the adjustments and the last 30 % to test their efficiency.
Although a validation phase is not considered in this method-
ology, the same dataset partitioning as in the neural network
models has been used to facilitate the comparison. The first
70 % of the data (training subset) will be used to develop the

model and the last 30 % to test (validation and test subsets)
their efficiency. Therefore, both the validation and test sub-
sets are both test subsets in this methodology.

2.2.2 MLP model

The second type of model developed in this research com-
prised ANNs, which are a type of computational approach
that can be encompassed within machine learning. These
types of models have been inspired by the biological human
brain (Farizawani et al., 2020). An ANN model, like a bio-
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Table 2. Statistics of the variables used for the train, validation and test subsets.

Reservoir Variable Train (2000–2013) Validation (2013–2016) Test (2016–2019)

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Barcena
Inflow (m3) 24.1 28.0 −17.0 314.0 33.2 30.6 −2.8 265.2 20.2 21.2 −8.9 122.7
Outflow (m3) 24.1 22.6 0.0 190.2 33.2 23.9 0.0 92.8 20.5 20.2 0.0 90.4
Volume (%) 60.6 19.4 21.7 93.4 61.0 22.2 24.2 95.5 55.7 24.0 22.5 96.8

Belesar
Inflow (m3) 83.3 125.5 −10.4 1646.6 87.9 131.6 −17.9 973.2 59.8 86.9 −12.4 578.9
Outflow (m3) 83.3 104.1 0.0 1819.2 86.9 101.6 0.0 920.1 58.8 65.2 4.2 578.3
Volume (%) 57.1 26.0 4.6 96.6 64.6 23.0 20.7 93.9 54.7 22.3 21.4 94.4

Castrelo
Inflow (m3) 254.6 290.1 −1.9 4054.5 317.5 295.5 28.6 2714.1 183.3 152.3 25.6 967.9
Outflow (m3) 254.6 292.2 0.0 4243.5 317.6 299.2 0.0 2678.5 183.3 154.2 0.0 973.1
Volume (%) 85.3 4.8 48.9 98.7 83.4 5.3 64.7 96.7 85.1 4.2 67.4 95.8

Frieira
Inflow (m3) 281.7 335.6 3.6 4621.4 347.3 353.5 8.0 2894.2 197.6 184.9 8.1 1163.9
Outflow (m3) 281.7 335.9 29.2 4603.7 347.3 354.3 33.7 2927.2 197.5 185.3 31.7 1170.9
Volume (%) 90.7 3.1 62.1 98.1 88.7 3.5 75.7 97.9 87.0 3.3 77.6 96.2

Peares
Inflow (m3) 88.6 117.1 −0.4 1908.1 94.5 109.0 −8.2 957.8 63.7 71.1 3.6 613.6
Outflow (m3) 88.6 117.2 0.0 1918.9 94.5 108.8 0.0 962.7 63.7 71.0 6.3 622.7
Volume (%) 93.0 12.4 26.1 99.5 97.4 1.3 88.2 98.8 95.1 5.0 73.6 98.9

San Martiño
Inflow (m3) 81.8 103.2 0.3 1213.4 112.9 129.0 8.0 1234.5 60.6 55.5 6.8 457.3
Outflow (m3) 81.8 103.2 3.0 1213.2 112.9 129.1 8.3 1238.7 60.6 55.4 7.7 457.7
Volume (%) 97.2 4.6 54.5 105.1 95.8 3.3 71.3 100.0 95.0 3.7 71.3 99.9

Santo Estevo
Inflow (m3) 145.4 185.3 1.6 1949.5 192.3 199.5 6.9 2000.5 103.0 86.4 14.2 724.7
Outflow (m3) 145.6 186.3 0.0 1953.1 192.2 202.0 0.4 1999.6 103.0 87.9 11.6 573.0
Volume (%) 85.7 13.1 30.4 99.9 84.2 8.7 57.8 98.0 82.2 9.7 58.1 96.7

