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Abstract. In the domain of landslide risk science, land-
slide susceptibility mapping (LSM) is very important, as
it helps spatially identify potential landslide-prone regions.
This study used a statistical ensemble model (frequency ra-
tio and evidence belief function) and two machine learning
(ML) models (random forest and XGBoost; eXtreme Gradi-
ent Boosting) for LSM in the province of Belluno (region
of Veneto, northeastern Italy). The study investigated the im-
portance of the conditioning factors in predicting landslide
occurrences using the mentioned models. In this paper, we
evaluated the importance of the conditioning factors in the
overall prediction capabilities of the statistical and ML algo-
rithms. By the trial-and-error method, we eliminated the least
“important” features by using a common threshold of 0.30
for statistical and 0.03 for ML algorithms. Conclusively, we
found that removing the least important features does not im-
pact the overall accuracy of LSM for all three models. Based
on the results of our study, the most commonly available fea-
tures, for example, the topographic features, contributes to
comparable results after removing the least important ones,
namely the aspect plan and profile curvature, topographic
wetness index (TWI), topographic roughness index (TRI),
and normalized difference vegetation index (NDVI) in the
case of the statistical model and the plan and profile curva-
ture, TWI, and topographic position index (TPI) for ML al-
gorithms. This confirms that the requirement for the impor-
tant conditioning factor maps can be assessed based on the
physiography of the region.

1 Introduction

Landslides are one of the most frequently occurring natural
disasters that cause significant human casualties and infras-
tructure destruction (Froude and Petley, 2018). Landslides
are triggered by several natural and man-made events such as
earthquakes, volcanic eruptions, heavy rains, extreme winds,
and unsustainable construction activities such as unplanned
settlement development and the cutting of roads along the
slopes (Glade et al., 2006; van Westen et al., 2008). Extreme
meteorological events such as the Vaia storm of 2018 trig-
gered landslides and debris flow and destroyed critical infras-
tructures in the northern parts of Italy (Boretto et al., 2021).
As reported by Gariano et al. (2021) in the 50 years between
1969 and 2018, landslides posed a severe threat to the Ital-
ian population. Approximately 1500 out of the 8100 munic-
ipalities in Italy have faced landslides with severe fatalities.
Between the years of 1990 and 1999, 263 people were killed
by landslides. Studies by Rossi et al. (2019) estimated that
approximately 2500 people were killed between 1945 and
1990. Moreover, predictive modelling of the Italian popula-
tion at risk of landslides (Rossi et al., 2019) shows a massive
tendency of risk to the population with data acquired between
1861 and 2015, emphasizing the necessity for landslide risk
studies.

Therefore, to assess landslide risk and to plan for risk miti-
gation measures, it is crucial to analyse the landslide suscep-
tibility mapping (LSM). LSM is an essential tool that incor-
porates potential landslide locations (Senouci et al., 2021).
The probability of a landslide occurring in a particular region
owing to the effects of several causative factors is referred to
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as landslide susceptibility (Reichenbach et al., 2018). LSM
is an essential step towards landslide risk management and
helps in effective mapping of the spatial distribution of prob-
able landslide manifestations (Dai et al., 2002). In the past,
researchers have used a range of models to assess landslide
susceptibility using technologies such as Earth observation
(EO) and a geographic information system (GIS). The recog-
nition and analysis of slope movements have been going on
since the early 1970s (Brabb et al., 1972) and is still one
of the most important components in performing LSM (Er-
canoglu and Gokceoglu, 2002; Chacón et al., 2006; Guzzetti
et al., 2006; Castellanos Abella and Van Westen, 2008; Floris
et al., 2011; Catani et al., 2013; Pham et al., 2015; Reichen-
bach et al., 2018; Youssef and Pourghasemi, 2021; Liu et al.,
2021).

Traditional methods such as the expert-based analytical
hierarchy process (AHP), multi-variate statistics, and data-
driven approaches have been employed for landslide suscep-
tibility for many years, with satisfactory results (Pradhan,
2010; Castellanos Abella and Van Westen, 2008; Komac,
2006). A use case of such approaches is given by Floris et al.
(2011), who apply traditional LSM methods (frequency ratio,
FR) for mapping landslide susceptibility in a case study in
the region of Veneto, Italy. Afterwards, with the development
of new approaches, susceptibility modelling has advanced
from traditional approaches. Presently, two approaches –
(1) statistical and (2) machine learning – are practised for
LSM for investigating the landslide predisposing factors and
for mapping the geographical distribution of landslide pro-
cesses. Reichenbach et al. (2018) classified landslide suscep-
tibility models into six main groups: (1) classical statistics,
(2) index-based, (3) machine learning, (4) multi-criteria anal-
ysis, (5) neural networks, and (6) others. Research by Re-
ichenbach et al. (2018) also depicted that before 1995, only
5 models were used for LSM, but in recent times, an inves-
tigation of 19 other models was carried out, which yielded
good results. More than 50 % of the methods consisting of
the first five models mentioned above accounted for land-
slide susceptibility studies. Recent work by Stanley et al.
(2021) emphasized the importance of data-driven methods
in global LSM, which are trained to report landslide spatial
occurrences between the periods of 2015 and 2018. The first
version of the Landslide Hazard Assessment for Situational
Awareness (LHASA) model from their work for NASA re-
ported landslide occurrences with a decision tree model that
first defines the intensity of 1 week of rainfall. LHASA ver-
sion 2 used the data-driven model of XGBoost (eXtreme Gra-
dient Boosting) by adding two dynamically varying factors:
snow and soil moisture. However, despite advances in LSM,
the importance of the conditioning factors in the prediction
capability of a model is not discussed enough. The need
for increasing our control over the model sensitivity to sys-
tem parameters changes, including those induced by anthro-
pogenic and climate-change dynamics, is becoming a key
factor in the implementation of truly efficient LSM for risk

mitigation purposes. The Vaia windstorm of 2018 (Forzieri et
al., 2020), as a typical extreme weather event, may easily es-
cape traditional statistical prediction schemes and represent,
therefore, a challenging test for exploring the sensitivity of
the various LSM models to changing factors and conditions.

