Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-2829-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2829-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data
Sébastien Biass
CORRESPONDING AUTHOR
Earth Observatory of Singapore, Nanyang Technological University, Singapore
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Susanna F. Jenkins
Earth Observatory of Singapore, Nanyang Technological University, Singapore
Asian School of the Environment, Nanyang Technological University, Singapore
William H. Aeberhard
Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
Pierre Delmelle
Environmental Sciences, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Thomas Wilson
School of Earth and the Environment, University of Canterbury, Christchurch, New Zealand
Related authors
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Jakob Boyd Pernov, William H. Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild B. Skeie, Stephan Henne, Ulas Im, Patricia K. Quinn, Lucia M. Upchurch, and Julia Schmale
Atmos. Chem. Phys., 25, 6497–6537, https://doi.org/10.5194/acp-25-6497-2025, https://doi.org/10.5194/acp-25-6497-2025, 2025
Short summary
Short summary
Particulate methanesulfonic acid (MSAp) is vital for the Arctic climate system. Numerical models struggle to reproduce the MSAp seasonal cycle. We evaluate three numerical models and one reanalysis product’s ability to simulate MSAp. We develop data-driven models for MSAp at four Arctic stations. The data-driven models outperform the numerical models and reanalysis product and identified precursor source-, chemical-processing-, and removal-related features as being important for modeling MSAp.
Nicola J. McDonald, Leslie Dowling, Emily P. Harvey, Alana M. Weir, Mark S. Bebbington, Nam Bui, Christina Magill, Heather M. Craig, Garry W. McDonald, Juan J. Monge, Shane J. Cronin, Thomas M. Wilson, and Duncan Walker
Nat. Hazards Earth Syst. Sci., 25, 1543–1571, https://doi.org/10.5194/nhess-25-1543-2025, https://doi.org/10.5194/nhess-25-1543-2025, 2025
Short summary
Short summary
In this paper, we develop a model to quantify the future economic impacts of volcanic events for dairy farms in Taranaki, Aotearoa / New Zealand. We use the model to simulate 10 000 possible volcanic futures and collate results into risk-type metrics. The results highlight the variation in risk exposure across farms and show that volcanic risk should play an important role in shaping the future of Taranaki’s dairy sector. This model could be applied to other hazard and agricultural land use contexts.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Cited articles
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, New York, NY, USA, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019.
Arnalds, O.: The Influence of Volcanic Tephra (Ash) on Ecosystems, in:
Advances in Agronomy, vol. 121, edited by: Sparks, D., Elsevier, Amsterdam,
331–380, https://doi.org/10.1016/B978-0-12-407685-3.00006-2, 2013.
Asoka, A. and Mishra, V.: Prediction of vegetation anomalies to improve food
security and water management in India, Geophys. Res. Lett., 42, 5290–5298,
https://doi.org/10.1002/2015GL063991, 2015.
Ayris, P. M. and Delmelle, P.: The immediate environmental effects of tephra
emission, Bull. Volcanol., 74, 1905–1936,
https://doi.org/10.1007/s00445-012-0654-5, 2012.
Bagheri, G., Rossi, E., Biass, S., and Bonadonna, C.: Timing and nature of
volcanic particle clusters based on field and numerical investigations, J.
Volcanol. Geotherm. Res., 327, 520–530,
https://doi.org/10.1016/j.jvolgeores.2016.09.009, 2016.
Batunacun, Wieland, R., Lakes, T., and Nendel, C.: Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China, Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Biass, S., Jenkins, S., Lallemant, D., Lim, T. N., Williams, G., and Yun,
S.-H.: Remote sensing of volcanic impacts, in: Forecasting and Planning for
Volcanic Hazards, Risks, and Disasters, vol. 2, edited by: Papale, P.,
Elsevier, 473–491, https://doi.org/10.1016/B978-0-12-818082-2.00012-3,
2021.
Biass, S.: Data for NHESS manuscript by Biass et al. (2022): Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6976234, 2022.
Blake, D., Wilson, G., Stewart, C., Craig, H., Hayes, J. L., Jenkins, S. F.,
Wilson, T., Horwell, C. J., Andreastuti, S., Daniswara, R., Ferdijwijaya,
S., Leonard, G., Hendrasto, M., and Cronin, S. J.: The 2014 eruption of
Kelud volcano, Indonesia: impacts on infrastructure, utilities, agriculture
and health, GNS Science Report 2015/15, GNS Science, Te Pu Ao, 2015.