Velle
Inflow (m3) 249.9 289.3 −0.2 4624.7 311.0 281.4 18.5 2713.5 177.3 142.7 19.5 906.8
Outflow (m3) 249.9 289.5 0.0 4637.2 311.0 281.7 27.0 2714.1 177.3 143.1 25.1 916.5
Volume (%) 81.3 4.0 60.4 96.0 79.1 4.9 65.0 92.4 77.5 4.6 57.7 90.1

logical neural network, is formed by several simple process-
ing units joined to each other using weighted connections
(Taghi Sattari et al., 2012). The simple processing unit is
called a node or neuron. Artificial neural networks present
different advantages over traditional approaches to model
data (Livingstone et al., 1997). Perhaps and according to Liv-
ingstone et al. (1997) the most outstanding advantage is that
this type of model is capable of fitting complex nonlinear
models. However, according to the same authors, this type of
approach also has an important disadvantage, which is that
neural networks can suffer from overfitting and overtraining,
but this can be solved by taking a good architecture selection
and using training/control groups to see the evolution of the
model (Livingstone et al., 1997).

The first type of ANN model developed in this research
is an MLP ANN (multilayer perceptron artificial neural net-
work), that is, a feed-forward neural network with a back
propagation algorithm. In this type of ANN, the information
moves only in a forward direction, that is, from the input neu-
rons (in the input layer), crossing the hidden neurons (in the
hidden layer) to the output neurons (RapidMiner Inc., 2022)
(see Fig. 3). The back propagation algorithm is used to fit
the model. This kind of supervised algorithm compares the
predicted values with the real values to calculate the predic-

tion error; then this error is fed back through the network to
adjust each connection weight and reduce the prediction er-
ror in the next cycle (RapidMiner Inc., 2022); that is, these
ANNs learn by adjusting the connection weights. This pro-
cess continues to run until the error goes down or reaches a
satisfactory level or until a previously established number of
cycles has been reached (Taghi Sattari et al., 2012).

This type of artificial neural network is widely used in dif-
ferent predictions related to the study of water movement
and dam or reservoir management. In this sense, an MLP
model, with a back propagation learning algorithm, has been
used to model the daily inflow into the Eleviyan reservoir
(Iran) (Taghi Sattari et al., 2012). This model has been com-
pared with a time lag recurrent neural network (TLRN) for
a period between 1 September 2004 and 30 June 2007. The
MLP models were developed with only one hidden layer. Ac-
cording to Taghi Sattari et al. (2012), both models work ac-
ceptably with low inflow values. Another interesting study
where an MLP was used is in the research carried out by
Ghorbani et al. (2019), who designed and evaluated a hy-
brid forecasting model combining a gravitational search al-
gorithm (GSA) with an MLP to predict the water level in
two lakes (Winnipesaukee and Cypress, USA). This hy-
brid model is compared with an MLP model that used the
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Figure 3. Architecture of a multilayer perceptron with three inputs, a hidden layer with four neurons and a single output. The input vari-
ables, yd , rd and vd , are the measured outflow, inflow and volume percent for day d; meanwhile the output variable ŷd+1 is the forecasted
outflow for day d + 1.

Levenberg–Marquardt back propagation learning algorithm
and others such as hybrid models (MLP–particle swarm op-
timization and MLP–firefly algorithm), ARMA models and
ARIMA models (Ghorbani et al., 2019). The hybrid MLP–
GSA model showed a high efficacy over the other developed
models and suggests, on the one hand, that it can be used in
water resource management among other tasks. On the other
hand, reservoir storage capacity determination is an impor-
tant element in water resource management and planning,
among others (Emami and Parsa, 2020). Due to this, Emami
and Parsa (2020) try to predict the optimal reservoir storage
capacity, using an evolutionary algorithm (inspired by impe-
rialistic competition) along with an MLP model with a back
propagation training technique, applied to Shaharchay Dam
(Urmia Lake basin, Iran). According to the results, both mod-
els are satisfactory (with an RMSE of 0.041 and 0.045 for
the imperialist competitive algorithm and the ANN model,
respectively) (Emami and Parsa, 2020). Finally, another in-
teresting research study is the one carried out by Sammen
et al. (2017) which used a generalized regression neural net-
work (GRNN) to predict the peak outflow in the event of a
possible dam failure. Sammen et al. (2017) built six models
using different dam and reservoir attributes and concluded
that the GRNN model shows potential to predict peak out-
flow.