One goal of this research is to look into the relative
changes in LSM accuracy when the least “important” condi-
tioning factors are removed. Feature selection in LSM is an
approach in reducing landslide conditioning factors to im-
prove model performance and reduce computational time.
The purpose of this approach is to find the optimal set of con-
ditioning factors that will provide the best fit for the model to
yield higher accuracy as predictions. Micheletti et al. (2014)
emphasized the importance of feature selection in LSM and
discussed the use of machine learning (ML) models such as a
support vector machine (SVM), random forest (RF), and Ad-
aBoost (Adaptive Boosting) for LSM, as well as the signifi-
cance of associated features within the confluence of the ML
models for feature importance. However, their study did not
consider geological and meteorological features like lithol-
ogy, land use, and rainfall intensity for both LSM and fea-
ture selection. Studies by Liu et al. (2021) not only depicted
the improvement in the predictive capability of the so-called
feature selection machine learning (FS-ML) model but also
remarked on the fact that the same conditioning factors may
contribute differently in different ML models. In this study,
we want to investigate the prediction capability of the model
after removing conditioning factors as an approach to im-
prove LSM accuracy in contrast to what has been done in
studies like Liu et al. (2021), where they assess conditioning
factor importance using approaches like multi-collinearity
analysis and variance inflation factor before the prediction
of the susceptibility. The identification of the most crucial
features can help in monitoring the effect of extreme events
(such as Vaia) on the changes in the evolution of landslide
hazard.

We present a study from the province of Belluno (region of
Veneto, northeastern Italy) with the comparison of the con-
ditioning factor importance of statistical and ML models for
LSM before the Vaia storm event. The results from LSM will
be then validated using the IFFI (Inventory of Landslide Phe-
nomena in Italy) landslide inventory data for testing the var-
ious models’ prediction capability with/without certain fac-
tors. We also investigate whether many of the latter condi-
tioning factors are crucial for LSM. As in many regions over
the world, the same data or factor maps might not be avail-
able.

2 Study area and data

2.1 Study area

The area of the province of Belluno (region of Veneto, north-
eastern Italy) is part of the tectonic unit of the Southern Alps.
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The territory is 3672 km2 wide, stretching from north to
south between the Dolomite Alps and the Venetian Prealps,
with elevations ranging from 42 to 3325 m a.m.s.l. (above
mean sea level). From a geological point of view, the
Dolomite Alps comprise the Hercynian crystalline basement
consisting of micaschists and phyllites intruded by the Per-
mian ignimbrites (Doglioni, 1990; Schönborn, 1999). These
Palaeozoic units are mainly outcropping in the northeastern
and central-western sectors. The middle Upper Triassic in-
cludes carbonate, volcanic, and dolomitic formations. In par-
ticular, the Upper Triassic Main Dolomite covers 14 % of the
whole province. Jurassic–Cretaceous limestone and marls
are especially located between the Valsugana and Belluno
thrusts (Sauro et al., 2013). Moreover, in the Belluno Val-
ley and in the southern part of the area, Cenozoic sediments,
i.e. flysch and molasse and Quaternary glacial, alluvial, and
colluvial deposits, are largely present. Instead, the Venetian
Prealps are characterized by Jurassic–Cretaceous sedimen-
tary cover, such as layered limestones and dolomites with
cherts (Compagnoni et al., 2005; Corò et al., 2015). Because
of its morphological characteristics, the study area is affected
by slope instability, which overlays an area of 165 km2 corre-
sponding to 6 % of the province (Baglioni et al., 2006). Most
of the landslides are located in the northwestern (upper basin
of the Cordevole River) and southeastern (district of Alpago)
sectors of the province (Fig. 1). The dominant landslide types
are slides (47 %), rapid flows (20 %), slow flows (12 %), and
shallow soil slips (7 %) (Iadanza et al., 2021). The climate
of the province of Belluno is continental. The mean annual
temperature recorded in the period 1961–1990 is 7 ◦C, and
the mean precipitation is 1284 mmyr−1 (Desiato et al., 2005)
with two peaks distributed in spring and autumn. In the last
27 years, temperature and rainfall intensity in the study area
have increased due to climatic changes leading to more fre-
quent meteorological conditions (ARPAV, 2021).

2.2 Landslide inventory data

The Inventory of Landslide Phenomena in Italy (IFFI) con-
ducted by the Italian Institute for Environmental Protection
and Research (ISPRA) was used in this study (Trigila et
al., 2010). The IFFI project was financed in 1997. Since
2005, the catalogue has been available online and consists of
point features indicating the scarp of the landslides and poly-
gon features delineating the instabilities. The archive stores
the main attributes of the landslides, such as morphome-
try, type of movement, rate, involved material, induced dam-
ages, and mitigation measures. The inventory currently holds
620 808 landslides collected from historical documents, field
surveys, and aerial photointerpretation, covering an area of
23 700 km2, which corresponds to the 7.9 % of the Italian
territory (Trigila and Iadanza, 2018). In the province of Bel-
luno, the IFFI inventory consists of 5934 data points about
landslides that occurred before 2006 (Baglioni et al., 2006).

