Articles | Volume 22, issue 4
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, 2022
https://doi.org/10.5194/nhess-22-1395-2022
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, 2022
https://doi.org/10.5194/nhess-22-1395-2022
Research article
21 Apr 2022
Research article | 21 Apr 2022

Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)

Sansar Raj Meena et al.

Related authors

HR-GLDD: A globally distributed dataset using generalized DL for rapid landslide mapping on HR satellite imagery
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-350,https://doi.org/10.5194/essd-2022-350, 2022
Preprint under review for ESSD
Short summary
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Landslide susceptibility assessment in the rocky coast subsystem of Essaouira, Morocco
Abdellah Khouz, Jorge Trindade, Sérgio C. Oliveira, Fatima El Bchari, Blaid Bougadir, Ricardo A. C. Garcia, and Mourad Jadoud
Nat. Hazards Earth Syst. Sci., 22, 3793–3814, https://doi.org/10.5194/nhess-22-3793-2022,https://doi.org/10.5194/nhess-22-3793-2022, 2022
Short summary
Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022,https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022,https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022,https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences
Hans-Balder Havenith, Kelly Guerrier, Romy Schlögel, Anika Braun, Sophia Ulysse, Anne-Sophie Mreyen, Karl-Henry Victor, Newdeskarl Saint-Fleur, Léna Cauchie, Dominique Boisson, and Claude Prépetit
Nat. Hazards Earth Syst. Sci., 22, 3361–3384, https://doi.org/10.5194/nhess-22-3361-2022,https://doi.org/10.5194/nhess-22-3361-2022, 2022
Short summary

Cited articles

ARPAV: Cambiamenti climatici, per l'IPCC i tempi stringono, Il focus sul Veneto, https://www.arpa.veneto.it/temi-ambientali/meteo/riferimenti/documenti/documenti-meteo/IPCC E CAMBIAMENTI CLIMATICI IN VENETO.pdf (last access: 9 April 2022), 2021. 
Baglioni, A., Tosoni, D., De Marco, P., and Arziliero, L.: Analisi del dissesto da frana in Veneto, ISPRA, https://www.isprambiente.gov.it/contentfiles/00003200/3228-capitolo-10-veneto.pdf (last access: 9 April 2022), 2006. 
Baird, C.: Comparison of Risk Assessment Instruments in Juvenile Justice, NCCD, https://www.njjn.org/uploads/digital-library/NCCD_risk-assessment-comparison_August-2013.pdf (last access: 9 April 2022), 2013. 
Boretto, G., Crema, S., Marchi, L., Monegato, G., Arziliero, L., and Cavalli, M.: Assessing the effect of the Vaia storm on sediment source areas and connectivity storm in the Liera catchment (Dolomites), in: EGU General Assembly 2021, online, 19–30 April 2021, EGU21-7643, https://doi.org/10.5194/egusphere-egu21-7643, 2021. 
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G.: Landslide susceptibility in San Mateo County, California, Reston, VA, Report 360, https://doi.org/10.3133/mf360, 1972. 
Download
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Altmetrics
Final-revised paper
Preprint