As previously said, the first ANN models developed were
feed-forward neural networks with a back propagation algo-
rithm. In this kind of ANN, the information passes through
different layers. In the input layer, the information is received
from the database, and it is sent to the hidden layer where the
information is treated. Finally, this new information is sent to
the output layer where a result is generated. The number of
neurons in the input layer is determined by the number of in-
put variables (inflow, outflow and volume (%) at day d) that
will be used to try to predict the desired variable (outflow for

day d + 1). In this research, only one hidden layer was used.
Finally, in the output layer, there will be as many neurons as
variables to be predicted (in this case, one). The number of
hidden neurons was studied between one and seven; the num-
ber of cycles was studied between 1 and 131 072 in 17 steps
with a logarithmic or linear scale, and the decay parameter
was used to decrease the learning rate during the learning
process (true or false). The best MLP model developed (lin-
ear or logarithmic scale) was selected based on the lowest
RMSE value for the validation subset.

The different MLP models were implemented in a server
(AMD Ryzen 7 1800X, eight-core processor 3.60 GHz with
16 GB of RAM) located at the Department of Physical
Chemistry of the University of Vigo, Campus of Ourense.
The operative system used was Windows 10 Pro 20H2 with
64 bit. The MLP models were developed using RapidMiner
Studio 9.8.001 software.

2.2.3 NARX model

The last two ANN techniques analyzed fall under the um-
brella of the so-called recurrent neural networks (RNN). This
kind of ANN is especially suitable to forecast time series.
Nonlinear autoregressive with exogenous inputs (NARX)
neural networks are a type of RNN designed for tasks with
long-term dependencies on the input data. They can converge
and generalize faster than other ANNs (Lin et al., 1996).
NARX can use previous input and output data including a
feedback delay for both input and output. There are two
typical NARX model architectures: parallel (P) and series-
parallel (SP) (Xie et al., 2009) (see Fig. 4). In the first one,
the output of the model is fed back into the neural network,
whereas in the SP architecture the real output value is used
during the training phase. This second approach has proven
to be more stable and robust (Amirkhani et al., 2022; Naren-
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Figure 4. Different architectures of a NARX model: (a) parallel architecture and (b) series-parallel architecture.

dra and Parthasarathy, 1990). NARX models have been used
in multiple hydrological applications; a NARX model was
used to forecast flood risks in urban drainage systems in
Rjeily et al. (2017), showing a good performance and bet-
ter calculation speed compared with physically based mod-
els. Guzman et al. (2017) developed a NARX model to sim-
ulate groundwater levels in the Mississippi River valley al-
luvial aquifer (USA). Lee and Tuan Resdi (2016) devel-
oped a NARX model capable of making hydrological pre-
dictions at multiple gauging stations in the Kemaman catch-
ment (Malaysia) using 13 meteorological input parameters.
Yang et al. (2019) compared several RNN models includ-
ing LSTM, NARX and a genetic algorithm-based NARX for
reservoir operation using input data from a distributed hydro-
logical model.

A general NARX model following the SP architecture can
be expressed as

ŷd+1 = f
(
yd , yd−1, . . ., yd−ny , xd , xd−1, . . ., xd−nx

)
, (2)

where ŷd+1 is the predicted outflow for day d + 1, yd is the
measured outflow for the day d , xd denotes the exogenous
input variables for day d and f is a nonlinear function that
is approximated by an MLP. The parameters nx and ny re-
fer to input and output delays. In this work, the values of nx
and ny were obtained using cross-correlation functions and
the value for both parameters was set equal to 5 d. The value
of the number of hidden neurons was set equal to 8 by the
trial-and-error method. The activation functions for the hid-
den layer of the neural network and the output layer are tan-
sigmoid and linear, respectively. The Levenberg–Marquardt
algorithm was defined to train the model using the mean
square error (MSE) as the loss function. The NARX models
were developed using MATLAB software (MathWorks Inc.,
2022).