Figure 1. (a) Location of the study area and landslides collected
by the IFFI (Inventory of Landslide Phenomena in Italy) project.
(b) Field photographs after the Vaia event.

2.3 Landslide conditioning factors

Based on the regional environmental characteristics of the
study area and the scientific literature, 14 landslide condi-
tioning factors were selected, including (i) topographic fac-
tors such as elevation, slope angle, slope aspect, topographic
wetness index (TWI), topographic position index (TPI), to-
pographic roughness index (TRI), profile curvature, and plan
curvature; (ii) hydrological factors (i.e. distance to drainage
and mean monthly rainfall) and geological factors (lithol-
ogy); (iii) anthropogenic factors (distance to roads); and (iv)
environmental factors like the normalized difference vege-
tation index (NDVI) and land cover (see Fig. 2). A freely
accessible digital elevation model (DEM) with a spatial res-
olution of 25 m downloaded from the cartographic portal of
the region of Veneto (https://idt2.regione.veneto.it, last ac-

https://doi.org/10.5194/nhess-22-1395-2022 Nat. Hazards Earth Syst. Sci., 22, 1395–1417, 2022

https://idt2.regione.veneto.it


1398 S. R. Meena et al.: Assessing the importance of conditioning factor selection in landslide susceptibility

Figure 2.
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Figure 2. Maps of the conditioning factors used in this study: (a) elevation, (b) slope, (c) aspect, (d) topographic wetness index, (e) to-
pographic position index, (f) topographic roughness index, (g) profile curvature, (h) plane curvature, (i) distance to drainage networks,
(j) rainfall monthly average (1994–2020; mm), (k) lithology, (l) distance to road network, (m) land cover, and (n) NDVI.

cess: 9 April 2022) was used to derive the topographic lay-
ers. Refer to Table 1 for a detailed description of the con-
ditioning factors. Land cover, lithology, road network, and
drainage maps were downloaded from the same portal. Rain-
fall data were downloaded from the Regional Agency for En-
vironmental Prevention and Protection of Veneto (ARPAV;
https://www.arpa.veneto.it/, last access: 9 April 2022) web
site. We resampled the conditioning factor maps to 25 m pix-
els in order to do the analysis.

3 Methodology

We propose an approach that helps assess the importance of
the conditioning factors, which can help improve the sus-
ceptibility results by removing the less important factors
throughout the statistical and ML models. As stated previ-
ously, the study attempts to apply the sensitivity analysis to
understand the relative importance of the conditioning fac-
tors as a preliminary step towards improving the landslide
susceptibility prediction capability. In this study, LSM was
obtained by the combination of the IFFI landslide inven-
tory and the conditioning factors through statistical methods
such as the evidence belief function (EBF) and ML mod-
els, i.e. random forest and XGBoost (Fig. 3). The successive

sub-sections address the definitions of the statistical and ML
models for LSM.

3.1 Statistical approach

Ensemble frequency ratio–evidence belief function

In landslide susceptibility studies, the frequency ratio (FR)
model is often applied. This is an evaluation method which
calculates the likelihood of landslide occurrence and non-
occurrence for each conditioning factor (Lee, 2013; Mondal
and Maiti, 2013; Shahabi et al., 2014). For each landslide
conditioning factor, the FR is a probabilistic model based on
observed correlations between landslide distribution and re-
lated parameters (Tay et al., 2014). The model depicts the
relationship between spatial locations and the factors that de-
termine the occurrence of landslides in a specific area. Spa-
tial phenomenon and factor class correlation can be found
through FR and is very helpful for geospatial analysis (Ma-
halingam et al., 2016; Meena and Gudiyangada Nachappa,
2019). Figure 3 gives an overview of the methodology em-
ployed in this study.

FR weights can be computed using the ratios of landslide
inventory points of all classes within each factor. The land-
slide inventory points are then overlaid with the conditioning
factors to obtain the area ratio for each factor class to the to-
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Table 1. Description of the conditioning factors for landslide occurrences.

Serial Conditioning Data range Description/justification
no. factor

1 Elevation 42 to 3325 m The geomorphological and geological processes are affected by eleva-
tion (Raja et al., 2017). It has an impact on topographic characteristics,
which contribute to spatial differences in many landform processes, as
well as the distribution of vegetation. Elevation largely influences cli-
mate, including the amount, intensity, and distribution of rainfall.

2 Slope Flat areas to very high slopes until 86◦ Slope is a derivative of the DEM which can cause a failure of the slope
(Pham et al., 2018). Landforms having a higher angle of slope are usu-
ally more susceptible to collapse, which is closely correlated to land-
slides.

3 Aspect North (0◦) to north (360◦) Aspect has a correlation with other geo-environmental factors and is
a crucial factor that describes the slope direction (Dahal et al., 2008).
The slope direction, to a degree, dictates the frequency of landslides
(Ruff and Czurda, 2008).

4 Topographic
wetness index

−2.12 to 20.06 The influence of topography on the location and number of saturated
runoff source areas is an essential conditioning factor (Pourghasemi et
al., 2012). TWI estimates the amount of accumulated water and distri-
bution of soil moisture at a location. Higher TWI values can relate to
higher chances of landslide occurrence.

5 Topographic
position index

−1143.68 to 243.84 The topographic position index (TPI) shows the difference between
the elevation of a point and its surrounding. Lower values represent
the plausibility of features lower than the surrounding, thus possibly
relating to higher odds of landslide occurrence.

6 Topographic
roughness
index

0 to 1077.30 The topographic roughness index (TRI) calculates the difference in el-
evation between adjacent pixels in a DEM which depicts the terrain
fluctuation (Riley et al., 1999). As the slope of a landscape changes in
space, the TRI decreases, relating to slope movement.

