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Abstract. Although the generally high fertility of volcanic
soils is often seen as an opportunity, short-term consequences
of eruptions on natural and cultivated vegetation are likely to
be negative. The empirical knowledge obtained from post-
event impact assessments provides crucial insights into the
range of parameters controlling impact and recovery of veg-
etation, but their limited coverage in time and space offers
a limited sample of all possible eruptive and environmental
conditions. Consequently, vegetation vulnerability remains
largely unconstrained, thus impeding quantitative risk analy-
ses.

Here, we explore how cloud-based big Earth observa-
tion data, remote sensing and interpretable machine learning
(ML) can provide a large-scale alternative to identify the na-
ture of, and infer relationships between, drivers controlling
vegetation impact and recovery. We present a methodology
developed using Google Earth Engine to systematically re-
visit the impact of past eruptions and constrain critical haz-
ard and vulnerability parameters. Its application to the impact
associated with the tephra fallout from the 2011 eruption of
Cordón Caulle volcano (Chile) reveals its ability to capture
different impact states as a function of hazard and environ-
mental parameters and highlights feedbacks and thresholds
controlling impact and recovery of both natural and culti-
vated vegetation. We therefore conclude that big Earth obser-
vation (EO) data and machine learning complement existing
impact datasets and open the way to a new type of dynamic
and large-scale vulnerability models.

1 Introduction

In 2015, more than 8 % of the world’s population lived within
100 km of a volcano that had a significant eruption during
the Holocene (Freire et al., 2019). Current trends indicate
that this exposure will increase with, for instance, the popula-
tion in the two regions most exposed to volcanic hazards (i.e.
SE Asia and Central America) having doubled since 1975
(Freire et al., 2019). Supporting up to 10 % of the world’s
population, the fertility of volcanic soils partly contributes
to these increasing demographics (Rampengan et al., 2016,
Loughlin et al., 2018). However, farming systems remain
subject to short-term negative impacts from volcanic hazards
(Choumert and Phinélias, 2018; Few et al., 2017; Phillips et
al., 2019; Sivarajan et al., 2017). Recent, modest-sized erup-
tions over the past decade have illustrated the large numbers
of people affected by volcanic activity, as well as the losses
associated with impacts to agriculture, in particular the crop
subsector. For example, the 2020 VEI 4 (volcanic explosiv-
ity index, Newhall and Self, 1982) eruption of Taal Volcano
(Philippines) affected ∼ 260 000 people and caused an es-
timated USD 63 million impact on agriculture (ReliefWeb,
2020), whereas the 2018 eruption of Fuego (Guatemala), also
a VEI 4, indirectly affected ∼ 1.7 million people and caused
USD∼ 58 million impact on agriculture (The World Bank,
2018). By comparison, a recent study by Jenkins et al. (2022)
estimates that on the island of Java in Indonesia only, a VEI
4 eruption has a 50 % probability of directly affecting ≥ 5
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million people and ∼ 700 km2 of crops, which increases to
∼ 29 million people and 12 000 km2 of crops for an eruption
of VEI 5.

The Food and Agriculture Organisation (FAO, 2018) notes
how the absence of a systematic and in-depth documenta-
tion of the impacts of natural hazards on agriculture pre-
vents acquiring a global understanding of their long-term di-
rect and indirect as well as tangible and intangible conse-
quences. This is especially true for volcanic risk. Our current
knowledge of the vulnerability of agriculture to volcanic haz-
ards comes from a combination of opportunistic field-based
post-event impact assessments (post-EIAs; e.g., Blake et al.,
2015; Le Pennec et al., 2012; Magill et al., 2013; Phillips et
al., 2019; Stewart et al., 2016; Wilson et al., 2011a, b; Wil-
son et al., 2013) and rarer experimental studies (Hotes et al.,
2004; Zobel et al., 2022; Ligot et al., 2022). However, the
generalization of these empirical lessons is limited by two
main aspects. Firstly, eruptions are relatively infrequent but
display a wide range of behaviours, each of which has spe-
cific hazard, hazard characteristics and impact mechanisms.
Secondly, they occur over a large variety of climates and af-
fect various vegetation types and agricultural practices. Dam-
age/disruption states (DDSs) derived from these data (e.g.,
Craig et al., 2021; Jenkins et al., 2015; Table 1) have con-
tributed to identifying critical components of vulnerability
but currently remain too limited in time and space to allow
for the development of accurate and generalized risk models.

Satellite-based Earth observation (EO) data, on the other
hand, provide a data acquisition framework that is both
global in space and consistent in time. Missions such as
Landsat, MODIS or Sentinel now provide decades of global
EO data at constantly increasing spatial, temporal and spec-
tral resolutions. Monitoring of the spectral characteristics of
vegetation using these missions has been used to assess the
recovery of vegetation after earthquakes (Chou et al., 2009;
Lu et al., 2012) and droughts (Rembold et al., 2019) or to de-
rive global-scale datasets to estimate food security (Meroni
et al., 2019). In volcanic contexts, satellite imagery has been
used to capture the impact of eruptions on vegetation (de
Rose et al., 2011; De Schutter et al., 2015; Easdale and Bruz-
zone, 2018; Li et al., 2018; Marzen et al., 2011; Tortini et al.,
2017). Although innovative, these attempts mostly relied on
single case studies, simplified representations of hazards, and
never systematically investigated the range of factors control-
ling the impact and recovery. The dominant limitation behind
this latter point is a data processing issue: despite the avail-
ability of an unprecedented variety of data through EO, these
big EO data are associated with new challenges regarding
data access, storage and processing. These challenges have
prevented the systematic investigation of the nature and the
relationship between the various processes controlling vul-
nerability and impact of vegetation to volcanic hazard from
a global remote sensing perspective.

However, the recent advent of cloud-based EO data stor-
age and processing platforms paves the way for the devel-

opment of methodologies that can exploit the full potential
of big EO data (Giuliani et al., 2019; Gomes et al., 2020;
Mahecha et al., 2020). Beyond providing a framework for
data-intensive research, big EO data platforms contribute to
systematically extracting and processing raw data into infor-
mation and knowledge (Lehmann et al., 2020; Nativi et al.,
2020; Rowley, 2007). Over the past 5 years, Google Earth
Engine (GEE; Gorelick et al., 2017) has seen the highest
increase in applications reported in the scientific literature.
GEE provides access and a computing power to process big
EO data enabling reproducible, global-scale analyses (Tami-
minia et al., 2020; Wang et al., 2020). GEE has been applied
to aspects of natural vegetation dynamics (Campos-Taberner
et al., 2018; Kong et al., 2019; Zhang et al., 2019), crop map-
ping and monitoring (Jin et al., 2019; Liu et al., 2020), land-
cover–land-use classification (Khanal et al., 2020), food se-
curity (Poortinga et al., 2018; Rembold et al., 2019), and haz-
ard mapping (Crowley et al., 2019; DeVries et al., 2020). In
a volcanic context, the use of GEE remains limited to a few
applications (e.g., Biass et al., 2021; Murphy et al., 2017).

We argue that the advent of open-access cloud-based EO
data platforms combined with increasingly efficient empir-
ical modelling approaches offers an unprecedented oppor-
tunity to investigate the fragility of vegetation, including
agricultural crops, to diverse events like volcanic eruptions,
where field studies spanning the large spatial and tempo-
ral impact spaces are typically not possible. Here we lay
the foundation of a methodology to extract previously un-
exploited knowledge about the impact to, and recovery of,
vegetation from past eruptions recorded in archives of multi-
spectral images. In line with the challenges identified by the
FAO (FAO, 2018), this methodology is designed to support a
framework to (i) unify indirect, global with direct, in situ ob-
servations of impacts and (ii) develop an innovative type of
evidence-based, EO-driven vulnerability model. Both factors
will improve our empirical knowledge around vegetation im-
pacts and recovery following volcanic eruptions, supporting
evidence-based assessments for future eruptions.

Here we focus on the impacts to vegetation caused by the
widespread tephra fallout deposits from the 2011 eruption of
Cordón Caulle volcano (Chile). The main steps include (i) re-
constructing the relevant hazard impact metrics of the associ-
ated tephra fallout deposit using dedicated numerical models,
(ii) mapping vegetation impact using time series of MODIS
images retrieved from GEE, (iii) identifying and processing
selected datasets and variables on GEE to build up a big EO
dataset of proxies capturing the dynamics of vulnerability in
space and time, (iv) developing a flexible machine learning
(ML) algorithm trained to explain impact as a function of the
covariates, and (v) interpreting the model’s result to inves-
tigate the nature, importance, and relationships between the
different hazard and vulnerability proxies using dedicated li-
braries.
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Figure 1. Overview map of the study area. (a) Isopach (cm) from Dominguez and Baumann (personal communication) showing lines of
equal thickness of the fallout deposit for the month of June 2011. Locations are those mentioned in Elissondo et al. (2016) as being affected
by tephra fall. Background is © Google Maps 2022. Roads, locations and borders are from © OpenStreetMap contributors 2021. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0. (b) Mean yearly precipitation (mm) for the period 2006–2011 inferred
from ERA5. Note that these values differ from those presented in the text and in Elissondo et al. (2016) as ERA5 values represent averages
over a model grid cell and time step. Background is the Köppen–Geiger climate classification of Beck et al. (2018). BWk – arid, desert, cold
arid; BSk – arid, steppe, cold arid; Cfb – warm temperate, fully humid, warm summer; Cfc – warm temperate, fully humid, cool summer; Csb
– warm temperate, summer dry, warm summer; Csc – warm temperate, summer dry, cool summer; Dsb – snow, summer dry, warm summer;
Dsc – snow, summer dry, cool summer; ET – polar, polar tundra. (c) Land cover classes from the CGLS–LC1000 dataset (Buchhorn et al.,
2020). (d) Dominant soil types in the study area from the SoilGrids dataset (Hengl et al., 2017) based on the USDA soil taxonomy. All maps
are projected using EPSG:32719.
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Table 1. Damage/disruption states (DS1–5) as a function of the dry deposit thickness as hazard proxy identified by Jenkins et al. (2015) based
on literature review. DDSs assume that crops are in the growing stage. Hazard metrics include the median and interdecile deposit thicknesses
inferred from expert judgement and empirical data. NA: not available.