Bonadonna, C., Cioni, R., Pistolesi, M., Elissondo, M., and Baumann, V.:
Sedimentation of long-lasting wind-affected volcanic plumes: the example of
the 2011 rhyolitic Cordón Caulle eruption, Chile, Bull. Volcanol., 77,
1–19, https://doi.org/10.1007/s00445-015-0900-8, 2015.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324,
2001.
Bright, B. C., Hudak, A. T., Kennedy, R. E., Braaten, J. D., and Henareh Khalyani, A.: Examining
post-fire vegetation recovery with Landsat time series analysis in three western North
American forest types, Fire Ecol., 15, 8, https://doi.org/10.1186/s42408-018-0021-9, 2019.
Buchhorn, M., Smets, B., Bertels, L., Roo, B. D., Lesiv, M., Tsendbazar,
N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover
100 m: collection 3: epoch 2018: Globe, Zenodo [data set], https://doi.org/10.5281/ZENODO.3518038, 2020.
Cai, Z., Jönsson, P., Jin, H., and Eklundh, L.: Performance of smoothing
methods for reconstructing NDVI time-series and estimating vegetation
phenology from MODIS data, Remote Sens., 9, 20–22,
https://doi.org/10.3390/rs9121271, 2017.
Campos-Taberner, M., Moreno-Martínez, Á., García-Haro, F. J.,
Camps-Valls, G., Robinson, N. P., Kattge, J., and Running, S. W.: Global
estimation of biophysical variables from Google Earth Engine platform,
Remote Sens., 10, 1–17, https://doi.org/10.3390/rs10081167, 2018.
Caswell, T. A., Droettboom, M., Lee, A., de Andrade, E. S., Hoffmann, T., Klymak, J., Hunter, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., Hobson, P., hannah, Gohlke, C., Vincent, A. F., Yu, T. S., Ma, E., Silvester, S., Moad, C., Kniazev, N., Ernest, E., and Ivanov, P.: matplotlib/matplotlib: REL: v3.5.2, Zenodo, https://doi.org/10.5281/zenodo.6513224, 2022.
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, in: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, New York,
NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Chen, T., He, T, Benesty, M, and Tang, Y: Understand your dataset with XGBoost:
https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html, last access:
21 June 2022.
Chou, W., Lin, W., and LIn, C.: Vegetation recovery patterns assessment at landslides caused
by catastrophic earthquake: A case study in central Taiwan, Environ. Monit. Assess., 152, 245, https://doi.org/10.1007/s10661-008-0312-8, 2009.
Choumert, J. and Phinélias, P.: Volcanic hazards, land and labor,
CERDI, Pole Tertiaire, Clermont Ferrand, https://ideas.repec.org/p/hal/wpaper/halshs-01845041.html (last access: 21 June 2022), 2018.
Collini, E., Osores, M. S., Folch, A., Viramonte, J. G., Villarosa, G., and
Salmuni, G.: Volcanic ash forecast during the June 2011 Cordón Caulle
eruption, Nat. Hazards, 66, 389–412,
https://doi.org/10.1007/s11069-012-0492-y, 2013.
Costa, A., Pioli, L., and Bonadonna, C.: Assessing tephra total grain-size
distribution: Insights from field data analysis, Earth Planet. Sci. Lett.,
443, 90–107, https://doi.org/10.1016/j.epsl.2016.02.040, 2016.
Craig, H., Wilson, T., Stewart, C., Villarosa, G., Outes, V., Cronin, S.,
and Jenkins, S.: Agricultural impact assessment and management after three
widespread tephra falls in Patagonia, South America, Nat. Hazards, 82,
1167–1229, https://doi.org/10.1007/s11069-016-2240-1, 2016a.
Craig, H., Wilson, T., Stewart, C., Outes, V., Villarosa, G., and Baxter,
P.: Impacts to agriculture and critical infrastructure in Argentina after
ashfall from the 2011 eruption of the Cordón Caulle volcanic complex: an
assessment of published damage and function thresholds, J. Appl. Volcanol.,
5, 7, https://doi.org/10.1186/s13617-016-0046-1, 2016b.
Craig, H. M., Wilson, T. M., Magill, C., Stewart, C., and Wild, A. J.:
Agriculture and forestry impact assessment for tephra fall hazard: fragility
function development and New Zealand scenario application, Volcanica, 4,
345–367, https://doi.org/10.30909/vol.04.02.345367, 2021.