7 Profile
curvature

Concave (−197)
Flat (0)
Convex (304)

The driving and resisting forces within a landslide in the slope direction
are affected by profile curvature.

8 Plan curvature Concave (−370)
Flat (0)
Convex (95)

The direction of landslide movement is controlled by the plan curva-
ture, which regulates the convergence or divergence of landslide mate-
rial (Dury et al., 1972; Meten et al., 2015).

9 Drainage 0 to 400 m Drainage transports water, which induces material saturation, culmi-
nating in landslides in valleys (Shahabi and Hashim, 2015).

10 Mean monthly
rainfall

84 to 1198.05 mm per month Rainfall characteristics shift by climatic conditions and geographical
characteristics, resulting in significant temporal and geographical vari-
ations in rainfall quantity and intensity. This can lead to the triggering
of landslides not only across large areas but also for specific smaller
areas.

11 Lithology Volcanites, pre-Permian metamorphic se-
quence, morainic, gravels, mix of alluvial
deposits, conglomerates, limestone and
dolomitic limestone, calcareous shales,
shales and gypsums, alternation of marls
and sandstones, waterbody

The geological strength indices, failure susceptibility, and permeability
of lithological units differ where changes in the stress–strain behaviour
of the rock strata can be caused by lithological unit variation. Slope
failure typically occurs on a slope with low shear strength (Segoni et
al., 2020).

12 Distance to
roads

0 to 200 m A crucial man-made element impacting the occurrence of landslides is
roads because of road clear-cutting and construction activities (Dun-
ning et al., 2009).

13 Land cover Urban cover, rock, arable, permanent
cultivation, forest, grassland, shrubland,
sparse vegetation, waterbody

Because land cover may influence the hydrological functioning of
slopes, rainfall partitioning, infiltration properties, and runoff, as well
as the soil shear strength, different land cover types may affect slope
stability.

14 NDVI −0.66 to 0.66 NDVI is important in realizing the amount of vegetation cover which
can be interpreted to understand the strength of the slope and the land-
slide occurrences. The NDVI value reflects the inhibitory effect of
landslide occurrence (Huang et al., 2020).
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Figure 3. Overview of the conceptual workflow of the methodology
for landslide susceptibility assessment.

tal area. The FR weights are then obtained by dividing the
landslide occurrence ratio in a class by the area in that class
(Demir et al., 2013).

Using Eq. (1), the landslide susceptibility index (LSI) was
computed by summing the values of each factor ratio (Lee,
2013):

LSI=
∑

FR, (1)

where LSI = (DEM ·wi) + (slope ·wi) + (aspect ·wi) + (to-
pographic wetness index ·wi) + (topographic roughness in-
dex ·wi) + (topographic position index ·wi) + (distance to

road ·wi) + (distance to drainage ·wi) + (land cover ·wi) +
(lithology ·wi) + (NDVI ·wi) + (rainfall ·wi) + (profile cur-
vature ·wi) + (plain curvature ·wi), where LSI is the land-
slide susceptibility index, FR is the frequency ratio of every
factor type or class, and wi is the weight of each conditioning
factor. The higher the LSI value is, the higher the suscepti-
bility to landslides is.

We integrated the LSI results with EBF-derived predictor
values. The EBF uses the conditioning factors defined by FR
as the input data. Equation (2) was applied to the rating of
every spatial factor.

PR=
SAmax−SAmin

SAmax−SAmin
min, (2)

where SA is the indicator of spatial association between spa-
tial factors and landslides, whereas PR is the prediction rate.
The lowest absolute difference of all factors is divided by the
computed absolute difference between the maximum and the
minimum SA values (Table 2). Pairwise comparison of the
PR values of the slope failure predictors yielded the pairwise
rating matrix of the predictor rating. We used PR values for
assigning weights of the factors for susceptibility analysis.

3.2 Machine learning models

3.2.1 Random forest model

Random forest (RF) is based on the concept of the “wis-
dom of crowds”, where multiple decision trees, introduced
by Breiman (2001), have been utilized in a number of re-
mote sensing studies for a variety of applications (Melville
et al., 2018). RF creates many deep decision trees using the
training data, and it can overcome the overfitting problem
mostly resulting from complex datasets better than other de-
cision trees. Each RF decision tree gives a prediction, which
is then weighted according to the value created from votes
from each tree leading to generation of the susceptibility map
(see Fig. 4). Since the RF has shown an impressive perfor-
mance for classification purposes, it is regarded as one of
the most efficient non-parametric ensemble models (Chen
et al., 2017). Based on the advantages listed above, the RF
model is used to assess landslide susceptibility. Landslide in-
ventories along with the conditioning factors are divided into
training and testing data as seen in Fig. 4. Using the bagging
technique, the training data are divided into training subsets,
generally about one-third of the total training samples. A de-
cision tree is created for each subset based on the training
subset defined in the first stage and, accordingly, votes as im-
plemented that outputs the landslide susceptibility.

3.2.2 XGBoost model

The XGBoost (eXtreme Gradient Boosting) ML model is an
optimized gradient boosting algorithm that is designed for
optimum speed and performance, and boosting ensembles
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Table 2. Frequency ratio values for spatial factors, class weighting, and EBF coefficients for the predictor rate (PR) based on degrees of
spatial associations.