2.2.4 LSTM model

The long short-term memory (LSTM) first proposed by
Hochreiter and Schmidhuber (1997) employs the so-called
LSTM cell, a type of RNN memory cell that stores a short-
term state hd and a long-term state cd . It is capable of identi-

fying meaningful input data and storing them in a long-term
state, keeping these data as long as necessary and using them
when needed. Due to this fact, this approach is very suitable
for capturing long-term patterns present in time series. As
shown in Fig. 5, for each time step, as the cd−1 state enters
the cell, some data are dropped in the forget gate to add some
extra data coming from the input gate, resulting in cd . At the
same time, a tanh function is applied to cd and passes through
the output gate to produce hd , which is equivalent to ŷd+1.
The input data xd and the short-term state hd−1 are fully con-
nected to four layers. The main one, which outputs gd , ana-
lyzes the input and the previous short-term state as in a regu-
lar RNN, but only the most important parts are stored in the
long-term state (Géron, 2019):

gd = tanh
(
Wg

[
hd−1,xd

]
+bg

)
, (3)

where tanh is the activation function, Wg is a weight matrix
and bg is a bias matrix corresponding to the main layer. The
remaining three layers are the gate controllers that use a sig-
moidal activation function. Their outputs range from 0 to 1,
and, since these outputs are used in an element-wise product,
they have the ability to open or close the gate. The forget gate
that outputs fd controls which part of the long-term state will
be erased:

fd = σ
(
Wf

[
hd−1,xd

]
+ bf

)
, (4)

where σ is the sigmoid activation function. The input gate
that outputs id controls which parts of the main layer will be
added to the long-term state:

id = σ
(
Wi

[
hd−1,xd

]
+ bi

)
. (5)

The last gate is the output gate that outputs od and controls
which parts of the long-term state should be included in this
time step hd and ŷd+1:

od = σ
(
Wo

[
hd−1,xd

]
+ bo

)
. (6)
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Figure 5. Schematic view of an LSTM cell.

Therefore, the cell output and the new short- and long-term
states are defined as follows:

cd = fdcd−1+ idgd , (7)
ŷd+1 = hd = od tanh(cd) . (8)

LSTM models have been used in multiple hydrological ap-
plications. Le et al. (2019) used an LSTM neural network for
flood forecasting in the Da River (Vietnam) using precipita-
tion and the flow rate on a daily scale as input data, achieving
predictions for 1, 2 and 3 d ahead showing very good Nash–
Sutcliffe efficiency (NSE) values of 99 %, 95 % and 87 %,
respectively. Xiang et al. (2020) used an LSTM and seq2seq
(Sutskever et al., 2014) modeling approach to estimate 24 h
rainfall runoff on an hourly scale in the Clear Creek and
Upper Wapsipinicon River watersheds (Iowa, USA), using
observed and forecasted rainfall, observed runoff, and evap-
otranspiration data obtained from stations. Results showed
that the methodology could provide effective predictions for
hydrology applications. Kratzert et al. (2018) used data from
241 catchments from the Catchment Attributes and MEteo-
rology for Large-sample Studies (CAMELS) dataset to com-
pare LSTM as a hydrological model versus a more traditional
approach using the Sacramento Soil Moisture Accounting
Model (SAC-SMA) coupled with SNOW-17, obtaining sim-
ilar results with both approaches. Zhang et al. (2018) use
an LSTM model to simulate the reservoir operation using
30 years of data from the Gezhouba Dam located on the
Yangtze River (China), outperforming other machine learn-
ing approaches such as a back-propagating neural network
and a support vector regression.

The software used for the implementation of the LSTM
models was TensorFlow (TensorFlow Developers, 2022). Af-
ter an exploration of different hyper-parameters, the number

of hidden layers was set to one as no significant benefit was
observed when using a higher number. The input width win-
dow chosen was 10 d. The input data were scaled using a
standard scaler. The optimizer chosen was Adam with Nes-
terov momentum (Kingma and Ba, 2014; Dozat, 2016). The
batch size was set to 32, obtaining similar results with val-
ues between 16 and 32 and achieving significantly worse re-
sults with higher values; these observations are in concor-
dance with existing literature (Masters and Luschi, 2018).
The activation function used is tanh, since, on the one hand,
it was the only option that was optimized for graphics pro-
cessing unit (GPU) accelerators, giving much faster training
times but also giving more consistent results. The number
of training iterations was defined by an early stopper func-
tion that stops the process when no further improvements
are obtained. The cost function used during the training was
the mean square error (MSE). On the other hand, the num-
ber of neurons and the learning rate parameters were opti-
mized for each specific reservoir using the KerasTuner soft-
ware (O’Malley et al., 2019).