Crisafulli, C., Swanson, F., Halvorson, J., and Clarkson, B.: Volcano
Ecology: Disturbance Characteristics and Assembly of Biological Communities,
in: The Encyclopedia of volcanoes, 2nd edition, edited by: Sigurdsson, H.,
Houghton, B., McNutt, S., Rymer, H., and Stix, J., Academic Press, SanDiego,
1265–1284, https://doi.org/10.1016/B978-0-12-385938-9.00073-0, 2015.
Cronin, S. J., Stewart, C., Zernack, A. V., Brenna, M., Procter, J. N., Pardo, N., Christenson,
B., Wilson, T., Stewart, R. B., and Irwin, M.: Volcanic ash leachate compositions
and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro,
New Zealand, J. Volcanol. Geoth. Res., 286, 233–247,
https://doi.org/10.1016/j.jvolgeores.2014.07.002, 2014.
Crowley, M. A., Cardille, J. A., White, J. C., and Wulder, M. A.: Generating
intra-year metrics of wildfire progression using multiple open-access
satellite data streams, Remote Sens. Environ., 232, 111295,
https://doi.org/10.1016/j.rse.2019.111295, 2019.
Dale, V. H., Swanson, F. J., and Crisafulli, C. M.: Ecological responses to the 1980 eruption of Mount
St. Helens, Springer, New York, NY, 286 pp., ISBN 978-0-387-28150-6, 2005.
Degruyter, W. and Bonadonna, C.: Improving on mass flow rate estimates of volcanic eruptions,
Geophys. Res. Lett., 39, L16308, https://doi.org/10.1029/2012GL052566, 2012.
de Rose, R. C., Ogushi, T., Morishima, W., and Collado, M.: Land cover
change on Mt. Pinatubo, the Philippines, monitored using ASTER VNIR, Int. J.
Remote Sens., 32, 9279–9305, https://doi.org/10.1080/01431161.2011.554452,
2011.
De Schutter, A., Kervyn, M., Canters, F., Bosshard-Stadlin, S. A., Songo, M.
A. M., and Mattsson, H. B.: Ash fall impact on vegetation: a remote sensing
approach of the Oldoinyo Lengai 2007–08 eruption, J. Appl. Volcanol., 4,
15, https://doi.org/10.1186/s13617-015-0032-z, 2015.
DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., and Lang, M.
W.: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat
data on the Google Earth Engine, Remote Sens. Environ., 240, 111664,
https://doi.org/10.1016/j.rse.2020.111664, 2020.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2005.
Dijk, O.: oegedijk/explainerdashboard: v0.3.8.2, Zenodo [code], https://doi.org/10.5281/zenodo.6408776, 2022.
Dominguez, L., Bonadonna, C., Forte, P., Jarvis, P. A., Cioni, R., Mingari,
L., Bran, D., and Panebianco, J. E.: Aeolian Remobilisation of the
2011-Cordón Caulle Tephra-Fallout Deposit: Example of an Important
Process in the Life Cycle of Volcanic Ash, Front. Earth Sci., 7, 1–20,
https://doi.org/10.3389/feart.2019.00343, 2020a.
Dominguez, L., Rossi, E., Mingari, L., Bonadonna, C., Forte, P., Panebianco,
J. E., and Bran, D.: Mass flux decay timescales of volcanic particles due to
aeolian processes in the Argentinian Patagonia steppe, Sci. Rep., 10, 1–15,
https://doi.org/10.1038/s41598-020-71022-w, 2020b.
Easdale, M. H. and Bruzzone, O.: Spatial distribution of volcanic ash
deposits of 2011 Puyehue-Cordón Caulle eruption in Patagonia as measured
by a perturbation in NDVI temporal dynamics, J. Volcanol. Geotherm. Res.,
353, 11–17, https://doi.org/10.1016/j.jvolgeores.2018.01.020, 2018.
Elissondo, M., Baumann, V., Bonadonna, C., Pistolesi, M., Cioni, R., Bertagnini, A., Biass, S., Herrero, J.-C., and Gonzalez, R.: Chronology and impact of the 2011 Cordón Caulle eruption, Chile, Nat. Hazards Earth Syst. Sci., 16, 675–704, https://doi.org/10.5194/nhess-16-675-2016, 2016.