Code DS0 DS1 DS2 DS3 DS4 DS5

Description No damage Disruption to Minor Major productivity Total crop loss; Major rehabilitation
harvest operations productivity loss: loss: more than 50 % substantial required/retirement

and livestock less than 50 % /crop; remediation remediation of land
grazing of exposed /crop required required

feed

A
gr

ic
ul

tu
re

ty
pe

Horticultural/arable 0 mm 1 mm 5 mm 50 mm 100 mm 250 mm
(0–20 mm) (0.1–50 mm) (1–50 mm) (1–100 mm) (25–200 mm) (100–400 mm)

Pastoral 0 mm 1 mm 25 mm 60 mm 100 mm 250 mm
(0–20 mm) (0.1–50 mm) (1–70 mm) (20–150 mm) (30–200 mm) (100–400 mm)

Paddies 0 mm 3 mm 30 mm 75 mm 150 mm 250 mm
(0–50 mm) (0.1–50 mm) (1–75 mm) (20–300 mm) (75–300 mm) (100–500 mm)

Forestry 0 mm 5 mm 200 mm 1000 mm 1500 mm NA
(0–75 mm) (0.1–75 mm) (20–300 mm) (100–2000 mm) (100–2000 mm)

2 Background

2.1 Impact of volcanic hazards on vegetation

Explosive volcanic eruptions produce tephra, a generic term
for pyroclasts originating from the fragmentation of parent
magma, the fraction<2 mm diameter of which is referred
to as ash. For sufficiently large eruptions, tephra deposits
can alter the hydrology, vegetation cover and soil proper-
ties of entire regions, contributing to the perturbation of their
ecosystems for months to years (Major et al., 2016; Pierson et
al., 2013; Zobel et al., 2022). Direct negative impacts on and
the ability of vegetation to recover from eruptions depend on
complex interactions between biotic and abiotic parameters
(Ayris and Delmelle, 2012; Arnalds, 2013). Biotic parame-
ters include the type and composition of the vegetation, the
biological legacy related to previous stresses and the pheno-
logical state of the plant at the time of eruption (Jenkins et al.,
2014; Ligot et al., 2022). Abiotic parameters include climate
(e.g. rainfall and temperature) and environmental setting (e.g.
elevation, slope, orientation) (Crisafulli et al., 2015; Dale et
al., 2005). For crops, impacts also depend on access to tech-
nology and mitigation measures (Magill et al., 2013; Wil-
son et al., 2013). Mechanisms of adverse effects of tephra
on vegetation are various, including smothering and burial,
breaking and abrasion, reduced photosynthesis, salt-induced
stress, and limitation of pollination (Arnalds, 2013; Ayris and
Delmelle, 2012; Blake et al., 2015). Critical hazard impact
metrics therefore depend on the characteristics of the erup-
tion (e.g., magnitude, intensity and style) and the properties
of the deposit (i.e., thickness, grain-size distribution, content
in water-soluble elements) (Cronin et al., 2014; Stewart et al.,
2016).

2.2 Case study: the Cordón Caulle 2011 eruption

On 4 June 2011, a subplinian rhyolitic eruption started at
Cordón Caulle volcano (CC; 40.525◦ S, 72.16◦W; Fig. 1),
part of the Puyehue–Cordón Caulle volcanic complex. The
eruption began with a 24–30 h long paroxysmal phase that
gradually transitioned to low-intensity tephra emissions last-
ing for several months (Pistolesi et al., 2015). Reported
plume heights ranged from 9–12 km a.s.l. for the first 3–4 d,
4–9 km a.s.l. for the following week and <4 km a.s.l. after
14 June (Bonadonna et al., 2015; Collini et al., 2013). During
the first week, westerly winds dispersed ∼ 1 km3 of tephra
towards Argentina. Published isopach maps describe the de-
posit thickness associated with various phases of the eruption
(e.g. Bonadonna et al., 2015; Collini et al., 2013). An unpub-
lished report by Dominguez and Baumann (personal commu-
nication), combining data from Bonadonna et al. (2015) and
Pistolesi et al. (2015), shows the spatial distribution of total
deposit thickness for 4–30 June 2011 (Fig. 1a). The deposit
showed low to very low concentrations of water-soluble ele-
ments potentially harmful to plant leaves (e.g., fluorine sul-
fur; Stewart et al., 2016).

The deposit of the CC 2011 eruption impacted three dif-
ferent biogeographical regions: from west to east, southern
Andes and Andean foothills and lowlands (Elissondo et al.,
2016). These roughly correspond to the warm temperate –
fully humid, warm temperate – summer dry and arid climate
classifications (Fig. 1; Beck et al., 2018), respectively, each
characterized by specific assemblages of vegetation (Eas-
dale and Bruzzone, 2018; Enriquez et al., 2021). The south-
ern Andes are characterized by a high elevation (mean of
2000 m a.s.l.), Valdivian temperate forest and annual precip-
itation of 800–2500 mm, mainly occurring in June–August
(Elissondo et al., 2016). Andean foothills are characterized
by a gradient of annual precipitation decreasing from 800 in
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the west to 300 mm in the east and a vegetation of grasses,
shrubs, and wet meadows covering 5 %–10 % of the area
(Easdale and Bruzzone, 2018; Elissondo et al., 2016). The
lowland is characterized by a cold and semi-arid climate with
annual precipitation of≤ 300 mm. During the 6 years prior to
the eruption, this region experienced <160 mm of precipita-
tion per year, which caused regional drought conditions. Due
to water availability, the rainfall gradient strongly controls
the type of farming, with pastoral farming and agriculture in
Andean regions and low-intensity goat and sheep farming in
the arid lowlands (Stewart et al., 2016). In addition, regions
with low precipitation experience wind erosion and remobi-
lization of loose tephra (Dominguez et al., 2020b; Forte et
al., 2017; Wilson et al., 2011a, b).

3 Material and methods

Figure 2 summarizes the conceptual steps of our method-
ology. The aim is to capture vegetation impact from multi-
spectral satellite images and train a ML model to explain it
as a function of covariates describing hazard and vulnerabil-
ity. We detail the successive steps of this methodology, from
the quantification of vegetation impact (Sect. 3.1) and covari-
ates (Sect. 3.2) to the development, application and interpre-
tation of the ML model (Sect. 3.3). Throughout the paper, we
refer to metrics of vegetation impact as the target variable,
whereas feature is used as a synonym for covariate and/or
explanatory variable, and instance is used as a synonym for
a geographic point.

3.1 Quantifying vegetation impact from remote sensing
data

In situ assessment of vegetation (including crops) impact is
typically quantified using various metrics defined depending
on the purpose (e.g., percentage of destroyed vegetation or
yield loss; Table 1). We use the enhanced vegetation index
(EVI; Huete et al., 2002) as a remote-sensing-based proxy
for biomass production (Poortinga et al., 2018; Kong et al.,
2019) and consider impact as a negative deviation of the
post-eruption EVI signal. The EVI is retrieved from MODIS
imagery (i.e., the MYD13Q1 and MOD13Q1 V6 products)
generated every 16 d at a spatial resolution of 250 m. This
MODIS image collection was processed on GEE.

3.1.1 Temporal smoothing

The MODIS EVI image collection is temporally smoothed
using the median pixel value over consecutive time steps
(represented by the j index in Eq. 1). We test here two
time windows of 1 and 3 months using the eruption date
as a reference point. This approach to temporal smoothing,
used to reduce artefacts, was selected over filtering-based
(e.g., Savitzky–Golay filters) or non-parametric statistical
(e.g., double logistic function) methods for two main rea-

sons. Firstly, these methods are sensitive to the density and
the signal-to-noise ratio of the time series (Cai et al., 2017;
Li et al., 2021). As volcanoes are vast topographic edifices,
frequent clouds in their vicinity make the application of such
algorithms unstable and unreliable. Secondly, we focus on
the impacts occurring at a medium term rather than in the
immediate aftermath of an eruption, where a vegetation in-
dex (VI) can capture signals that do not record impact (e.g.,
increase in soil brightness due to tephra deposit). As a result,
the median value over a given time window presents the most
stable and conservative smoothing method around volcanoes.

3.1.2 Anomaly quantification

Multiple approaches have been developed to quantify VI
anomalies for purposes ranging from early warning (e.g.
Asoka and Mishra, 2015; Meroni et al., 2019; Rembold et
al., 2019) to index-based parametric insurance (e.g. Martín-
Sotoca et al., 2019). VI anomalies have also been used to
monitor vegetation recovery after natural hazards (e.g. fires,
Bright et al., 2019; volcanic ashfall, De Schutter et al., 2015),
cropping intensities (e.g. Liu et al., 2020), long-term land
degradation (Gonzalez-Roglich et al., 2019) or changes in
vegetation dynamics (Kalisa et al., 2019). We adapt the ap-
proach of Poortinga et al. (2018) as a proxy for impact of
volcanic ash on vegetation, hereafter named the cumulative
difference index (CDI). The CDI is computed as

CDIi,t =
∑

j,k ∈Nt

VIi,j,k −VIi,j , (1)

where CDIi,t is the CDI value for pixel i for consecutive j
values after the eruption up to time t , VIi,j,k is the median VI
value for pixel i at a post-eruption period j in year k, Nt is a
set of post-eruption periods that includes all j , k indices up
to a time t , and VIij is the long-term VI mean over the base-
line (averaged over 5 years prior to eruption for pixel i and
period j ). VI is the vegetation index (here, EVI), and j is an
arbitrary time window, referring to a subset of a year. Here,
j considers a 1–3-month period, and the baseline considers
5 years of pre-eruption conditions. For the 2011 eruption of
CC, the first CDI value (i.e., j = 1, k = 1, t = 1) is simply
the difference between the median VI value for April–June
2011 and the average of all April–June VI values in the pe-
riod 2006–2010. The second CDI value would sum the dif-
ferences over the set N2 (i.e., j = 1,2, k = 1, t = 2).