2.3 Metrics

In order to compare the different models and measure their
accuracy, several statistical metrics, widely used in hydro-
logical applications, were employed, more precisely, Pear-
son’s coefficient of correlation (r), the ratio of root mean
square error and the standard deviation of the observed val-
ues (RSR), the NSE (Nash and Sutcliffe, 1970), and the per-
cent bias (PBIAS) that are defined by the following equa-
tions:
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r =

N∑
i=1

[(
Qfor
i −Q

for
)(
Qobs
i −Q

obs
)]

√
N∑
i=1

(
Qfor
i −Q

for
)2
√

N∑
i=1

(
Qobs
i −Q

obs
)2
, (9)

NSE= 1−

N∑
i=1

(
Qobs
i −Q

for
i

)2
N∑
i=1

(
Qobs
i −Q

obs
)2
, (10)

RSR=

√
N∑
i=1

(
Qobs
i −Q

for
i

)2
√

N∑
i=1

(
Qobs
i −Q

obs
)2
, (11)

PBIAS=

N∑
i=1

(
Qobs
i −Q

for
i

)
N∑
i=1

(
Qobs
i

) × 100, (12)

whereQfor is the forecasted value,Qobs is the observed value
and N is the total number of samples. Following the crite-
rion of Moriasi et al. (2007), the statistics for model eval-
uation can be divided into three categories: first, the stan-
dard regression statistics that measure the linear relationship
between the predictions made by a model and the observed
data; in this category we considered Pearson’s coefficient of
correlation (r), which ranges between −1 and 1, with val-
ues close to 1 being considered to have a high degree of a
positive linear relationship. The second category is the di-
mensionless statistics; for this case we have chosen the NSE,
which ranges between −∞ and 1.0. It is a normalized statis-
tic that computes the relative magnitude of the residual vari-
ance with respect to the variance of the observed data, with
1.0 being the optimal value. The last category is error index
statistics that quantify the deviation of the predicted values
compared with the observed values in the data units used.
In this last category, two statistics were chosen; on the one
hand, the RSR is the ratio of the RMSE to the standard de-
viation of the observed data, with 0 being the optimal value.
On the other hand, the error index statistic used is the PBIAS,
which calculates the average tendency of the predicted values
to underestimate (positive PBIAS) or overestimate (negative
PBIAS) the observed series.

3 Results and discussion

Statistical parameters used to evaluate the performance of the
models to predict dam outflow are shown in Table 3. MLP
models with linear scales are shown in this table due to pre-
senting slightly better average adjustments in the validation

phase than the models with logarithmic scales. Results cor-
roborate that the proposed models offer a “very good” per-
formance for all the subsets considered according to the cri-
teria defined by Moriasi et al. (2007), who established differ-
ent ranges of these statistical parameters to define the level
of functioning of these procedures (the only exception is the
PBIAS value obtained by the linear regression model in the
training subset of the San Martiño reservoir). All the statisti-
cal parameters under consideration reach the maximum level
of good functioning defined, and therefore it can be con-
cluded that all the proposed models are able to provide an
accurate prediction of dam outflow attending to known pa-
rameters.

The first approximation to the prediction of dam outflow
was made by the simple method of considering the predic-
tion outflow the same outflow measured on the previous day.
This is considered the baseline model, to which the rest of
the models will be compared. Figure 6 shows the reservoir-
averaged metrics for each model and subset. As we can see
in RSR, NSE and r , all the models improve the accuracy of
the baseline model in every dataset. The ML model’s per-
formance shows no evidence of overfitting problems, where
a trained model learns very specific features of the training
dataset and fails to generalize using new datasets. The MLR
approach was able to outperform the baseline model on the
whole dataset but lags behind the ANN-based models. All
the ANN models showed similar accuracy based on RSR,
NSE and r metrics and provide a good generalization across
the test subset. The LSTM models were slightly better than
MLP, while NARX showed the best performance.

As can be observed in PBIAS (Fig. 6), the baseline does
not offer any significant bias since it is the same data series as
the one observed but with a delay. All the ML models have
a tendency to overestimate the series, especially in the test
subset. The LSTM models have the lowest tendency to over-
estimate and the MLR models have the highest. This fact can
be very significant depending on the application of the model
where a more conservative estimation towards the worst case
would be preferable.