Enriquez, A. S., Necpalova, M., Cremona, M. V., Peri, P. L., and Six, J.:
Immobilization and stabilization of volcanic ash in soil aggregates in
semiarid meadows of Northern Patagonia, Geoderma, 392, 114987,
https://doi.org/10.1016/j.geoderma.2021.114987, 2021.
FAO: The Impact of disasters and crises on agriculture and Food Security,
Food and Agriculture Organisation, Rome, ISBN 978-92-5-130359-7, 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Few, R., Armijos, M. T., and Barclay, J.: Living with Volcan Tungurahua: The
dynamics of vulnerability during prolonged volcanic activity, Geoforum, 80,
72–81, https://doi.org/10.1016/j.geoforum.2017.01.006, 2017.
Fisher, A., Rudin, C., and Dominici, F.: All Models are Wrong, but Many are Useful: Learning a
Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously, J. Mach. Learn. Res., 20, 1–81, 2019.
Folch, A., Mingari, L., Osores, M. S., and Collini, E.: Modeling volcanic ash resuspension – application to the 14–18 October 2011 outbreak episode in central Patagonia, Argentina, Nat. Hazards Earth Syst. Sci., 14, 119–133, https://doi.org/10.5194/nhess-14-119-2014, 2014.
Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, 2016.
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020.
Forte, P., Domínguez, L., Bonadonna, C., Gregg, C. E., Bran, D., Bird, D., and Castro, J.
M.: Ash resuspension related to the 2011–2012 Cordón Caulle eruption, Chile, in a rural community
of Patagonia, Argentina, J. Volcanol. Geoth. Res., 350, 18–32, https://doi.org/10.1016/j.jvolgeores.2017.11.021, 2017.
Freire, S., Florczyk, A., Pesaresi, M., and Sliuzas, R.: An Improved Global
Analysis of Population Distribution in Proximity to Active Volcanoes,
1975–2015, ISPRS Int. J. Geo-Inf., 8, 341,
https://doi.org/10.3390/ijgi8080341, 2019.
Giuliani, G., Camara, G., Killough, B., and Minchin, S.: Earth observation
open science: enhancing reproducible science using data cubes, Data, 4,
4–9, https://doi.org/10.3390/data4040147, 2019.
Gomes, V. C. F., Queiroz, G. R., and Ferreira, K. R.: An overview of
platforms for big earth observation data management and analysis, Remote
Sens., 12, 1–25, https://doi.org/10.3390/RS12081253, 2020.
Gonzalez-Roglich, M., Zvoleff, A., Noon, M., Liniger, H., Fleiner, R.,
Harari, N., and Garcia, C.: Synergizing global tools to monitor progress
towards land degradation neutrality: Trends.Earth and the World Overview of
Conservation Approaches and Technologies sustainable land management
database, Environ. Sci. Policy, 93, 34–42,
https://doi.org/10.1016/j.envsci.2018.12.019, 2019.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
He, W., Ye, C., Sun, J., Xiong, J., Wang, J., and Zhou, T.: Dynamics and
drivers of the alpine timberline on Gongga Mountain of Tibetan
Plateau-Adopted from the Otsu method on Google Earth engine, Remote Sens.,
12, 1–20, https://doi.org/10.3390/RS12162651, 2020.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M.,
Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M.
A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I.,
Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hope, A., Albers, N., and Bart, R.: Characterizing post-fire recovery of fynbos vegetation in
the western cape region of south africa using MODIS data, Int. J. Remote Sensing, 33, 979–999, https://doi.org/10.1080/01431161.2010.543184, 2012.
Hotes, S., Poschlod, P., Takahashi, H., Grootjans, A. P., and Adema, E.:
Effects of tephra deposition on mire vegetation: a field experiment in
Hokkaido, Japan: Tephra effects on mire vegetation, J. Ecol., 92, 624–634,
https://doi.org/10.1111/j.0022-0477.2004.00901.x, 2004.