Whilst most remote sensing indices rely on ratios of pre/-
post conditions to define a relative anomaly (e.g., Hope et
al., 2012; see Sect. 3.2.2), the CDI relies on an absolute
difference. It is important to note that therefore, by defini-
tion, pixels with high EVI values will result in larger CDI
changes. However, the temporal evolution of the CDI offers
a new approach to capture impact and recovery. Figure 3 il-
lustrates idealized profiles that the CDI can adopt through
time. Following Eq. (1), a scenario where the CDI gradi-
ent remains negative implies that post-eruption conditions
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Figure 2. Graphical summary of the model development. Flowchart made with https://www.diagrams.net (last access: 3 August 2022).

are persistently lower than the baseline (i.e., P1 in Fig. 3).
A CDI flattening and reaching a zero gradient indicates a
return to pre-eruption conditions (P2 in Fig. 3). If the gra-
dient of the CDI slope becomes positive after the inflection
point, the post-eruption biomass production has exceeded
pre-eruption conditions. If the CDI curve flattens at a neg-
ative CDI value, the total loss in biomass due to the eruption
has been partly compensated for by a temporary increase (P3
in Fig. 3). Should the absolute CDI value become positive,
the total biomass loss caused by the eruption has been either
compensated for or exceeded by the gains (P4 in Fig. 3). The
purpose of the model is to explore conditions explaining the
magnitude of impact (i.e., minV in Fig. 3) and the duration
to reach it (i.e., minT in Fig. 3). The shape of the CDI curve
after reaching minV is not considered here, and minV for the
case of P1 in Fig. 3 is the minimum value reached after 5
years post-eruption.

3.2 Model features

Covariates used in the model to predict the impact (Table 2)
were chosen to capture the relevant hazard and vulnerabil-
ity parameters identified from the literature (Sect. 2.1). Most
datasets are natively available on GEE, and others have been
manually uploaded as assets. Note that the original covariate
dataset contained ∼ 300 features. Here we present the final
set of variables identified based on (i) a minimum degree of
multicollinearity assessed during the exploratory data anal-
ysis phase and (ii) iterations of the process of model opti-
mization and computation of feature importance described
in Sect. 3.4.3 that allowed identifying and retaining the most
informative variables.

Figure 3. Illustration of various possible CDI profiles through time.
The x axis represents t in Eq. (1). minV represents the minimum
CDI value reached by a CDI profile and minT the duration after
which minV has been reached. P1 represents a scenario with a per-
manent degradation of the EVI. P2 represents a scenario where post-
eruption conditions have returned and remain equal to pre-eruption
conditions. P3 represents a scenario where post-eruption conditions
have returned and temporarily exceeded pre-eruption conditions
without compensating for the deficit caused by the eruption. P4 is
similar to P3, but with post-eruption conditions sufficiently persist-
ing to compensate for and exceed the deficit caused by the eruption.

3.2.1 Deposit properties

Deposit thickness and grain-size distribution are the two of
the main physical aspects controlling the direct impact of
ashfall on vegetation (Jenkins et al., 2015). Since available
isopach maps represent only deposit thickness, we recon-
structed the grain-size distribution of the deposit associated
with the 4–30 June 2011 phase of the CC2011 eruption us-
ing Fall3D v8.0.1 (Folch et al., 2020). The model was ini-
tialized using hourly atmospheric conditions retrieved from

Nat. Hazards Earth Syst. Sci., 22, 2829–2855, 2022 https://doi.org/10.5194/nhess-22-2829-2022
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Table 2. Summary of variables used in the model.

Data provider Variable Description Resolution

MODIS minV Target variable for magnitude of impact 250 m
minT Target variable for timing of impact
EVI Mean EVI value averaged over 1 year of pre-eruption data
EVI_SD Standard deviation of EVI value averaged over 1 year of pre-eruption data

Fall3D lapilli Lapilli mass load (kg m−2) 0.033◦

coarse_ash Coarse ash mass load (kg m−2)
fine_ash Fine ash mass load (kg m−2)

SRTM elevation Terrain elevation (m a.s.l.) 90 m
slope Terrain slope (◦)
aspect Terrain aspect (◦)
northness Cosine of aspect
eastness Sine of aspect

ERA5 total_precipitation_n Total precipitation (m)
total_precipitation_SRI_n Anomaly in total precipitation 0.1◦

temperature_2m_n Air temperature (◦K) at a 2 m elevation
temperature_2m_SRI_n Anomaly in air temperature
wind_10 Wind speed (m s−1) at a 10 m elevation

Copernicus land cover Copernicus global land cover layer 100 m

Other climate Köppen climate classification 1000 m
soil Soil grid 250 m

The total_precipitation and temperature_2m variables are calculated for n= 1, 2, 3, 6 and 12 months.

Table 3. Initial parameters to the Fall3D runs. For the Suzuki plume
model,A and λ are the shape factor controlling the mass distribution
described by Pfeiffer et al. (2005), where λ= 2 results in more mass
distributed in the lower portion of the plume. The FPlume approach
(Folch et al., 2016) was solved for mass flow rate (MFR, Degruyter
and Bonadonna, 2012). Two total grain-size distributions (TGSDs)
were tested including a field-based Gaussian (Md 8 and σ8 of 1.7
and 3.1, respectively; Bonadonna et al., 2015) and a model-based
Bi-Weibull (modes at −3.13 and 4.698 with respective shape fac-
tors of 0.73 and 1.18 and a mixing factor of 0.64; Costa et al.,
2016; Folch et al., 2020) distributions.

Run Plume model Plume param. TGSD

a Top hat Thickness= 2000 m Bi-Weibull
b Suzuki A= 4, L= 5 Bi-Weibull
c Top hat Thickness= 2000 m Gaussian
d Suzuki A= 4, L= 5 Gaussian
e Fplume Solved for MFR Bi-Weibull
f Fplume Solved for MFR Gaussian

the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 dataset (Hersbach et al., 2020) and daily
mean plume heights reported by Collini et al. (2013). We
tested several modelling schemes (Table 3) and compared
the outputs against the isopach in Fig. 1a. For this, isopachs
were interpolated using a generalized additive model and

converted to maps of tephra accumulation using a con-
stant deposit density. We tested densities of 1000, 2000
and 2200 kg m−2 to provide a range of tephra thicknesses
for each point. The Fall3D NetCDF output was converted
to a multiband GeoTIFF with each band containing mass
loads for different size fractions. Size fractions computed by
Fall3D were grouped into lapilli (2–64 mm), coarse ash (1–
0.25 mm) and fine ash (<0.25 mm). The GeoTIFF was up-
loaded as an asset to GEE.

3.2.2 Climate

Atmospheric data were obtained from GEE using the ERA5
Land monthly averaged climate dataset (Hersbach et al.,
2020), which provides a global reanalysis of climate vari-
ables since 1981 at a spatial resolution of 0.1× 0.1◦. As the
nature of the adopted ML model does not allow for using
time series as covariates (see Sect. 3.4), we instead retrieve
the total precipitation and the surface air temperature and
compute their mean over 1, 2, 3, 6 and 12 months before
the eruption. Each variable is considered both as raw val-
ues and anomalies computed as the stand regeneration index
(SRI; Hope et al., 2012). As for CDI, we used a 5 years pre-
eruption baseline and normalized the closest pre-eruption
value Vi,j,k by the mean value over the same period in the
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baseline Vi,j :

SRIi,j,k =
Vi,j,k

V i,j
. (2)

For instance, a 3-month precipitation anomaly<1 sug-
gests that the trimester before the eruption was characterized
by relatively lower rainfall compared to the same period of
the year in the 5-year baseline. By considering both raw val-
ues and anomalies, we explore the relevance of each variable
and potential pre-existing climatic stresses whilst also inves-
tigating what time windows are relevant for vegetation im-
pact. The model also includes the wind velocity at the time
of the eruption from the ERA5 Land dataset.

In addition to atmospheric variables, the model includes
the updated 1 km version of the Köppen–Geiger climate clas-
sification by Beck et al. (2018). The study area spans three
of the five main categories (arid, warm temperate and polar),
with two sub-types of arid (i.e. desert – hot arid and steppe –
hot arid) and four sub-types of warm temperate (fully humid
– warm summer, fully humid – cold summer, summer dry –
warm summer, summer dry – cool summer).

3.2.3 Terrain

Terrain data were obtained from the Shuttle Radar Topog-
raphy Mission (SRTM; Farr et al., 2007) using the NASA’s
SRTM V3 product at a resolution of ∼ 30 m. Elevation,
slope, aspect, eastness and northness (sine and cosine of as-
pect, respectively) were retrieved from GEE and used as fea-
tures.