In order to analyze the differences in the performance on
the different datasets and reservoirs of each model, Fig. 7
shows the NSE values for each case. Taking into account that
the NSE metric is very popular among hydrology studies and
no significant differences were found with RSR and r , only
the NSE is shown for the sake of clarity. The MLR mod-
els provide a good generalization in Castrelo, Velle, Santo
Estevo, San Martiño and Frieira reservoirs where the perfor-
mance for the test dataset is very similar to or even better than
on the training dataset. These are low-capacity reservoirs (ex-
cepting the Santo Estevo reservoir) where the regulation ca-
pacity is also lower. This tendency is also present in the ANN
models, where the lower-capacity reservoirs (Castrelo, Velle,
San Martiño and Frieira) show a better generalization abil-
ity, while in the higher-capacity reservoirs (Belesar, Barcena,
Santo Estevo and Peares) the performance of the models in
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Figure 6. Statistics of each subset for the different models developed. The average values from all the reservoirs are shown.

the test subset is lower than on the train and validation sub-
sets. Looking more closely at the data in Table 3, a tendency
is detected in reservoirs with a higher capacity to have worse
statistics than those of lower capacity. This evidences that
higher-capacity reservoirs have a greater ability to regulate
the flow of the river according to the desired interest. In simi-
lar events, higher-capacity reservoirs have more possibilities
of actuation; meanwhile lower-capacity ones have a much
more limited range of options. This particularity is more dif-
ficult to be modeled by the ML models.

The NSE values for the test dataset for each reservoir and
model are shown in Fig. 8, aiming to spot differences in the
models’ performance depending on the reservoir. Belesar,
Castrelo and Santo Estevo reservoirs show the highest ad-
vantage for the ML models. On the contrary, in the Barcena
reservoir, only NARX and LSTM were able to improve the
baseline approach. The MLR models were able to outper-
form the baseline except in the Barcena and San Martiño
cases; MLR was also able to outperform the MLP model
in the Castrelo case. The MLR was never the best option
but usually provides results close to ANN models. The MLP
models always performed better than the baseline model ex-
cept in the Barcena case; they provide similar results to the
other ANN models and very close results to LSTM. The
NARX models were able to improve the baseline model;
they offered the best results in all the reservoirs except the
Barcena reservoir, standing as the best performer. The LSTM
models were also able to consistently outperform the base-

line model, being the best model in the Barcena reservoir
and the second best model in the rest of the reservoirs, ex-
cept in Santo Estevo where it was outperformed by the MLP
and NARX models. From these observations, it can be con-
cluded that a per-reservoir analysis is advisable when devel-
oping a data-driven model, since none of the methodologies
proposed can be chosen as the best for all the cases.

To illustrate the behavior of the developed models, the Be-
lesar reservoir was chosen for two main reasons: it has the
highest capacity of all the analyzed reservoirs, so it has a
higher regulation capacity, and it does not have any other
reservoir upstream that conditions its behavior. A compari-
son of the predicted and observed flow time series for the
test period in the Belesar reservoir is shown in Fig. 9. It
can be seen that all the methodologies show similar perfor-
mance, but some differences can be highlighted. Both MLR
and MLP models have underestimated the main peak of the
series, while NARX and LSTM models have overestimated
it. This fact should be considered when designing systems
like flood EWS where the worst-case estimation should be
accounted for for safety reasons. On the contrary, in the lower
flows in the dry season, the NARX model was the best per-
former, providing accurate predictions; however, the LSTM
model had some difficulties at very low flow rates, especially
in the summers of 2017 and 2019. This makes the LSTM
model less suitable for water management systems where the
accuracy in the dry season is essential for a better exploita-
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Figure 7. The NSE values for each dam obtained with five methodologies for train (blue line), validation (orange line) and test (green line).

Figure 8. Bar chart comparing the NSE values for the test dataset for each reservoir and model.

tion of the water resources. In any case, these results may not
be generalized and can differ in other scenarios.