Huete, A. R., Didana, K., Miuraa, T., Rodrigueza, E. P., Gaoa, X., and
Ferreirab, L. G.: Overview of the radiometric and biophysical performance of
the MODIS vegetation indices, Remote Sens. Env., 83,
https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and
Wilson, T. M.: Volcanic risk assessment: Quantifying physical vulnerability
in the built environment, J. Volcanol. Geotherm. Res., 276, 105–120,
https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Wilson, T. M., Magill, C., Miller, V., Stewart, C., Blong,
R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash
fall hazard and risk, in: Global Volcanic Hazards and Risk, edited by:
Loughlin, S., Sparks, S., Brown, S., Jenkins, S., and Vye-Brown, C.,
Cambridge University Press, 173–222, https://doi.org/10.1017/CBO9781316276273.005, 2015.
Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, 2022.
Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., and
Lobell, D. B.: Smallholder maize area and yield mapping at national scales
with Google Earth Engine, Remote Sens. Environ., 228, 115–128,
https://doi.org/10.1016/j.rse.2019.04.016, 2019.
Jordahl, K., Bossche, J. V. den, Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., Rey, S., Ren, C., Arribas-Bel, D., Wasser, L., Wolf, L. J., Journois, M., Wilson, J., Greenhall, A., Holdgraf, C., Filipe, and Leblanc, F.: geopandas/geopandas: v0.8.1, Zenodo [code], https://doi.org/10.5281/zenodo.3946761, 2020.
Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., and
Zhang, J.: Assessment of climate impact on vegetation dynamics over East
Africa from 1982 to 2015, Sci. Rep., 9, 1–20,
https://doi.org/10.1038/s41598-019-53150-0, 2019.
Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M. D., and
Dormann, C. F.: Spatially autocorrelated training and validation samples
inflate performance assessment of convolutional neural networks, ISPRS Open
J. Photogramm. Remote Sens., 5, 100018,
https://doi.org/10.1016/j.ophoto.2022.100018, 2022.
Khanal, N., Matin, M. A., Uddin, K., Poortinga, A., Chishtie, F., Tenneson,
K., and Saah, D.: A comparison of three temporal smoothing algorithms to
improve land cover classification: A case study from NEPAL, Remote Sens.,
12, 5–7, https://doi.org/10.3390/RS12182888, 2020.
Kong, D., Zhang, Y., Gu, X., and Wang, D.: A robust method for
reconstructing global MODIS EVI time series on the Google Earth Engine,
ISPRS J. Photogramm. Remote Sens., 155, 13–24,
https://doi.org/10.1016/j.isprsjprs.2019.06.014, 2019.
Le Pennec, J.-L., Ruiz, G. A., Ramón, P., Palacios, E., Mothes, P., and
Yepes, H.: Impact of tephra falls on Andean communities: The influences of
eruption size and weather conditions during the 1999–2001 activity of
Tungurahua volcano, Ecuador, J. Volcanol. Geotherm. Res., 217–218, 91–103,
https://doi.org/10.1016/j.jvolgeores.2011.06.011, 2012.
Leadbetter, S. J., Hort, M. C., von Löwis, S., Weber, K., and Witham, C. S.: Modeling
the resuspension of ash deposited during the eruption of Eyjafjallajökull in spring
2010: MODELING RESUSPENDED VOLCANIC ASH, J. Geophys. Res., 117, D00U10, https://doi.org/10.1029/2011JD016802, 2012.
Lehmann, A., Nativi, S., Mazzetti, P., Maso, J., and Serral, I.: GEOEssential – mainstreaming
work flows from data sources to environment policy indicators with essential variables, Int. J. Digit. Earth, 13, 322–338, https://doi.org/10.1080/17538947.2019.1585977,
2020.
Li, L., Bakelants, L., Solana, C., Canters, F., and Kervyn, M.: Dating lava
flows of tropical volcanoes by means of spatial modeling of vegetation
recovery, Earth Surf. Process. Landf., 43, 840–856,
https://doi.org/10.1002/esp.4284, 2018.
Li, S., Xu, L., Jing, Y., Yin, H., Li, X., and Guan, X.: High-quality
vegetation index product generation: A review of NDVI time series
reconstruction techniques, Int. J. Appl. Earth Obs. Geoinformation, 105,
102640, https://doi.org/10.1016/j.jag.2021.102640, 2021.
Ligot, N., Guevara, A., and Delmelle, P.: Drivers of crop impacts from tephra fallout: Insights
from interviews with farming communities around Tungurahua volcano, Ecuador, Volcanica, 5,
163–181, https://doi.org/10.30909/vol.05.01.163181, 2022.
Lin, Y. C., Mestav Sarica, G., Chua, T. J., Jenkins, S. F., Switzer, A. D.,
Woo, G., and Lallemant, D.: Asia's looming Black Elephant events, Commun.