3.2.4 Land cover

Land cover was obtained from Copernicus Global Land
Service (CGLS) dynamic land cover map (CGLS-LC1000,
Buchhorn et al., 2020), available on GEE at a spatial resolu-
tion of 100 m yearly from 2015–2019. The land cover type is
retrieved from the discrete_classification band for the clos-
est year to the eruption (here 2015, acknowledging that the
2015 dataset possibly includes a long-term change in land
cover caused by the 2011 eruption). To test the impact of
tephra on various types of vegetation, we extracted the cul-
tivated and managed vegetation/agriculture class as a proxy
for cropland and the shrubs, sparse and herbaceous vegeta-
tion classes (i.e., values 40, 20, 60 and 30, respectively). In
addition, we extracted a composite forest class comprising
all classes tagged with forest. In the study area, present for-
est classes include evergreen broad leaf, both closed (112)
and open (122); deciduous broad leaf, both closed (114) and
open (124); and closed forest, mixed (115) and forest, not
matching any of the other definitions (116 and 126).

3.3 Point sampling

In the study area, the vegetated land cover classes defined
above account for 96 % of the total land cover, with the

classes shrubs (38 %), sparse (26 %) and herbaceous (17 %)
dominating the total count. The forest class (17 %) dominates
the Andean part of the study area, whereas crops represent
about 1 % of the region. A total of 5000 instances were ran-
domly sampled for each land cover class. The target variables
and covariates for all points were downloaded from GEE and
stored as a GeoPandas dataframe in Python.

3.4 Setting up the machine learning model

We developed an interpretable ML model able to process
big EO data to identify the most important variables and
how they interact to cause the impact on vegetation. This
amounts to a (supervised learning) regression task; the EO
data, for training and testing, include the environmental, at-
mospheric, and geophysical features described above, as well
as the target variables consisting in the impact metrics. The
main objective is to investigate and describe the nature of the
processes; performing out-of-sample predictions (i.e., model
generalization) is outside of the scope of this paper. This sec-
tion introduces the ML algorithm, its optimization and its in-
terpretation processes. All computations are performed using
Python 3.9 on the Gekko cluster of NTU’s Asian School of
the Environment, both using CPUs and GPUs.

3.4.1 ML algorithm

The main modelling challenge is to approximate complex
functions mapping both minV and minT to the various inves-
tigated features. Decision trees and related methods form a
general class of models suitable for such regression tasks. We
opt for gradient-boosted trees, a category of decision trees
that use an ensemble of so-called weak learners built sequen-
tially to improve prediction accuracy (Müller and Guido,
2015) and capable of handling multicollinearity (Chen et al.,
2022). Gradient-boosted trees have successfully been applied
on EO problems (e.g., Hengl et al., 2017). Here, we used the
XGBoost v.1.4.2 library, which provides an optimized and
distributed implementation of gradient-boosted trees (Chen
and Guestrin, 2016).

3.4.2 Hyperparameter optimization

Gradient-boosted trees rely on a range of hyperparameters
governing the model’s bias-variance trade-off. Selected hy-
perparameters (Sect. 4.4.1) were tuned by minimizing the
out-of-sample mean absolute error (MAE) computed through
a 5-fold cross-validation scheme using scikit-learn’s Repeat-
edKFold and 10 000 trees. We used the Optuna library (Ak-
iba et al., 2019) optimized on a single GPU.

3.4.3 Model interpretation

Gradient-boosted trees can accommodate non-linear effects
and interactions but, as for many modern ML algorithms,
come at the cost of limited interpretability. Model-agnostic
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interpretation methods shedding light on black-box models
are actively being developed and, when applied on big EO
data, provide a novel framework to identify and constrain
the processes driving changes through time in Earth sciences
(Batunacun et al., 2021; He et al., 2020; Sulova and Arsan-
jani, 2021). Amongst these, the Shapley additive explana-
tions (SHAP) method of Lundberg et al., (2020), based on
Shapley values (Shapley, 1956) and coalitional game theory,
decomposes any prediction from a given model as a sum of
the individual effects from each variable (Molnar, 2021). The
method computes SHAP values, which quantify how a given
feature act to change a model’s mean prediction. We use here
SHAP values to identify drivers of vegetation vulnerability
in two ways. Firstly, the mean absolute SHAP value of a
variable across all instances indicates a relative importance
amongst all features. Secondly, individual SHAP values for
a given feature and all instances provide insights into how a
feature’s value influences predictions. As this study does not
attempt to perform out-of-sample predictions, SHAP values
are computed on the full dataset. We use the TreeExplainer
method of the SHAP library (Lundberg et al., 2020) to ex-
plain XGBoost’s prediction.

Unlike SHAP values, permutation feature importance
ranks features based on their direct impact on model perfor-
mance (Breiman, 2001; Fisher et al., 2019). We use it as a
complementary approach to SHAP values. Permutation im-
portance is also computed on the full dataset using scikit-
learn’s permutation_importance function using 10 permuta-
tions of each variable and computing the change in the coef-
ficient of determination R2.

3.4.4 Modelling scheme

A model is trained separately for each land cover class de-
fined in Sect. 3.3, with one additional model trained on all
land cover classes jointly and using the land cover class as
a feature. Since XGBoost does not support multi-output re-
gressions, each dataset is used as an input for two models
trained using either minV or minT as a target variable (Fig. 3).
To include some dependence between the two impact met-
rics, the model predicting minV is trained with minT re-
moved from the features, whereas the model predicting minT
is trained with minV in the list of features.

4 Results

4.1 Deposit reconstruction

To select the best Fall3D run shown in Table 3, 10 000 points
were randomly sampled in space and used to retrieve both
the modelled tephra load and the thickness obtained from
interpolated isopach (Fig. 4). Although all model runs are
capturing the general trend, mismatches can be attributed to
modelling issues (e.g., limitation in describing sedimentation
from the plume margin or aggregation processes; Bagheri et

al., 2016; Poulidis et al., 2021) and isopach interpolation us-
ing a bulk density. In the perspective of these limitations, we
adopted run b (i.e., Suzuki plume model with a Bi-Weibull
grain-size distribution; Table 3) as it generally shows a mini-
mum spread across the 1 : 1 line and provides a conservative
scenario (Fig. 4). Figure 5a compares the modelled load for
the selected run with the isopach. The model captures both
the general extend of the deposit and the various lobes gen-
erated as a function of variable wind conditions throughout
the eruptive phase.

4.2 Anomaly quantification

Figure 6 shows an illustration of time series of EVI and asso-
ciated monthly CDI for four representative points in the study
area (Fig. 5b) chosen to represent the spread in tephra accu-
mulation and vegetation/climate types and using composit-
ing windows of 1 (green) and 3 (orange) months. Seasonal
EVI patterns, with high values in the summer reflecting ac-
tive growth and low values in the winter reflecting plant dor-
mancy, indicate that the eruption occurred during a period of
low growth (Elissondo et al., 2016). Point 1 (Fig. 6a, b), lo-
cated 23 km southeast of the vent, is characterized by herba-
ceous vegetation and a modelled tephra load of 330 kg m−2

(thicknesses of 165–330 mm when converted with deposit
densities of 2000 and 1000 kg m−3, respectively). The sharp
drop in EVI after the eruption and the following persistent
lower values compared to the pre-eruption baseline trans-
late into a CDI profile showing a negative slope, which in-
dicates that the system did not return to pre-eruptive condi-
tions. This observation agrees with existing DDSs (Table 1),
where accumulations ≥ 150 mm result in substantial vege-
tation destruction. Point 2, located 45 km southeast of the
vent and 7 km from Villa La Angostura, consists of closed,
evergreen broadleaf forest. With 40 kg m−2 of tephra accu-
mulation (thickness of 20–40 mm for the same densities as
Point 1), EVI values show a slight decrease compared to
pre-eruption conditions lasting for a couple of years, after
which a general trend is observed leading to larger EVI val-
ues than the baseline (Fig. 6c). This translates into CDI pro-
files showing a negative trend for 2 years after the eruption,
after which a positive trend indicates better conditions com-
pared to the baseline (Fig. 6d). When compared to existing
DDSs for forestry (Table 1), the modelled thickness spans
damage classes 0–3, ranging from no impact to minor pro-
ductivity loss. Point 3 is 112 km from the vent in the vicinity
of San Carlos de Bariloche. Classified as crops by the CGLS
land cover and looking like pastoral grazing fields from high-
resolution satellite imagery, it was affected by 7 kg m−2 of
tephra (thickness of 3.5–7 mm; damage classes 0–3; Table 1).
Both compositing time windows show a reduction in EVI
values for at least one season after the eruption (Fig. 6e,
f). Finally, Point 4 is located 240 km southeast of the vent
close to Ingeniero Jacobacci and was affected by 10 kg m−2

of tephra (i.e. 5–10 mm). Classified as herbaceous vegetation
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Figure 4. Relationship between the tephra accumulation modelled with Fall3D and inferred from isopach for the various modelling schemes
(Table 3). Colours consider various densities used to convert deposit thickness to mass loads. Panels follow Table 3. The black line shows a
hypothetical 1 : 1 relationship.

in the CGLS dataset but looking like farmland with a mix-
ture of pasture and crops on high-resolution satellite imagery,
both EVI and CDI profiles indicate a return to pre-eruption
conditions after ∼ 3 years, after which a positive CDI slope
indicates temporary better conditions (Fig. 6g, h).

Figure 6 illustrates the differences in quantifying minV and
minT when using time windows of 1 and 3 months in Eq. (1).
A 1-month window closely follows local trends and results
in irregular CDI curves, whereas a 3-month window over-
smooths local variations. Although both approaches com-
monly result in similar results, Point 3 illustrates how the
two windows can induce different interpretations. We adopt
a 3-month kernel for two main reasons. Firstly, the visual
comparison of the spatial distribution of minV and minT on
a map shows that such differences occur locally whilst pre-
serving the general spatial distribution. Secondly, points dis-
played in Fig. 6 are not heavily affected by cloud coverage,
and the 1-month kernel does not reflect the typical effects that
clouds can induce when using such a small compositing time
window (e.g., sparse time series and artefacts). This is gen-

erally not the case, either around the Cordón Caulle volcano,
where the region closer to the vent suffers too much cloud
coverage to be resolved by a 1-month kernel, or around most
volcanoes around the world, where large and high edifices
are often cloudy. Therefore, the 3-month kernel provides a
more conservative approach and enables reproducibility to
other case studies.