Factors and classes Degree of Min Max [Max−Min] Predictor FR weights Normalized
belief rate weights

Elevation 0.07 0.24 0.17 0.73
< 430 0.07 0.50 0.06
430–700 0.15 1.13 0.20
700–1000 0.13 0.96 0.19
1000–1500 0.12 0.86 0.15
1500–1900 0.11 0.81 0.12
1900–2300 0.24 1.72 0.17
> 2300 0.18 1.31 0.12

Profile curvature 0.00 0.53 0.53 2.30
Concave 0.53 1.05 0.40
Flat 0.00 0.00 0.30
Convex 0.47 0.95 0.30

Plan curvature 0.00 0.52 0.52 2.26
Concave 0.52 1.03 0.35
Flat 0.00 0.00 0.33
Convex 0.48 0.97 0.32

Slope 0.14 0.25 0.11 0.48
< 10 0.14 0.70 0.14
10–20 0.23 1.11 0.22
20–30 0.25 1.25 0.27
30–40 0.20 0.99 0.20
> 40 0.17 0.86 0.17

Distance from drainage 0.02 0.36 0.34 1.49
0–100 0.36 1.15 0.28
100–200 0.30 0.97 0.19
200–300 0.23 0.74 0.12
300–400 0.10 0.31 0.07
> 400 0.02 0.06 0.34

Distance from roads 0.08 0.24 0.15 0.67
0–50 0.36 1.15 0.27
50–100 0.30 0.97 0.19
100–150 0.23 0.74 0.17
150–200 0.10 0.31 0.16
> 200 0.02 0.06 0.13

Land cover 0.01 0.24 0.23 2.98
Urban 0.17 1.48 0.17
Rocks 0.10 0.90 0.09
Arable 0.01 0.07 0.01
Permanent cultivation 0.10 0.92 0.13
Forest 0.11 0.95 0.11
Grassland 0.24 2.11 0.14
Shrubland 0.04 0.37 0.04
Sparse vegetation 0.12 1.08 0.21
Waterbody 0.12 1.05 0.09

TWI 0.17 0.25 0.08 1.00
−2.12–1.52 0.19 1.01 0.20
1.52–3.35 0.20 1.04 0.20
3.35–5.70 0.18 0.92 0.18
5.70–9.62 0.17 0.90 0.18
9.62–20.06 0.25 1.30 0.24
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Table 2. Continued.

Factors and classes Degree of Min Max [Max−Min] Predictor FR weights Normalized
belief rate weights

TPI 0.00 0.31 0.31 1.35
−1143.68– −202.34 0.00 0.00 0.00
−202.34– −17.33 0.18 0.74 0.21
−17.33– −1.01 0.26 1.06 0.27
−1.01–20.75 0.24 0.98 0.26
20.75–243.84 0.31 1.24 0.27

TRI 0.00 0.34 0.34 1.47
0–4.22 0.22 0.73 0.23
4.22–21.1 0.34 1.11 0.35
21.12–46.47 0.25 0.82 0.22
46.47–257.70 0.20 0.65 0.20
257.70–1077.30 0.00 0.00 0.00

Rainfall intensity 0.00 0.81 0.81 3.54
84–110.83 0.81 11.29 0.32
110.83–127.38 0.08 1.15 0.27
127.38–140.80 0.05 0.70 0.15
140.80–157.35 0.06 0.81 0.19
157.35–198.05 0.00 0.00 0.06

NDVI 0.14 0.25 0.11 0.48
−0.66–0.15 0.14 0.70 0.13
0.15–0.34 0.22 1.13 0.21
0.34–0.52 0.25 1.26 0.25
0.52–0.66 0.21 1.07 0.21
0.66–0.99 0.18 0.89 0.20

Aspect 0.05 0.15 0.09 0.41
Flat (−1) 0.11 1.02 0.10
North (0–22.5) 0.08 0.75 0.07
Northeast (22.5–67.5) 0.09 0.84 0.09
East (67.5–112.5) 0.11 1.08 0.11
Southeast (112.5–157.5) 0.14 1.31 0.14
South (157.5–202.5) 0.15 1.40 0.14
Southwest (202.5–247.5) 0.14 1.33 0.14
West (247.5–292.5) 0.08 0.76 0.09
Northwest (292.5–337.5) 0.05 0.50 0.07
North (337.5–360) 0.06 0.58 0.06

Lithology 0.04 0.26 0.22 2.84
Volcanites 0.26 3.45 0.16
Pre-Permian metamorphic sequence 0.11 1.50 0.11
Morainic 0.06 0.85 0.15
Gravels 0.04 0.52 0.04
Mix of alluvial deposits 0.05 0.70 0.03
Conglomerates 0.21 2.84 0.21
Limestone and dolomitic limestone 0.13 1.76 0.16
Calcareous shales 0.08 1.04 0.08
Shales and gypsums 0.06 0.76 0.07
Alternation of marls and sandstones 0.07 0.91 0.06
Waterbody 0.22 2.97 0.00

are used to generate a prediction model (Sahin, 2020). The
core idea of a boosting algorithm is to combine the weaker
learners to improve accuracy (Can et al., 2021), meaning
that different models with lower susceptibility accuracies
are “boosted” by combining them to achieve an ensembled

higher susceptibility accuracy. The model is known for its
fast training speed for classification tasks. In the study, we
use training parameters to adjust the XGBoost algorithm like
the learning rate, subsample ratio, and maximum depth of
the tree, among others. It uses boosting techniques to reduce
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Figure 4. Conceptual diagram of the random forest model.

Figure 5. Training and testing procedure of the XGBoost model.

overfitting problems to improve accuracy results (Fig. 5). The
training data are divided into subsets which are then trained
using a tree ensemble model. This means that every weight
derived from each model training of landslide instances in
the area is added and then predicted on the test set with the
average landslide susceptibility scores of the ensemble mod-
els.