Earth Environ., 2, 214, https://doi.org/10.1038/s43247-021-00283-8, 2021.
Liu, E. J., Cashman, K. V., Beckett, F. M., Witham, C. S., Leadbetter, S.
J., Hort, M. C., and Guðmundsson, S.: Ash mists and brown snow:
Remobilization of volcanic ash from recent Icelandic eruptions, J. Geophys.
Res.-Atmos., 119, 2014JD021598, https://doi.org/10.1002/2014JD021598,
2014.
Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., and Qiao, Z.: Mapping cropping intensity in
China using time series Landsat and Sentinel-2 images and Google Earth Engine, Remote Sens.
Environ., 239, 111624, https://doi.org/10.1016/j.rse.2019.111624, 2020.
Loughlin, S., Barsotti, S., Bonadonna, C., and Calder, E. S.: Geophysical risk: volcanic activity, in:
Science for Disaster Risk Management knowing better and losing less, vol. 3.2, edited by: Poljanšek, K.,
Marín Ferrer, M, De Groeve, T, and Clark, I, Luxembourg, 151–190, 2018.
Lu, T., Zeng, H., Luo, Y., Wang, Q., Shi, F., Sun, G., Wu, Y., and Wu, N.: Monitoring vegetation
recovery after China’s May 2008 wenchuan earthquake using landsat TM time-series data: a case
study in Mao county, Ecol. Res., 27, 955–966, https://doi.org/10.1007/s11284-012-0976-y, 2012.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B.,
Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local
explanations to global understanding with explainable AI for trees, Nat.
Mach. Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020.
Magill, C., Wilson, T., and Okada, T.: Observations of tephra fall impacts
from the 2011 Shinmoedake eruption, Japan, Earth Planets Space, 65,
677–698, https://doi.org/10.5047/eps.2013.05.010, 2013.
Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra, N., Kraemer, G., Peters, J., Bodesheim, P., Camps-Valls, G., Donges, J. F., Dorigo, W., Estupinan-Suarez, L. M., Gutierrez-Velez, V. H., Gutwin, M., Jung, M., Londoño, M. C., Miralles, D. G., Papastefanou, P., and Reichstein, M.: Earth system data cubes unravel global multivariate dynamics, Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, 2020.
Major, J. J., Bertin, D., Pierson, T. C., Amigo, Á., Iroumé, A.,
Ulloa, H., and Castro, J.: Extraordinary sediment delivery and rapid
geomorphic response following the 2008-2009 eruption of Chaitén Volcano,
Chile, Water Resour. Res., 52, 5075–5094,
https://doi.org/10.1002/2015WR018250, 2016.
Martín-Sotoca, J. J., Saa-Requejo, A., Moratiel, R., Dalezios, N., Faraslis, I., and Tarquis, A. M.: Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds, Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, 2019.
Marzen, L., Szantoib, Z., Harrington, L. M. B., and Harrington, J. A.: Implications of management
strategies and vegetation change in the Mount St. Helens blast zone, Geocarto Int.,
26, 359–376, https://doi.org/10.1080/10106049.2011.584977, 2011.
Meroni, M., Fasbender, D., Rembold, F., Atzberger, C., and Klisch, A.: Near
real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs.
accuracy and effect of anomaly computation options, Remote Sens. Environ.,
221, 508–521, https://doi.org/10.1016/j.rse.2018.11.041, 2019.
Molnar, C.: Interpretable Machine Learning, https://christophm.github.io/interpretable-ml-book/cite.html (last access: 11 August 2022), 2021.
Müller, A. C. and Guido, S.: Introduction to Machine Learning with
Python and Scikit-Learn, O'Reilly, ISBN 978-1-4493-6941-5, 2015.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30, 2019.
Murphy, S., Wright, R., and Rouwet, D.: Color and temperature of the crater
lakes at Kelimutu volcano through time, Bull. Volcanol., 80, 2,
https://doi.org/10.1007/s00445-017-1172-2, 2017.
Nativi, S., Santoro, M., Giuliani, G., and Mazzetti, P.: Towards a knowledge
base to support global change policy goals, Int. J. Digit. Earth, 13,
188–216, https://doi.org/10.1080/17538947.2018.1559367, 2020.