4.3 Impact mapping

Figure 5b displays the spatial distribution of minV in the
study area. The region with the minimum minV value extends
up to 25 km southeast of the vent and corresponds to accumu-
lations of ∼ 550 kg m−2. Although conspicuous, it is impos-
sible to unequivocally attribute this impact to tephra fallout in
proximal area where other hazards can occur (e.g., pyroclas-
tic density currents, lahars). Except for this region, the impact
within the first 80 km east of the vent is relatively limited, be-
yond which a sharp, north–south-oriented decrease in minV
values occurs. This rapid change corresponds to a change in
rainfall amount, a transition from well-developed Andosols
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Figure 5. (a) Modelled load using Fall3D run (b) (kg m−2; Table 3) overlain with isopach (cm). (b) Spatial distribution of minV. Numbered
orange diamonds are referenced in the text. (c) Spatial distribution of minT. (d) Dataset of points sampled in GEE coloured by their land
cover class. When not specified, legend items follow Fig. 1. Background is © Google Maps 2022.

to very weakly-developed Regosols, and a region dominated
by forests to one dominated by shrubs and herbaceous vege-
tation (Fig. 1; Sect. 2.2). In this region, minimum minV val-
ues are ∼−0.5, and the spatial distribution of minV reflects
the spatial distribution of tephra fallout. Negative minV val-

ues extend eastwards beyond the town of Los Menucos, sug-
gesting that impact occurred with accumulations≤ 2 kg m−2.
Due to the use of a 3-month kernel, minT is a discrete rather
than a continuous dataset (i.e., a minT value of 4.5 months
suggests that minV was reached between 3–6 months after
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Figure 6. Time series of EVI (a, c, e, g) and monthly CDI (b, d, f, h) for the four points described in Sect. 4.2 and located in Fig. 5. Black dots
are raw (i.e., non-composited) MODIS data, whereas green and orange lines are composited collections using a kernel of 1 and 3 months,
respectively, as described in Sect. 3.1. (a, c, e, g) The vertical black dashed line indicates eruption time. (b, d, f, h) The horizontal black
dashed line indicates a neutral budget (Fig. 3). Coloured dotted lines indicate the location of minV and minT.

eruption onset). The spatial distribution of minT (Fig. 5c)
generally reflects minV and the pattern of tephra accumula-
tion. Note that artefacts related to non-vegetated areas are
ignored (e.g., bare rock and snow-covered mountains in the
S).

Figure 5d shows the distribution of sampled points by land
cover, and selected relationships are plotted in Fig. 7. Al-
though Fig. 7 a displays a general negative relationship be-
tween minV and the tephra load, a simple linear relationship
fails to accurately capture the variability of impact. For minT,
Fig. 7b and c show how minT is distributed around three main
modes of tephra load and minV. Land cover classes that are
most impacted by long minT values are forests and herba-
ceous, which are the two classes the most exposed to heavy
loads (Fig. 5). Plotting minT shows a distribution centred
around three modes of about 400, 1000 and 1700 d (Fig. 7b).

High minV and tephra loads generally result in larger minT
values.

4.4 ML model

4.4.1 Model performance

Table 4 presents the results of the optimization of hyperpa-
rameters on the dataset shown in Fig. 5d and the associated
model metrics. The MAE and R2 were computed on both
training and testing datasets using a cross-validation with
five folds and three repeats. We compare training and test-
ing prediction error as an indication of the degree of over-
fitting of the model. As expected, model metrics obtained
on test datasets were lower than those using training data.
Based on the R2 of the testing data and minV, models trained
on all land cover classes and on herbaceous vegetation per-
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Figure 7. Relationship between (a) minV and the total tephra load, (b) minT and the total tephra load, and (c) minV and minT as a function
of the land cover class. The marginal axes contain a kernel density estimate of the underlying population for each land cover class. For
readability all forest sub-groups are grouped.

Table 4. Summary of the trained models. The Optimization columns group reports the hyperparameter values obtained with the optimization
process. The Model metrics columns group reports the mean absolute error (MAE) and the r2 coefficients on both training and test datasets.
The mean and the standard deviation (SD) were obtained by 5-fold cross validation with three repeats.

Optimization Model metrics

Training Testing

LC Impact Max Learning Alpha Lambda Min Mean SD Mean SD Mean SD Mean SD
depth rate child MAE MAE R2 R2 MAE MAE R2 R2

weight

Optimization range 4–12 0.005–0.05 0.01–10 1e-8–10 10–1000

All minV 11 0.037 0.065 5.833 17.548 0.046 0.001 0.936 0.013 0.061 0.003 0.906 0.029
minT 12 0.040 0.133 0.396 12.971 194.874 5.811 0.700 0.014 251.854 8.498 0.577 0.023

Crops minV 10 0.046 0.094 8.576 10.157 0.062 0.006 0.847 0.042 0.100 0.010 0.707 0.053
minT 12 0.045 0.216 0.157 15.980 202.460 16.591 0.651 0.039 304.758 28.692 0.470 0.085

Herbaceous minV 12 0.050 0.116 1.274 21.702 0.040 0.004 0.955 0.043 0.053 0.008 0.907 0.069
minT 12 0.043 0.525 0.0005 10.032 171.563 11.755 0.716 0.034 216.754 17.310 0.586 0.061

Shrubs minV 11 0.046 0.094 0.0004 39.336 0.042 0.005 0.671 0.162 0.046 0.008 0.566 0.206
minT 12 0.050 0.048 0.008 40.583 189.501 14.768 0.593 0.055 207.409 19.116 0.515 0.073

Sparse minV 10 0.050 0.073 1.949 67.089 0.039 0.003 0.733 0.239 0.049 0.009 0.428 0.259
minT 10 0.047 0.284 0.001 22.610 225.702 11.477 0.459 0.060 245.865 19.722 0.386 0.084

Forest minV 10 0.049 0.123 2.117 10.999 0.075 0.005 0.894 0.030 0.096 0.008 0.872 0.045
minT 11 0.049 0.012 0.023 16.667 253.507 15.858 0.669 0.034 332.919 18.864 0.543 0.041

formed well (R2>0.9), followed by forests (R2>0.8) and
crops (R2>0.7). The particularly low R2 value for sparse
vegetation can be attributed to the presence of <10 % veg-
etated cover in this class, which is dominated by bare soil or
rock. TheR2 values of minT are consistently lower than those
for minV and never exceed 0.6, which we partly attribute to
its discrete nature.

Overall, the comparison of error metrics between testing
and training sets reveals that models trained on the various
datasets have various degrees of generalization ability, with
the caveat that the validity of the insights provided by the
different models should be considered in the perspective of
their respective performances. The broadest dataset consid-

ering all land cover classes and minV results in high training
(0.94) and testing (0.91) R2 values. We use this good perfor-
mance and similarity between both values as an indication
that the model is likely not overfitting and yields good gen-
eralization.

4.4.2 Feature importance

Tables 5 and 6 summarize feature importance for each land
cover class using the mean absolute SHAP value and per-
mutation importance. Although some differences exist, both
methods yield similar results, thus implying that features that
contribute the most to predictions (SHAP importance) also
improve the model’s generalization error (permutation im-
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Table 5. Ranking of feature importance for minV computed using mean absolute SHAP values and permutation importance for all land cover
classes. For each column, the 10 most important features are in bold. Variable names follow Table 2. Herb. stands for herbaceous.

Target minV

Importance SHAP Permutation importance

Land cover All Crops Herb. Shrubs Sparse Forest All Crops Herb. Shrubs Sparse Forest

EVI 2 2 2 3 3 2 2 2 2 3 6 2
elevation 3 6 6 5 1 3 3 8 8 9 1 4
EVI_SD 5 5 9 8 12 7 5 6 6 10 13 9
lapilli 1 11 1 1 2 1 1 5 1 1 10 1
fine_ash 6 4 14 12 9 4 8 4 9 2 5 6
coarse_ash 4 10 4 7 4 6 6 11 5 5 9 7
slope 8 8 8 13 16 9 9 7 7 11 14 11
total_precipitation_SRI_3 20 9 10 9 8 21 23 9 10 17 20 23
northness 17 14 19 20 25 13 13 12 15 19 23 12
total_precipitation_SRI_2 12 3 29 18 14 17 12 3 30 20 7 21
total_precipitation_SRI 15 7 18 10 13 30 21 10 22 7 16 26
temperature_2m_SRI_4 10 17 5 4 11 16 17 18 4 8 21 18
eastness 19 13 21 23 19 14 16 13 18 21 12 13
total_precipitation_SRI_1 16 22 17 30 24 5 19 19 19 30 22 10
total_precipitation_SRI_4 23 26 13 6 5 23 25 27 16 16 4 25
wind_10 13 20 16 19 26 10 14 15 17 23 26 8
temperature_2m 11 23 25 31 23 8 4 24 14 31 18 3
temperature_2m_SRI_3 18 18 11 16 28 25 27 20 13 14 29 27
aspect 24 16 26 29 31 15 20 17 25 25 28 17
total_precipitation_3 33 30 3 22 21 33 30 30 3 28 11 32
soil 9 12 15 26 17 28 15 14 20 32 24 30
temperature_2m_SRI_1 22 15 22 11 10 24 22 16 28 6 19 29
climate 25 1 7 14 22 12 29 1 11 15 27 14
landform 27 19 24 24 32 18 24 22 24 29 32 20
temperature_2m_SRI 21 21 20 27 18 27 28 21 27 27 17 28
total_precipitation_4 14 29 30 2 33 26 7 28 21 4 33 19
temperature_2m_SRI_2 29 28 27 17 15 20 18 29 29 12 8 22
total_precipitation 26 24 31 15 34 22 26 23 31 13 34 15
temperature_2m_3 31 25 23 33 20 31 32 26 23 26 15 31
total_precipitation_2 30 34 33 28 29 35 31 34 33 33 31 35
temperature_2m_1 28 27 32 34 27 11 10 25 32 34 25 5
land cover 7 35 24 35 35 19 11 35 24 35 35 16
total_precipitation_1 35 31 28 21 30 29 34 32 26 24 30 24
temperature_2m_2 34 32 34 25 7 32 35 31 35 18 3 33
temperature_2m_4 32 33 35 32 6 34 33 33 34 22 2 34

portance). Unless specified, this section focuses on SHAP
importance.