3.3 Feature selection algorithms

The goal of feature selection is to remove the least important
conditioning factors in order to increase the generalizabil-
ity in landslide prediction. This selection help eliminates the
irrelevant (less important) conditioning factors to obtain op-
timal prediction accuracy (Micheletti et al., 2014). For the
statistical model, we used class weights obtained from the
frequency ratio and used them as input for generating the pre-
dictor rate from the FR–EBF (frequency ratio and evidence
belief function) model which gives the final weights of the
conditioning factors. So, we used the predictor rate weights
to select the suitable features.

In terms of the feature importance for selecting the right
set factors for both RF and XGBoost, we use the inbuilt im-
purity feature importance algorithm which is performed on

the training set (refer to feature selection in Fig. 3). Based
on the results of the feature selection algorithms for the con-
ditioning factors for each model, the most important factors
will be selected to investigate the improvement in model per-
formance. With this, we can understand which of the condi-
tioning factors played the most important roles in giving the
highest accuracy for each ML model.

4 Results

4.1 Statistical model

The class weights were derived from the data-driven FR
model, and the final weights of the factors were derived by
using the predictor rate from the evidence belief function
given in Table 2. The class and factor weights were calculated
using Eqs. (1) and (2). The final weights of landslide condi-
tioning factors were calculated using an ensemble of FR–
EBF and then utilized to create the final landslide suscepti-
bility map. Because there is no common approach for iden-
tifying landslide susceptibility classes in the final LSM, we
normalized the findings to 0 to 100 for uniformity and com-
parability. Using a quantile classification, which separates
the values into groups with a random number of values, the
resultant LSM classification was categorized in five classes:
very low, low, moderate, high, and very high, as shown in
Fig. 7 (Chung and Fabbri, 2003). This method of classifica-
tion gives a better distribution of values in each class than
common approaches such as natural breaks, which can result
in certain classes having limited or excessive data.

In terms of the feature importance that we observe in Fig. 6
and Table 2 (normalized weights), based on the trial-and-
error approach, factors (or features) under the threshold of
0.3 were discarded, as they did not make much of a differ-
ence in terms of predicting landslide occurrences in the study
area. Therefore, five conditioning factors having coefficient
values lower than 0.30 were dropped, and overall, the area
under the curve (AUC) accuracy still remained similar to the
original accuracy with the 14 factors.

4.2 Machine learning models

LSM was generated based on the conditioning factor data,
where the model learnt the information from the feature
maps, which helped identify areas of susceptibility. The fi-
nal results of the ML models in generating LSM are given in
Table 3. We observe that the AUC scores of RF are not much
apart from the XGBoost model, indicating similar predictive
skills of both the models. Visually the results show more sus-
ceptible areas near the landslide features (Figs. 8 and 9).

The model performance in terms of the accuracy of the
AUC is relatively similar to the results after eliminating the
lower degree of feature importance for both RF and XG-
Boost. As discussed previously in Sect. 3.3, the feature im-
portance for the ML models is carried out using the impu-
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Figure 6. Feature importance of the statistical model (horizontal red
line shows 0.3 as the cut-off value).

Table 3. Overall table with AUC results for landslide susceptibility
of Belluno.

No. Model AUC

1 FR–EBF-14 features 0.836
2 FR–EBF-9 features 0.834
3 RF-14 features 0.902
4 RF-9 features 0.906
5 XGBoost-14 features 0.910
6 XGBoost-10 features 0.907

rity feature importance algorithm that enables assessing the
relative relevance of the conditioning factors in the optimal
prediction of the landslides in terms of accuracy. As seen
in Fig. 10, the factors of land cover, profile curvature, plan
curvature, TWI, and TPI have the lowest values for the RF
model. We examined various values as a cut-off for choos-
ing the important conditioning factors, and after much trial
and error, a value of 0.03 was chosen as the threshold. Any
factors above this value were considered important factors
for landslide susceptibility; hence, in Fig. 8, we see that the
five factors mentioned above are removed, giving us an AUC
of 0.906 as accuracy, which is better in AUC accuracy with-
out removing the five factors (AUC of 0.902 as seen in Ta-
ble 3).

Similarly, the same was repeated for the XGBoost ML
model, and referring to Table 3, despite removing the lower
valued conditioning factors of profile curvature, TPI, and
plan curvature, the AUC accuracy score was similar (Ta-
ble 3). We observe that slope and distance to roads had
a much bigger impact on the RF mode than the XGBoost
model. On the other hand, lithology played a bigger role
in estimating landslide occurrences in the XGBoost model.
These observations indicate interesting results which will be
discussed further in the Discussion section.

5 Accuracy assessment

Accuracy assessment is crucial in producing quality LSMs
for natural hazards where the information presented in the
map is beneficial for planners (Goetz et al., 2015). A num-
ber of accuracy assessment approaches may be used to as-
sess the quality of the LSMs. We compare the landslide in-
ventory data to the resultant maps derived using the ensem-
ble of FR–EBF and the machine learning RF and XGBoost
models. The efficiency of any model for LSM is calculated
by comparing the inventory data to the produced maps. This
reflects whether the models in use can accurately forecast
which areas are susceptible to landslides (Pourghasemi et
al., 2018). The findings from the total landslide input events
were tested using 30 % of the landslide occurrences. Testing
for this study was done using the approaches of receiver op-
erating characteristics (ROC) and relative landslide density
(R index).