4 Conclusions

This research paper presents an assessment of different
ML techniques applied to reservoir outflow 1 d ahead predic-
tion using the previous reservoir volume percent, inflow and
outflow data. For this purpose, different models were devel-
oped and applied to several reservoirs in the Miño–Sil catch-
ment. The analysis of the obtained results revealed that the
proposed ML techniques obtained accurate predictions. The
ML models provide significant improvements over the base-

line model, showing a good generalization without signifi-
cant signs of overfitting. On average, the MLR models were
able to consistently improve the baseline model, while the
ANN models provided the best results. The RNNs (NARX
and LSTM) improved the MLP results, showing the advan-
tages of the RNNs when working with time series, especially
in the case of NARX. When analyzing the individual results
for each reservoir, the NARX models obtained the best statis-
tics except in the case of the Barcena reservoir, which was
outperformed by the LSTM model; this evidences the need
to perform a per-reservoir analysis to check the validity of
each solution given the particularities of each reservoir.

The ANN is a more suitable method than MLR, given the
non-linear nature of the phenomenon. Since the ANN-based
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Table 3. Statistical performance of the different models developed to predict the outflow. Averages are given in italics.

Model Reservoir Train Validation Test

r NSE RSR PBIAS r NSE RSR PBIAS r NSE RSR PBIAS

Baseline

Barcena 0.933 0.866 0.366 0.019 0.921 0.844 0.394 0.025 0.925 0.852 0.385 0.044
Belesar 0.921 0.842 0.398 0.015 0.928 0.857 0.378 −0.030 0.908 0.817 0.428 −0.022
Castrelo 0.930 0.861 0.372 0.006 0.924 0.849 0.388 0.012 0.924 0.849 0.388 −0.016
Frieira 0.932 0.865 0.367 0.003 0.930 0.862 0.371 0.011 0.938 0.879 0.348 0.000
Peares 0.934 0.869 0.362 0.011 0.939 0.880 0.347 −0.017 0.922 0.845 0.394 −0.033
San Martiño 0.928 0.857 0.379 0.008 0.933 0.868 0.363 0.000 0.943 0.887 0.336 0.017
Santo Estevo 0.941 0.883 0.342 −0.004 0.925 0.852 0.385 0.039 0.916 0.834 0.407 −0.049
Velle 0.931 0.862 0.371 0.006 0.939 0.879 0.347 0.017 0.936 0.874 0.356 −0.037
Average 0.931 0.863 0.370 0.006 0.930 0.861 0.372 0.003 0.925 0.852 0.384 –0.017

Linear reg.

Barcena 0.938 0.880 0.346 0.000 0.926 0.859 0.376 1.673 0.919 0.844 0.395 2.730
Belesar 0.940 0.884 0.341 −0.053 0.950 0.903 0.311 −1.007 0.926 0.857 0.378 −4.328
Castrelo 0.944 0.891 0.329 −0.018 0.942 0.887 0.335 3.822 0.944 0.892 0.328 −1.362
Frieira 0.938 0.881 0.345 −0.009 0.934 0.873 0.356 1.962 0.939 0.882 0.344 −2.200
Peares 0.932 0.869 0.361 −0.085 0.940 0.885 0.339 −0.148 0.923 0.853 0.383 −3.545
San Martiño 0.895 0.781 0.468 −11.19 0.935 0.876 0.352 1.866 0.934 0.870 0.361 −4.813
Santo Estevo 0.941 0.885 0.339 −2.584 0.935 0.876 0.353 2.253 0.932 0.869 0.361 0.569
Velle 0.937 0.878 0.350 0.000 0.942 0.889 0.334 1.568 0.941 0.886 0.338 −1.807
Average 0.932 0.867 0.362 –1.992 0.940 0.884 0.340 1.474 0.934 0.873 0.356 –2.498