EVI and elevation are the two features that consistently
rank in the top 10 of the most important variables across
impact and land cover. For minT, minV is the most impor-
tant variable, which suggests that both impact metrics are
dependent. EVI ranks especially high, which indicates that
the mean EVI value computed over the year before the erup-
tion provides an important background level to the model.
This result is a consequence of the cumulative sum of ab-
solute differences behind the CDI, which implies that pix-
els with higher EVI values are prone to larger CDI impacts
(Sect. 3.1.2). The variable lapilli is the most important for

minV for all land cover classes but crops (SHAP value) and
sparse (permutation importance) and ranks high when pre-
dicting minT for all and the forest land cover classes.

For forests, minV is best predicted, in decreasing order,
by lapilli, EVI and elevation, which are respectively a de-
posit, a proxy for a biotic and an abiotic parameter. Note
that using permutation importance instead of SHAP impor-
tance suggests that the third most important variable is sur-
face temperature, which is correlated to elevation. In paral-
lel, minT is driven by minV, lapilli, elevation and EVI, which
indicates that the duration of impact is dominantly propor-
tional to the magnitude of impact and the tephra load. In com-
parison, the minV of herbaceous vegetation is controlled by
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Table 6. Ranking of feature importance for minT computed using mean absolute SHAP values and permutation importance for all land cover
classes. For each column, the 10 most important features are in bold. Variable names follow Table 2. Herb. stands for herbaceous.

Target minT

Importance SHAP Permutation importance

Land cover All Crops Herb. Shrubs Sparse Forest All Crops Herb. Shrubs Sparse Forest

minV_EVI_CDI 1 1 1 1 1 1 1 1 1 1 1 1
EVI 4 4 2 5 7 4 4 4 2 5 7 4
elevation 3 8 5 3 2 3 3 6 4 3 3 3
EVI_SD 2 2 6 4 5 7 2 2 3 4 6 6
lapilli 6 18 9 19 9 2 6 13 8 20 11 2
fine_ash 7 5 4 11 12 5 7 5 5 10 13 5
coarse_ash 9 13 14 8 4 12 10 17 15 7 4 12
slope 8 3 11 17 8 8 8 3 9 13 10 8
total_precipitation_SRI_3 16 6 8 18 10 16 15 7 7 15 9 15
northness 10 9 10 16 14 6 9 8 11 14 16 7
total_precipitation_SRI_2 13 14 17 2 11 25 12 19 20 2 5 22
total_precipitation_SRI 5 23 13 9 17 10 5 26 16 8 17 11
temperature_2m_SRI_4 15 21 7 15 20 27 11 20 10 18 21 26
eastness 17 15 15 13 16 11 14 11 14 12 20 9
total_precipitation_SRI_1 11 10 12 24 15 21 13 15 18 22 12 25
total_precipitation_SRI_4 22 20 19 22 18 22 17 14 13 19 15 23
wind_10 25 7 29 21 13 26 19 9 25 23 14 27
temperature_2m 28 22 18 10 24 18 29 23 17 11 19 18
temperature_2m_SRI_3 27 11 27 14 23 17 23 10 24 17 24 17
aspect 19 12 23 20 22 9 20 12 23 21 22 10
total_precipitation_3 12 28 21 7 19 15 16 27 28 6 18 14
soil 21 19 16 23 21 31 25 21 12 25 23 29
temperature_2m_SRI_1 26 24 25 29 25 23 26 22 27 29 28 19
climate 34 29 34 34 34 20 33 29 34 31 34 21
landform 23 17 22 28 26 13 27 16 22 27 26 16
temperature_2m_SRI 20 25 24 25 29 19 22 25 26 24 29 20
total_precipitation_4 32 16 32 12 33 36 30 18 33 16 31 35
temperature_2m_SRI_2 31 26 28 30 28 24 32 24 30 26 30 24
total_precipitation 29 30 31 26 3 28 34 28 31 28 2 32
temperature_2m_3 24 33 20 31 31 14 21 33 19 32 32 13
total_precipitation_2 33 34 3 6 6 35 31 34 6 9 8 34
temperature_2m_1 18 27 30 32 30 33 24 30 29 34 27 33
land cover 14 36 36.5 36 36 30 18 36 36 36 36 30
total_precipitation_1 36 31 26 33 27 32 36 32 21 33 25 28
temperature_2m_2 30 32 33 35 35 34 28 31 32 35 35 36
temperature_2m_4 35 35 35 27 32 29 35 35 36 30 33 31

lapilli, EVI and the 6-month precipitation, which indicates
the same hierarchy of importance of deposit, biotic and abi-
otic parameters as for forests, whereas minT is controlled by
minV, EVI, the 3-month precipitation and fine ash. Interest-
ingly, this suggests that impact duration does not primarily
depend on any deposit variable, the most important of which
(i.e., fine ash) is different to the parameter controlling the
magnitude of impact (i.e., lapilli). As a final example, no de-
posit property ranks in the top three variables controlling the
minV values of crops, which include climate, EVI and the
3-month precipitation anomaly. The first deposit parameter,
fine ash, ranks fourth, which indicates that the vulnerability

of crops to ash fallout is dominantly constrained by biotic
and abiotic parameters. Fine ash ranks fifth for minT, which
is mainly driven by minV, EVI and the slope, and illustrates
how abiotic parameters can potentially dominantly control
impact magnitude and duration.

4.4.3 SHAP dependence plots

SHAP dependence plots (Fig. 8) display, for each instance
in the dataset (i.e., a point in Fig. 5d), the SHAP value of
a given variable as a function of its actual value. For a given
instance and a given variable, a negative SHAP value implies
that the variable contributed to reducing the predicted value
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compared to the mean prediction of the model. Therefore,
a negative SHAP value for minV implies a contribution to
increase the magnitude of impact, whereas a negative SHAP
value for minT implies a contribution to decrease the duration
of impact.

Impact of deposit on minV predictions

Figure 8a is the dependence plots for lapilli. With loads
≤ 60 kg m−2 of lapilli, SHAP values are contained within
0±0.1 but drastically drop for larger loads. With lapilli domi-
nantly impacting the vicinity of the volcanic source,<4 % of
all instances are affected by accumulations>60 kg m−2, with
those areas dominantly consisting of forests with additional
vegetation classified as shrubs and herbaceous (Fig. 1c). De-
spite limited points, Fig. 8a suggests stepwise decreases in
SHAP values for lapilli loads of ∼ 60, 230 and 550 kg m−2.
Using a deposit density of 1000 kg m−3, thicknesses of 60,
230 and 550 mm span the D1–D4 damage states for forestry
(Jenkins et al., 2014; Table 1). Using the pastoral class of Ta-
ble 1 as an analogue for shrubs and herbaceous vegetation,
these accumulations suggest that, for crops, substantial to
major land rehabilitation is required before recovery. These
observations confirm the relationships between minV, minT
and the deposit load shown in Fig. 7: points affected by high
lapilli loads result in minT values larger than ∼ 1300 d and
an impact that persisted for years after the eruption. These
high impact metrics explain why lapilli is the most important
variable to predict minV. Lapilli is likely to cause a direct,
physical impact from the high kinetic energies (e.g., Blake
et al., 2015; Osman et al., 2019) and breakage from a static
load and burial (Arnalds, 2013; Ayris and Delmelle, 2012),
which is captured as a strong anomaly by our method and re-
sults as the most important variable. Plotting the dependence
plot of lapilli for the model trained on the generic forest land
cover class (Fig. 8b) indicates that the 2-month precipitation
anomaly contributes to further explaining the influence on
the SHAP value, with points with an anomaly<0.85 display-
ing lower SHAP values.

Dependence plots for coarse and fine ash (Fig. 8c, d) dis-
play similar – although less conspicuous – drops in SHAP
values for accumulations of 12 and 1.7 kg m−2, respectively,
with SHAP values on average 1 order of magnitude smaller
than for lapilli. Considering that fine deposits are denser than
coarser ones, a density range of 1000–2000 results in thick-
nesses of 6–12 and 0.9–1.7 mm for coarse and fine ash, re-
spectively, which cover the D1–D3 damage classes for horti-
cultural/arable and pastoral agriculture (Table 1). Note that
these thicknesses should be regarded as minimum values
as we convert here individual size fractions to total deposit
thickness. Figure 8e–j also shows the effect of ash for models
trained on specific land cover classes. For crops (Fig. 8e–f),
coarse and fine ash are the 10th and the 4th most important
variables, respectively. Coarse ash seems to induce drops in
SHAP values for loads of 2, 4 and 10 kg m−2. There is clearly

an effect of fine ash on SHAP values, but the oscillatory pat-
tern is difficult to explain for loads ≤0.5 kg m−2, especially
for the Csb climate class where most crops are found (i.e.,
warm temperate, summer dry, warm summer), and proba-
bly depends on additional variables not accounted for in the
model (e.g., geographic distribution of plant-specific effects
such as ash retention as a function of leaf morphology).
Beyond 1 kg m−2, SHAP values are consistently negative.
Coarse and fine ash are the 4th and the 14th most important
variables for minV for herbaceous vegetation. The coarse ash
shows more negative SHAP values when associated with fine
ash. Fine ash is generally beneficial for herbaceous vegeta-
tion with low EVI values (Fig. 8h). For herbaceous vegeta-
tion, the most negative SHAP values are found for high-EVI
with accumulations ≤ 1 kg m−2. Incidentally, such accumu-
lations also correspond to the highest SHAP values. Since no
covariate satisfactorily explains this contrasting behaviour,
this is either due to a model artefact or to variables that are
not accounted for in the model. For shrubs (Fig. 8i, j), coarse
and fine ash are respectively the 7th and 12th most important
variables. Coarse ash suggests a decrease in SHAP values
for loads of ∼ 6 kg m−2, beyond which the magnitude of the
negative effect increases with the lapilli load. Fine ash does
not show any trend or sharp break.