5.1 Receiver operating characteristics (ROCs)

The test dataset was used to corroborate the six resultant
LSM maps from statistical and machine learning using the
approach of receiver operating characteristics (ROCs). The
ROC approach shows how to evaluate the true-positive rate
(TPR) and false-positive rate (FPR) in the LSM maps (Ghor-
banzadeh et al., 2018; Linden, 2006). TPRs are pixels that are
correctly labelled as high susceptibility in the landslide vali-
dation data, whereas FPRs are pixels that are incorrectly la-
belled. ROC curves are created using TPRs versus FPRs. The
accuracy of the generated LSMs is determined by the AUC.
The AUC shows whether there were more correctly labelled
pixels than incorrectly labelled pixels. Greater AUC values
suggest a more accurate susceptibility map and vice versa.
The susceptibility map is meaningful if the AUC values are
close to unity or one. A map with a value of 0.5 is considered
insignificant, since it was created by chance (Baird, 2013).

Figure 11 shows the accuracy values obtained using the
ROC technique for the statistical approaches of FR–EBF
and machine learning approaches of RF and XGBoost. XG-
Boost shows the highest accurate results with an AUC value
of 0.910; RF has one of 0.906; and that of FR–EBF is 0.836
(refer to Table 3). These results are quite good, as they are
closer to unity or one. The ensemble of FR–EBF shows lower
AUC values than the machine-learning-based XGBoost and
random forest. Machine learning results may differ because
the models used landslide and non-landslide features as train-
ing data, whereas FR–EBF results are derived solely from
landslide data. The results may differ depending on the geo-
graphical location and the selection of landslide conditioning
factors.
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Figure 7. Landslide susceptibility maps derived using the ensemble of FR–EBF approaches for (a) 14 landslide features and (b) 9 landslide
features (black square represents the enlarged area).

5.2 Relative landslide density (R index)

The relative landslide density index was also used to assess
the accuracy of the LSM maps (R index). Equation (3) is
used to get the R index:

R =
ni/Ni

6(ni/Ni)
× 100, (3)

where Ni is the percentage of landslides in each susceptibil-
ity class and ni is the percentage of area susceptible to land-
slides in each susceptibility class. Table 4 shows the quantile

classification approach to classify the six landslide suscep-
tibility maps into five susceptible classes. In comparison to
the RF and FR–EBF models, the XGBoost model with 14
and 10 features has a higher R-index value for very high-
susceptibility classes. The R-index findings show that FR–
EBF has a better R-index value for the high-susceptibility
class than XGBoost, which has the lowest R-index value for
the high-susceptibility class. FR–EBF has a higher R-index
value for the high-susceptibility class than the other three ap-
proaches. In addition, the R-index value of FR–EBF is higher
for the very low-susceptibility class. Table 4 shows the R-
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Figure 8. LSMs derived using the random forest approach for (a) 14 landslide features and (b) 9 landslide features (black square represents
the enlarged area).

index values for the susceptibility class in FR–EBF, RF, and
XGBoost, as well as plots of the same in Fig. 12.

6 Discussion

Landslides are very dynamic in nature, meaning that their
behaviour, movement, and spatial distribution change over
space and time. Therefore, it is important to analyse the
significance of the conditioning factors that lead to land-
slide occurrences. The relevance of the conditioning fea-

tures for LSM is essential to realize which of the features
had the biggest impact on the prediction of landslide oc-
currences. As not all conditioning factor maps be avail-
able globally, or sometimes even locally, due to reasons
such as non-compliance in sharing data, data unavailabil-
ity, and erroneous data structure, among others, it can be
worthwhile to understand which of the available condition-
ing factors play an important role in LSM. For example,
topographic features derived from digital elevation models
such as elevation, slope, aspect, plan curvature, profile cur-
vature, TWI, TPI, and TRI are available almost globally be-
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Figure 9. LSMs derived using the XGBoost approach for (a) 14 landslide features and (b) 9 landslide features (black square represents the
enlarged area).

cause of missions such as the Shuttle Radar Topography Mis-
sion (SRTM). Other features, such as distance to roads and
drainage networks, that might have direct or indirect influ-
ence on the occurrence of landslides can also be easily ac-
cessed through numerous open-source platforms. However,
conditioning factor maps of rainfall data derived from rain
gauge stations are not easily accessible and available. In this
study, we used 14 features for landslide susceptibility assess-
ment and carried out the feature importance of the condition-
ing factors for the traditional statistical ensemble model of
FR–EBF and machine learning models of RF and XGBoost.

The feature selection approach from statistical model is de-
pendent upon the landslide data and their relation to each
feature and their classes. On the other hand, feature selec-
tion for machine learning models depends upon the landslide
and non-landslide samples that are used to train the models.
We used the inbuilt impurity feature importance algorithm
to assess the importance of the features during the model
training phases. Based on a literature review for this sort of
study, there are no standard threshold values available for dis-
carding or the selection of features for LSM. In this study,
we used a trial-and-error approach to determine a threshold
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Table 4. R indices for the FR–EBF, RF, and XGBoost models’ landslide susceptibility mappings (LSMs).

Validation Susceptibility Number of Area (m2) Area (%) Number of Landslide (%) R index
methods class pixels (ni) landslides (Ni)

FR–EBF-14 Very low 21 875 334 248 750 9.28 48 2.71 6
features Low 90 000 570 760 000 15.85 171 9.66 13

Moderate 165 000 896 709 375 24.90 308 17.40 15
High 263 750 1 026 578 125 28.50 460 25.99 20
Very high 444 375 773 585 000 21.48 783 44.24 45

FR–EBF-9 Very low 19 375 323 332 500 8.98 38 2.15 5
features Low 91 875 541 371 875 15.03 179 10.11 15

Moderate 153 125 894 758 125 24.84 289 16.33 15
High 276 875 1 041 846 875 28.93 480 27.12 21
Very high 443 750 800 571 875 22.23 784 44.29 44

