Articles | Volume 22, issue 4
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, 2022
https://doi.org/10.5194/nhess-22-1395-2022
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, 2022
https://doi.org/10.5194/nhess-22-1395-2022
Research article
21 Apr 2022
Research article | 21 Apr 2022

Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)

Sansar Raj Meena et al.

Related authors

Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022,https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022,https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022,https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Multiscale effects caused by the fracturing and fragmentation of rock blocks during rock mass movement: implications for rock avalanche propagation
Qiwen Lin, Yufeng Wang, Yu Xie, Qiangong Cheng, and Kaifeng Deng
Nat. Hazards Earth Syst. Sci., 22, 639–657, https://doi.org/10.5194/nhess-22-639-2022,https://doi.org/10.5194/nhess-22-639-2022, 2022
Short summary
Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery
Napoleon Gudino-Elizondo, Matthew W. Brand, Trent W. Biggs, Alejandro Hinojosa-Corona, Álvaro Gómez-Gutiérrez, Eddy Langendoen, Ronald Bingner, Yongping Yuan, and Brett F. Sanders
Nat. Hazards Earth Syst. Sci., 22, 523–538, https://doi.org/10.5194/nhess-22-523-2022,https://doi.org/10.5194/nhess-22-523-2022, 2022
Short summary

Cited articles

ARPAV: Cambiamenti climatici, per l'IPCC i tempi stringono, Il focus sul Veneto, https://www.arpa.veneto.it/temi-ambientali/meteo/riferimenti/documenti/documenti-meteo/IPCC E CAMBIAMENTI CLIMATICI IN VENETO.pdf (last access: 9 April 2022), 2021. 
Baglioni, A., Tosoni, D., De Marco, P., and Arziliero, L.: Analisi del dissesto da frana in Veneto, ISPRA, https://www.isprambiente.gov.it/contentfiles/00003200/3228-capitolo-10-veneto.pdf (last access: 9 April 2022), 2006. 
Baird, C.: Comparison of Risk Assessment Instruments in Juvenile Justice, NCCD, https://www.njjn.org/uploads/digital-library/NCCD_risk-assessment-comparison_August-2013.pdf (last access: 9 April 2022), 2013. 
Boretto, G., Crema, S., Marchi, L., Monegato, G., Arziliero, L., and Cavalli, M.: Assessing the effect of the Vaia storm on sediment source areas and connectivity storm in the Liera catchment (Dolomites), in: EGU General Assembly 2021, online, 19–30 April 2021, EGU21-7643, https://doi.org/10.5194/egusphere-egu21-7643, 2021. 
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G.: Landslide susceptibility in San Mateo County, California, Reston, VA, Report 360, https://doi.org/10.3133/mf360, 1972. 
Download
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Altmetrics
Final-revised paper
Preprint