MLP

Barcena 0.941 0.884 0.341 −2.520 0.931 0.867 0.365 0.023 0.923 0.851 0.386 0.012
Belesar 0.948 0.899 0.318 0.337 0.955 0.911 0.298 −0.685 0.930 0.863 0.370 −3.206
Castrelo 0.947 0.895 0.324 −3.566 0.949 0.899 0.318 −0.099 0.946 0.887 0.336 −7.250
Frieira 0.950 0.902 0.314 3.137 0.942 0.886 0.338 4.028 0.944 0.889 0.334 4.847
Peares 0.947 0.896 0.322 −3.399 0.943 0.887 0.337 −4.896 0.928 0.855 0.381 −6.530
San Martiño 0.941 0.886 0.338 0.586 0.939 0.881 0.345 0.774 0.947 0.897 0.321 −1.267
Santo Estevo 0.950 0.902 0.313 −1.930 0.941 0.886 0.337 −0.744 0.937 0.875 0.354 −2.314
Velle 0.937 0.878 0.350 2.378 0.946 0.893 0.327 3.347 0.944 0.889 0.333 3.257
Average 0.945 0.893 0.327 –0.622 0.943 0.889 0.333 0.219 0.937 0.876 0.352 –1.556

NARX

Barcena 0.947 0.897 0.320 −0.006 0.937 0.877 0.351 0.642 0.925 0.855 0.381 −0.624
Belesar 0.954 0.911 0.298 −0.214 0.953 0.908 0.303 −0.201 0.934 0.870 0.360 −2.687
Castrelo 0.954 0.910 0.301 −2.019 0.953 0.908 0.303 −0.379 0.949 0.899 0.318 −3.216
Frieira 0.946 0.894 0.325 −1.803 0.945 0.892 0.329 −0.413 0.945 0.894 0.326 0.572
Peares 0.951 0.904 0.309 0.410 0.946 0.893 0.326 −1.743 0.932 0.868 0.363 −0.824
San Martiño 0.946 0.896 0.323 −0.761 0.942 0.886 0.337 0.723 0.953 0.908 0.304 −3.209
Santo Estevo 0.957 0.916 0.290 −0.348 0.942 0.888 0.335 0.522 0.941 0.885 0.340 0.252
Velle 0.944 0.891 0.330 −0.083 0.951 0.904 0.311 −0.224 0.945 0.892 0.328 −2.880
Average 0.950 0.902 0.312 –0.603 0.946 0.894 0.324 –0.134 0.941 0.884 0.340 –1.577

LSTM

Barcena 0.952 0.905 0.308 1.083 0.941 0.886 0.338 1.275 0.927 0.858 0.376 1.446
Belesar 0.943 0.889 0.334 0.008 0.940 0.882 0.344 −3.292 0.931 0.865 0.368 −3.621
Castrelo 0.949 0.899 0.318 1.222 0.950 0.901 0.315 2.717 0.947 0.896 0.323 −0.581
Frieira 0.946 0.896 0.323 0.286 0.946 0.894 0.325 −0.190 0.945 0.893 0.326 1.183
Peares 0.937 0.876 0.353 0.846 0.943 0.888 0.334 −2.935 0.928 0.857 0.378 −1.683
San Martiño 0.947 0.897 0.321 0.868 0.932 0.869 0.362 0.153 0.950 0.898 0.320 −2.251
Santo Estevo 0.955 0.912 0.297 0.692 0.945 0.892 0.328 −0.107 0.933 0.866 0.367 0.979
Velle 0.940 0.882 0.343 1.239 0.947 0.897 0.322 0.006 0.944 0.889 0.333 −1.992
Average 0.946 0.894 0.325 0.781 0.943 0.889 0.334 –0.297 0.938 0.878 0.349 –0.815

models were able to outperform the more traditional MLR
models, it can be concluded that the number of samples in
the dataset is within the limit for training an ANN, although
larger datasets would possibly lead to better models espe-
cially when dealing with extreme events.

The overall observations confirm that the analyzed
ML models are capable of predicting the outflow of reser-
voirs and, therefore, can be incorporated into different sys-

tems such as water resource management systems or early
warning systems. However, the results obtained in this re-
search are limited to relatively small reservoirs located in wet
areas and may not be extrapolated to larger reservoirs or dry
areas, requiring additional research.

Although the validity of these models was assessed using
only a limited range of input variables, there are many other
variables that influence the functioning of the reservoirs, such
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Figure 9. Time series (left panels) and scatterplots (right panels) for Belesar Dam using the test dataset obtained with the proposed models.

as the weather forecast or the electric power demand. Also,
it is possible that the addition of certain input variables like
the gradient of the pool level could close the gap between
MLR or MLP methodologies with recurrent neural networks.
It is being studied how to incorporate these variables into
these models and if they can add any improvement to the
predictions.
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