Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1395-2022
https://doi.org/10.5194/nhess-22-1395-2022
Research article
 | 
21 Apr 2022
Research article |  | 21 Apr 2022

Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)

Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani

Related authors

Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025,https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023,https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025,https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Landslide activation during deglaciation in a fjord-dominated landscape: observations from southern Alaska (1984–2022)
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025,https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Brief communication: Weak correlation between building damage and loss of life from landslides
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025,https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025,https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025,https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary

Cited articles

ARPAV: Cambiamenti climatici, per l'IPCC i tempi stringono, Il focus sul Veneto, https://www.arpa.veneto.it/temi-ambientali/meteo/riferimenti/documenti/documenti-meteo/IPCC E CAMBIAMENTI CLIMATICI IN VENETO.pdf (last access: 9 April 2022), 2021. 
Baglioni, A., Tosoni, D., De Marco, P., and Arziliero, L.: Analisi del dissesto da frana in Veneto, ISPRA, https://www.isprambiente.gov.it/contentfiles/00003200/3228-capitolo-10-veneto.pdf (last access: 9 April 2022), 2006. 
Baird, C.: Comparison of Risk Assessment Instruments in Juvenile Justice, NCCD, https://www.njjn.org/uploads/digital-library/NCCD_risk-assessment-comparison_August-2013.pdf (last access: 9 April 2022), 2013. 
Boretto, G., Crema, S., Marchi, L., Monegato, G., Arziliero, L., and Cavalli, M.: Assessing the effect of the Vaia storm on sediment source areas and connectivity storm in the Liera catchment (Dolomites), in: EGU General Assembly 2021, online, 19–30 April 2021, EGU21-7643, https://doi.org/10.5194/egusphere-egu21-7643, 2021. 
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G.: Landslide susceptibility in San Mateo County, California, Reston, VA, Report 360, https://doi.org/10.3133/mf360, 1972. 
Download
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Share
Altmetrics
Final-revised paper
Preprint