Osman, S., Rossi, E., Bonadonna, C., Frischknecht, C., Andronico, D., Cioni, R., and Scollo, S.: Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna, Nat. Hazards Earth Syst. Sci., 19, 589–610, https://doi.org/10.5194/nhess-19-589-2019, 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Pfeiffer, T., Costa, A., and Macedonio, G.: A model for the numerical
simulation of tephra fall deposits, J. Volcanol. Geotherm. Res., 140,
273–294, https://doi.org/10.1016/j.jvolgeores.2004.09.001, 2005.
Phillips, J., Barclay, J., Pyle, D., and Armijos, M. T.: Dynamic and
Extensive Risk Arising from Volcanic Ash Impacts on Agriculture, in: Global
Assessment Report on Disaster Risk Reduction (GAR 2019), United Nations
Office for Disaster Risk Reduction, 1–30, 2019.
Pierson, T. C., Major, J. J., Amigo, Á., and Moreno, H.: Acute
sedimentation response to rainfall following the explosive phase of the
2008–2009 eruption of Chaitén volcano, Chile, Bull. Volcanol., 75,
1–17, https://doi.org/10.1007/s00445-013-0723-4, 2013.
Pistolesi, M., Cioni, R., Bonadonna, C., Elissondo, M., Baumann, V.,
Bertagnini, A., Chiari, L., Gonzales, R., Rosi, M., and Francalanci, L.:
Complex dynamics of small-moderate volcanic events: the example of the 2011
rhyolitic Cordón Caulle eruption, Chile, Bull. Volcanol., 77, 1–24,
https://doi.org/10.1007/s00445-014-0898-3, 2015.
Poortinga, A., Clinton, N., Saah, D., Cutter, P., Chishtie, F., Markert, K. N., Anderson, E. R.,
Troy, A., Fenn, M., Tran, L. H., Bean, B., Nguyen, Q., Bhandari, B., Johnson, G., and Towashiraporn,
P.: An operational before-after-control-impact (BACI) designed platform for vegetation monitoring at planetary scale, Remote Sens., 10, 760, https://doi.org/10.3390/rs10050760,
2018.
Poulidis, A. P., Biass, S., Bagheri, G., Takemi, T., and Iguchi, M.:
Atmospheric vertical velocity – a crucial component in understanding
proximal deposition of volcanic ash, Earth Planet. Sci. Lett., 566, 116980,
https://doi.org/10.1016/j.epsl.2021.116980, 2021.
QGIS Development Team: QGIS geographic information system, https://www.qgis.org, last access: 11 August 2022.
Rampengan, M. M. F., Boedhihartono, A. K., Margules, C., Sayer, J., Law, L.,
Gaillard, J. C., Tien, O. T. N., and Linh, T. T. M.: Agroforestry on an
Active Volcanic Small Island in Indonesia: Prospering with Adversity, Geogr.
Res., 54, 19–34, https://doi.org/10.1111/1745-5871.12148, 2016.
Reliefweb: https://reliefweb.int/disaster/vo-2020-000002-phl (last access: 5 January 2022), 2020
Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Perez-Hoyos,
A., Lemoine, G., Leo, O., and Negre, T.: ASAP: A new global early warning
system to detect anomaly hot spots of agricultural production for food
security analysis, Agric. Syst., 168, 247–257,
https://doi.org/10.1016/j.agsy.2018.07.002, 2019.
Rowley, J.: The wisdom hierarchy: Representations of the DIKW hierarchy, J.
Inf. Sci., 33, 163–180, https://doi.org/10.1177/0165551506070706, 2007.
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E.,
Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van
Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M.,
Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., and
Zscheischler, J.: Inferring causation from time series in Earth system
sciences, Nat. Commun., 10, 2553,
https://doi.org/10.1038/s41467-019-10105-3, 2019.
Shapley, L. S.: A Value for n-Person Games, in: Contributions to the Theory
of Games 2.28, edited by: Kuhn, H. W. and Tucker, A. W., Princeton
University Press, 307–318, https://doi.org/10.1515/9781400881970-018,
1956.
Sivarajan, S. P., Lindsay, J., Cronin, S., and Wilson, T.: Remediation and
Recovery Techniques for Volcanic Ash-Affected Pasture Soils of New Zealand,
in: Science and policy: nutrient management challenges for the next
generation., edited by: Currie, L. D. and Hedley, M. J., Fertilizer and Lime
Research Centre, Massey University, Palmerston North, New Zealand, Massey,
1–17, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J.
