Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data
Data sets
Data for NHESS manuscript by Biass et al. (2022): Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data (1.0) https://doi.org/10.5281/zenodo.6976234
MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 https://doi.org/10.5067/MODIS/MOD13Q1.006
ERA5-Land monthly averaged data from 1981 to present https://doi.org/10.24381/cds.68d2bb30
Copernicus Global Land Service: Land Cover 100 m: collection 3: epoch 2018: Globe https://doi.org/10.5281/ZENODO.3518038
Model code and software
pandas-dev/pandas https://doi.org/10.5281/zenodo.3509134
geopandas/geopandas: v0.8.1 https://doi.org/10.5281/zenodo.3946761
matplotlib/matplotlib: REL: v3.5.2 https://doi.org/10.5281/zenodo.6513224
oegedijk/explainerdashboard https://doi.org/10.5281/zenodo.6408776