Impact of other features on the prediction of minV

Figure 9 shows SHAP dependence plots for variables other
than the deposit. Figure 9a confirms the importance of EVI
on minV, where all points with EVI<0.1 result in positive
SHAP values and all points with EVI>0.3 result in negative
SHAP values. This observation is partly a consequence of the
use of Eq. (1), where the value of VIijk −VIij is generally
larger for higher EVI values. Figure 9a also suggest a depen-
dence of this relationship on the load of coarse ash, which
slightly increases SHAP values for low EVI but decreases
them for higher values. Elevation is the third most important
feature for predicting minV and shows a breakpoint at an alti-
tude of ∼ 1000 m a.s.l. (Fig. 9b), below which SHAP values
are dominantly negative. Above this elevation, SHAP values
are generally positive, regardless of the intensity of ash accu-
mulation. Land cover, the seventh most important feature, in-
dicates that crops dominantly contribute to increasing impact
in the model (Fig. 9c). Sparse vegetation also has a negative
but less pronounced effect on SHAP values, whereas shrubs
and herbaceous vegetations have a neutral effect. The SHAP
values of forests tend to reduce the impact, which corrobo-
rates the higher resilience of trees to tephra fallout (Table 1).

Wind and precipitation partly control the residence time
of ash on leaves and therefore the impact (Ayris and
Delmelle, 2012). Although variables used here only con-
sider pre-eruption atmospheric conditions, they are indirectly
used as indicators for post-eruption patterns. The impact of
wind speeds on SHAP values suggests breakpoints at 0.2
and 1.2 m s−1. SHAP values are strongly negative below
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Figure 8. SHAP dependence plots illustrating the effect of deposit on the minV value predicted by the models for (a) lapilli using all land
cover classes, (b) lapilli on the forest subclass, and (c–j) coarse and fine ash for selected land cover classes. The hue of the points is related to
additional explanatory variables. For panels (a), (e) and (f), the colour scheme follows Fig. 1. Negative SHAP values contribute to decreasing
minV and therefore increase impact.
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Figure 9. (a–e) SHAP dependence plots illustrating the effect of various variables on the prediction of minV. (a–b) Effect of EVI (a) and
elevation (b) on the SHAP value as a function of the coarse ash load. (c) Violin plot showing the distribution of SHAP values for each land
cover class with a box-and-whisker plot overlain. (d) Effect of wind speed on the SHAP values as a function of climate. (e) Effect of the
3-month precipitation anomaly on the SHAP value as a function of land cover. (f) Spatial distribution of 3-month precipitation anomaly
SHAP values. Map tiles by Stamen Design CC BY 3.0; map data © OpenStreetMap contributors.

0.2 m s−1, generally positive up to 1.2 m s−1 and generally
negative above (Fig. 9d). This supports the idea that wind
contributes to reducing the residence time of ash on leaves,
but the aeolian remobilization of ash at higher wind speeds
can negatively impact vegetation (e.g., Arnalds, 2013; Craig
et al., 2016b; Elissondo et al., 2016; Wilson et al., 2011a, b).
Although depending on additional parameters (e.g., surface
roughness, ash properties, soil humidity, rainfall intensity),
an empirical value for onset of remobilization of 0.4 m s−1

has been used in the literature and agrees with our results
(e.g., Folch et al., 2014; Liu et al., 2014). Leadbetter et
al. (2012) observed that ash resuspension is suppressed if
precipitation rates exceed 0.01 mm h−1, and our model in-
dicates that most negative SHAP values occur for relatively

dry climates. The most important precipitation variable for
predicting minV with all land cover classes is the precipita-
tion anomaly computed over 3 months before the eruption,
which mostly shows a negative anomaly (i.e., anomaly<1;
Table 6; Fig. 9e). This precipitation anomaly shows a clear
break at a value of 0.87, for which SHAP values are domi-
nantly negative below and positive above. Above a value of
1, SHAP values increase. Figure 9e shows a negative peak
in SHAP values between an anomaly of 0.85–0.87 across
all land cover classes but stronger for crops. Plotting SHAP
values on a map (Fig. 9f), the spatial clustering of negative
SHAP values corresponds to the location of crops between
San Carlos de Bariloche and Comallo (Fig. 1). No variable
unequivocally explains this spatial clustering.
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Figure 10. SHAP dependence plots for minT showing the effect on the SHAP value from (a) minV as a function of EVI, (b) EVI as a
function of minV, (c) 1-month precipitation anomaly as a function of minV and (d) wind speed as a function of climate. Negative SHAP
values contribute to decreasing minT and therefore decrease impact the duration for reaching minV.

Features driving minT

With a mean absolute SHAP value>7 times larger than any
other variable, minV is by far the most important for pre-
dicting minT (Fig. 10a), with a cut-off between positive (i.e.,
increasing the value of minT) and negative (i.e., decreasing
minT) at a minV value of ∼ 0.15. The effect of EVI on minT
is the opposite of minV (Fig. 9a): although high EVI values
tend to increase the impact magnitude (lower minV), they
generally contribute to reducing the impact duration (i.e.,
Fig. 10b). Interestingly, this trend disappears as minV in-
creases. This can be explained by the fact that points affected
by high minV values in Fig. 10b are associated with relatively
high minT values (Figs. 7; 10a). These points are associated
with damage classes suggesting land retirement, and their
recovery is therefore independent of the pre-eruption EVI
level. The 1-month precipitation anomaly is the fifth most
important variable for minT (Fig. 10c), and SHAP values are
mostly positive below an anomaly of 0.3 and mostly negative
above 0.5. As for EVI, high minV values are less sensitive to
the general trend. Finally, Fig. 10d shows the effect of the
wind speed at the time of eruption on minT as a function
of the climate. Wind speeds>4 m s−1 considerably increase
minT, especially in an arid climate (i.e., BWk) where the veg-
etation is mostly shrubs, herbaceous and sparse. Points with
positive SHAP values at wind speeds>4 m s−1 are character-
ized by accumulations of fine ash>0.5 kg m−2. In contrast,

points with minimum SHAP values between wind speeds of
1.8–2.8 m s−1 correspond to crops close to Piedra del Aguila
and show fine ash loads<0.5 kg m−2.

5 Discussion and perspectives

The proposed methodology provides a new framework to
systematically assess the vulnerability of vegetation to tephra
fallout as a dynamic, multi-variate problem. Its application
to the CC 2011 eruption highlights how big EO datasets
and interpretable machine learning could help acquire new
knowledge from tens to hundreds of understudied eruptions
recorded in archives of multispectral images. This approach
aligns with FAO’s objective of gaining a global understand-
ing of vegetation vulnerability through the systematic study
of their impacts and, in turn, contributes to various Sustain-
able Development Goals (SDGs 2.4, 13.1, 15.3). Specific to
volcanic risk, this is the first effort to provide a large-scale,
quantitative basis to estimate the impacts of explosive vol-
canic eruptions on food production. On a longer timescale
and large spatial scale, this is the first step towards tackling
the unaddressed black elephant event that is the risk of future
large eruptions on food security (Lin et al., 2021).
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5.1 Validation and causal inference

Our methodology attempts to highlight impact mechanisms
either occurring from the direct action or arising from in-
teractions between physical properties. Since we neglect the
impact from water leachable elements (e.g., Stewart et al.,
2020), the approach is more suited to dominantly magmatic
events rather than eruptions with a significant hydrothermal
component. Impact patterns captured by our methodology
are corroborated by lessons learned from empirical post-
EIAs and experiments. For CC 2011, the model suggests that,
except for points subjected to destruction from large tephra
loads, various biotic and abiotic variables tend to have a more
critical control on both impact magnitude and impact dura-
tion than deposit properties (Tables 5 and 6). SHAP depen-
dence plots for deposit properties (e.g., Fig. 8a–e) identify
similar tephra thresholds as those in existing DDSs (Table 1).
Nevertheless, numerous evidences reported in post-EIAs as
well as controlled experiments outline the dependency of im-
pact mechanisms to size distribution, ranging from physical
impact for large lapilli to a reduction of light interception
from fine ash leading to a decrease in photosynthesis (e.g.,
Ligot et al., 2022). DDSs must therefore consider other haz-
ard impact metrics than only tephra thickness, and Figs. 8–
10 are the first attempt towards this objective. The method
is also able to capture impacts arising from interaction be-
tween other parameters than deposit properties. For instance,
Fig. 9d suggests that the model captures the general relation-
ship between presence of ash, precipitation (inferred from
climate) and wind speed in controlling the impact from ae-
olian remobilization. This demonstrates the ability of the
model to identify complex and dynamic processes, and cross-
validating thresholds inferred from the model with values
from existing post-EIAs and experiments provides a system-
atic framework to generalize observations made at different
scales (Dominguez et al., 2020a; Forte et al., 2017; Leadbet-
ter et al., 2012; Liu et al., 2014).