G., Duda, M. G., Barker, D., and Huang, X.: A Description of the Advanced Research WRF Model
Version 4, National Center for Atmospheric Research, Boulder, CO, https://doi.org/10.5065/1dfh-6p97, 2019.
Stewart, C., Craig, H. M., Gaw, S., Wilson, T., Villarosa, G., Outes, V.,
Cronin, S., and Oze, C.: Fate and agricultural consequences of leachable
elements added to the environment from the 2011 Cordón Caulle tephra
fall, J. Volcanol. Geotherm. Res., 327, 554–570,
https://doi.org/10.1016/j.jvolgeores.2016.09.017, 2016.
Stewart, C., Damby, D. E., Tomašek, I., Horwell, C. J., Plumlee, G. S., Armienta, M. A., Hinojosa,
M. G. R., Appleby, M., Delmelle, P., Cronin, S., Ottley, C. J., Oppenheimer, C., and Morman, S.:
Assessment of leachable elements in volcanic ashfall: a review and evaluation of a standardized
protocol for ash hazard characterization, J. Volcanol. Geotherm. Res., 392,
106756, https://doi.org/10.1016/j.jvolgeores.2019.106756, 2020.
Sulova, A. and Arsanjani, J. J.: Exploratory Analysis of Driving Force of
Wildfires in Australia: An Application of Machine Learning within Google
Earth Engine, Remote Sens., 13, 23, https://doi.org/10.3390/rs13010010,
2021.
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., and
Brisco, B.: Google Earth Engine for geo-big data applications: A
meta-analysis and systematic review, ISPRS J. Photogramm. Remote Sens., 164,
152–170, https://doi.org/10.1016/j.isprsjprs.2020.04.001, 2020.
The pandas development team: pandas-dev/pandas: Pandas, Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2020.
The World Bank: Evaluación de daños y pérdidas del Volcán de Fuego, The World Bank, Washington,
D.C., https://documents.worldbank.org/en/publication/documents-reports/documentdetail/388801560926135255/evaluación-de-daños-y-pérdidas-del-volcán-de-fuego-dala-report (last access: 11 August 2022), 2018.
Tortini, R., van Manen, S. M., Parkes, B. R. B., and Carn, S. A.: The impact
of persistent volcanic degassing on vegetation: A case study at Turrialba
volcano, Costa Rica, Int. J. Appl. Earth Obs. Geoinformation, 59, 92–103,
https://doi.org/10.1016/j.jag.2017.03.002, 2017.
Wang, L., Diao, C., Xian, G., Yin, D., Lu, Y., Zou, S., and Erickson, T. A.: A summary of the
special issue on remote sensing of land change science with Google earth engine, Remote Sens. Environ., 248, 112002, https://doi.org/10.1016/j.rse.2020.112002, 2020.
Waskom, M. L.: seaborn: statistical data visualization, J. Open Source Softw., 6, 3021, https://doi.org/10.21105/joss.03021, 2021.
Wilson, T., Kaye, G., Stewart, C., and Cole, J.: Impacts of the 2006 eruption of Merapi volcano,
Indonesia, on agriculture and infrastructure, GNS Science Report 2007/07, 2007.
Wilson, T., Cole, J., Stewart, C., Cronin, S., and Johnston, D.: Ash storms:
impacts of wind-remobilised volcanic ash on rural communities and
agriculture following the 1991 Hudson eruption, southern Patagonia, Chile,
Bull. Volcanol., 73, 223–239, 2011a.
Wilson, T., Cole, J., Cronin, S., and Stewart, C.: Impacts on agriculture
following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for
recovery, Nat. Hazards, 57, 185–212, 2011b.
Wilson, T., Stewart, C., Bickerton, H., Baxter, P., Outes, V., Villarosa, G., and Rovere, E: Impacts
of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure,
agriculture and public health, GNS Science Report 2012/20, 2013.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q.,
and Yang, Y.: Coupled estimation of 500 m and 8-day resolution global
evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zobel, D. B., Antos, J. A., and Fischer, D. G.: Community development by forest understory
plants after prolonged burial by tephra, Plant Ecol., 223, 381–396, https://doi.org/10.1007/s11258-021-01216-3, 2022.
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
We present a methodology that combines big Earth observation data and interpretable machine...
Altmetrics
Final-revised paper
Preprint