Despite these observations, methodologies for inter-
pretable ML should be carefully used when attempting to in-
fer causality from correlations/associations. Suggestions of
causality are currently restricted to effects that rely on phe-
nomena that have been either witnessed in the field or exper-
iments. Other variables considered in our dataset show con-
spicuous and complex patterns that we are unable to explain
(e.g., Figs. 8f, 9e). Such patterns have two possible explana-
tions (or a combination of both): either (i) the model fails to
accurately capture the underlying relationship between fea-
ture and target variable or (ii) the relationship is complicated
by other factors (e.g., feature interactions, confounding vari-
ables), including unobserved ones. Investigating which as-
sociation captures true causality therefore requires the de-
velopment of synergies between various relevant disciplines
(e.g., physical volcanology, ecology, soil sciences, disaster
risk reduction). The development and adaptation of existing
causal inference methods in Earth sciences to investigate a

system’s causal interdependencies is an active topic of re-
search (Runge et al., 2019).

5.2 Towards a model for agricultural crops and food
production

The methodology currently relies on the CGLS-LC100 land
cover dataset to distinguish between natural vegetation and
agriculture. We focus here on agricultural crops which, de-
spite representing ∼ 1 % of the study area, show the highest
vulnerability to tephra fall (Fig. 9). Note that although pas-
toral crops are included in the herbaceous vegetation class
in CGLS-LC100, it is impossible to distinguish between nat-
ural and managed grassland (Buchhorn et al., 2020). Post-
EIAs on agricultural impacts have demonstrated how agri-
culture vulnerability depends on various factors that are not
included in our model, including some of socio-economic na-
ture (Blake et al., 2015; Ligot et al., 2022; Magill et al., 2013;
Phillips et al., 2019; Wilson et al., 2013, 2007) that reflect
specific challenges associated with different farming activi-
ties (e.g., pastoral versus horticultural, intensive versus sub-
sistence farming). Although future evolutions of the CGLS-
LC100 dataset will possibly include finer sub-definitions of
the crops class (e.g., irrigated versus rainfed cropland, farm
size; Buchhorn et al., 2020), the methodology currently con-
siders all agricultural crops as a uniform system.

Despite this limitation, the proposed methodology never-
theless follows impact mapping techniques implemented in
several other approaches for vegetation and food security
mapping and monitoring (e.g., Meroni et al., 2019; Poortinga
et al., 2018; Rembold et al., 2019), which differ in their
fundamental purposes. To our knowledge, we provide here
the first attempt to combine numerical modelling, big EO
data and ML into a framework to re-analyse and extract new
knowledge from data recorded in decades of remote sensing
images as the basis for a new type of evidence-based vulner-
ability model. However, several steps are required for future
evolutions of our approach to inform quantitative risk assess-
ments on food production and security. Amongst them, fu-
ture iterations of the methodology will focus on achieving
the following:

1. more applications of the model to various types of cli-
mates, eruptions, and sampling different relationship
between eruption date and phenological cycle in order
to improve its generalization;

2. comparison, validation and scaling of the EVI-based
impact metrics with other impact estimates, either based
on field interviews (e.g., yield loss), mapping (e.g., per-
centage of destroyed or damage vegetation) or other in-
direct proxies for physical processes (e.g., gross and net
primary productivity);

3. the inclusion of parameters describing the recovery of
vegetation (i.e., the shape of the CDI curve after reach-
ing minV /minT; Fig. 3).
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5.3 Caveats and future research

Below are future challenges and possible improvements of
the method.

1. The methodology takes advantage of datasets available
on GEE (Table 2) and combines datasets of different
nature, as well as spatial and temporal resolutions. This
discrepancy affects the accuracy of the model, and fu-
ture development will explore a balance between the
spatial and temporal resolutions of all datasets. Specif-
ically ERA5 data will be reanalysed using mesoscale
atmospheric models (e.g., Skamarock et al., 2019) at a
resolution consistent with other datasets.

2. An inherent and inevitable dependency exists between
the various datasets; some are of ecological nature (e.g.,
multicollinearity between elevation, climate, land cover,
precipitation and temperature), whereas other are geo-
graphic coincidences (e.g., lapilli dominantly affects the
Cfb climate class, Fig. 1). Further work is necessary to
explore how these dependences influence model predic-
tion and interpretability (Kattenborn et al., 2022).

3. The methodology currently attempts to capture impact
as a function of pre-eruption variables (e.g., rainfall
anomaly for various time steps before the eruption).
In order to capture post-eruptive processes in impact
modelling, future applications of the model will include
post-eruption variables in the training process (e.g.,
wind speed and precipitation after the eruption to cap-
ture ash residence on vegetation surface).

4. Despite providing a satisfactory accuracy, other algo-
rithms and models than gradient-boosted regression
trees allowing multi-output predictions must be ex-
plored to model minV and minT jointly.

5. The CDI was designed as a proxy for the long-term
post-eruption evolution of the biomass production ex-
pressed by the EVI. Unlike more frequently used
anomaly indices relying on a ratio between post- and
pre-eruption conditions, the CDI aims at quantifying
a budget between losses and gains. Although this im-
plies a correlation between EVI and CDI (Sect. 3.1.2),
this approach allows defining indices similar to minV
and minT to capture recovery and investigate potential
gains in biomass production following eruptions. Future
work, along with accounting for post-eruption variables
and multi-output predictions, will consider aspects of
recovery in the model.

6. ML models used in EO applications rarely accom-
modate spatial (and spatio-temporal) dependence. Ac-
counting for these is necessary for reliable (causal) in-
ference and uncertainty quantification. We plan to in-
vestigate the use of Gaussian processes, among others,
to capture any residual spatial dependence.

6 Conclusions

We developed a methodology to remotely quantify impact
through a combination of big EO data, interpretable ML and
physical volcanology as a first step towards the development
of a framework to identify, quantify and generalize key vari-
ables driving the impact of vegetation after an eruption. The
methodology is designed to provide a high-level and com-
plementary perspective to dedicated studies of the various
disciplines involved in the characterization of the vulnera-
bility and impact of vegetation and crops to natural hazards
beyond tephra fallout and has the potential to enhance the de-
velopment of new synergies between the different actors and
stakeholders involved in this specific facet of risk manage-
ment.

Based on the application of the methodology to the 2011
eruption of Cordón Caulle, the main conclusions are the fol-
lowing.

– Both the magnitude and the duration components of im-
pact captured by the processing of MODIS satellite im-
agery reflect the geometry of the deposit (Fig. 5).

– The methodology provides a systematic approach to
identify the nature of the most important variables con-
trolling the final impact metrics. The forest land cover
class is mostly controlled by deposit properties (e.g.,
lapilli accumulation), whereas the crops land cover class
predominantly depends on biotic and abiotic parame-
ters.

– Interpretable machine learning methods provide in-
sights into the nature of impacts. For instance, forests
appear to be impacted by a direct physical impact
caused by heavy accumulations.

– Across land cover classes present in the study area,
SHAP dependence plots suggest that forest and crops
are the most and the least resilient vegetation classes to
tephra accumulation, respectively (Fig. 9c).

– The interpretation of SHAP dependence plots for de-
posit properties of the different land cover classes
(Fig. 8) is in good agreement with thresholds for exist-
ing DDSs inferred from post-event impact assessments
(Table 1), which further reinforces the validity and use-
fulness of our approach.

Code availability. The Python functions written in the context
of this study are part of a library that is currently being devel-
oped and published. Although not yet available as an integrated
software, the various components of the code (e.g., access and
processing of MODIS images from Google Earth Engine, ML
optimization and training, and data analysis) will be shared
upon request. The project was developed using Python 3.9. Data
analysis was performed with NumPy v.1.22.4 (Harris et al.,
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2020), Pandas v.1.4.3 (https://doi.org/10.5281/zenodo.3509134,
The pandas development team, 2020) and GeoPan-
das v.0.11 (https://doi.org/10.5281/zenodo.3946761, Jor-
dahl et al., 2020). Plotting was done using Matplotlib
(https://doi.org/10.5281/zenodo.6513224, Caswell et al., 2022;
Hunter, 2007) and seaborn v.0.11.2 (Waskom, 2021). Maps were
produced with QGIS v.3.26 (QGIS Development Team, 2022). The
ML model was written using the scikit-learn v.1.1.1 (Pedregosa et
al., 2011) interface using the XGBoost v.1.6.1 (Chen and Guestrin,
2016) library, which was optimized using Optuna v.2.10.1 (Akiba
et al., 2019). Model interpretation was performed using SHAP
v.0.41 (Lundberg et al., 2020) via explainerdashboard v.0.4
(https://doi.org/10.5281/zenodo.6408776, Dijk, 2022).

Data availability. Data produced in this paper are avail-
able from https://doi.org/10.5281/zenodo.6976234 (Bi-
ass, 2022). Most datasets used in this study were ac-
cessed using the Google Earth Engine Python API (Gore-
lick et al., 2017), including MODIS MOD13Q1.006 and
MYD13Q1.006 (https://doi.org/10.5067/MODIS/MOD13Q1.006,
Didan, 2005), the 30 m SRTM DEM (Farr et al., 2007),
ERA5 Land (https://doi.org/10.24381/cds.68d2bb30, Muñoz
Sabater, 2019) and the Copernicus CGLS-LC100 land cover
(https://doi.org/10.5281/ZENODO.3518038, Buchhorn et al.,
2020). Additional datasets include SoilGrids250m (Hengl et al.,
2017) and the Köppen climate classification (Beck et al., 2018).
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