RF-14 Very low 6875 682 346 250 18.94 11 0.62 1
features Low 34 375 658 375 000 18.28 55 3.11 4

Moderate 75 625 619 031 875 17.19 122 6.89 9
High 159 375 749 470 625 20.81 264 14.92 17
Very high 712 500 892 657 500 24.78 1318 74.46 69

RF-9 Very low 7500 735 246 875 20.41 12 0.68 1
features Low 30 000 632 679 375 17.57 48 2.71 4

Moderate 75 000 581 844 375 16.15 120 6.78 10
High 147 500 692 276 250 19.22 245 13.84 17
Very high 729 375 959 834 375 26.65 1345 75.99 68

XGBoost-14 Very low 11 250 1 076 978 750 29.90 18 1.02 1
features Low 6875 330 045 625 9.16 11 0.62 3

Moderate 11 875 278 243 750 7.72 19 1.07 5
High 11 250 352 568 125 9.79 18 1.02 4
Very high 947 500 1 564 045 000 43.42 1704 96.27 87

XGBoost-10 Very low 12 500 1 094 226 250 30.38 20 1.13 1
features Low 7500 297 782 500 8.27 12 0.68 3

Moderate 8125 242 914 375 6.74 13 0.73 4
High 15 625 314 181 875 8.72 25 1.41 7
Very high 945 000 1 652 776 250 45.89 1700 96.05 84

Figure 10. Feature importance of the RF and XGBoost models (hor-
izontal red line shows 0.3 as the cut-off value). Figure 11. Testing for the performance of the statistical and ma-

chine learning models for LSM in the province of Belluno, Italy.
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Figure 12. Importance of the features in both statistical and ma-
chine learning algorithms.

of 0.30 for the selection of conditioning factors used for land-
slide susceptibility for all the three models.

Feature importance algorithms used in this study are dif-
ferent; however there is similarity in the importance of the
features in both statistical and machine learning algorithms
(see Fig. 12).

As we look at Figs. 7–9 in the enlarged region, we observe
that there are not many differences despite removing the least
important features. The reason for such an observation can be
linked to the lower impact of the least important factors on
overall LSM results.

Furthermore, there are several factors that determine the
importance of features for carrying out LSM such as the (1)
completeness and quality of the landslide inventory dataset
used for analysis and (2) mapping scale of the feature maps
like land cover, lithology, or other geological features. If the
spatial locations of landslides in an inventory do not repre-
sent the ground truth phenomenon, then there can be a neg-
ative impact of landslide input data on feature selection. The
sampling methodology of landslide selection is important.
There are various ways to use landslides in carrying out sus-

ceptibility assessment: many studies have used a 70–30 ra-
tio, and others have used random sampling or k-fold sam-
pling methods (Merghadi et al., 2018; Chen et al., 2018). One
of the most important observations from this study was the
reclusion of the least important factors in the context of LSM.
The fact that despite the removal of certain conditioning fac-
tors, we still get very good results or comparable results after
removing them, this observation explains that employing the
important conditioning factors are enough for LSM.

The use of landslide samples along with non-landslide
samples can affect the landslide feature importance, as can
be seen in results in this study. In the case of the statistical
model, one of the reasons for the lower AUC performance
can be accredited to the absence of the non-landslide sam-
ples. As the model was trained without non-landslide sam-
ples and simply trained with only landslide samples, the
model’s ability to discriminate between the non-landslide
and landslide pixels is affected, therefore, predicting land-
slide occurrences over non-landslide locations. Because of
this reason, the statistical model exhibited a homogeneous
distribution of predicted landslide pixels (see Fig. 7). We
used landslides and non-landslide samples for training the
ML models, which shows varying results from that of the sta-
tistical ensemble model (see Figs. 8 and 9). There is a more
homogeneous distribution of landslide susceptibility classes
in statistical model results, but it is evident from the machine
learning results that the non-landslide samples have a greater
impact on final landslide susceptibility results.

We also attempted to investigate the relative changes in
the susceptibility after removing the least important factors
based on the study from Xiao et al. (2020). We made differ-
ence maps by subtracting the susceptibility maps modelled
with 14 conditioning factors with susceptibility maps after
the removal of the conditioning factors. The differences are
calculated as “FR–EBF 14-9”, “RF 14-9”, and “XG 14-10”.
We wanted to assess if the obtained differences are random or
follow a systematic pattern after removal of the factor maps.
Because every susceptibility map’s raster value is between 0
and 1, the comparison maps’ values potentially vary from−1
to 1. The results of the differencing can be seen in Fig. 13,
and it is very clear from difference maps for all the three
models that there is a random pattern after the removal of the
least important conditioning factors. The removed condition-
ing factors for each of the models are the following:

1. frequency ratio–evidence belief function – plan curva-
ture, TRI, TWI, aspect, and profile curvature;

2. random forest – land cover, profile curvature, TWI, TPI,
and plan curvature;

3. XGBoost – profile curvature, TWI, TPI, and plan cur-
vature.

Conditioning factor importance for all the models was
similar, such as for profile curvature, TWI, TPI, and plan
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Figure 13. (a–c) Three comparison maps (uniform legend: red–blue band from −1 to 1).

curvature, which were among the least important factors for
landslide susceptibility analysis in our study. The impact
of these four factors on landslide susceptibility results was
not much, as the ROC values and R-index values were not
changed to a great extent. Also, the impact of the removal
of these factors is very evident from the differencing maps
shown in Fig. 13.

7 Conclusions

In the current state-of-the-art approaches for LSM, the con-
temporary literature puts an emphasis on different models
for improving accuracy of landslide susceptibility against the
test data. However, this study investigated how the condi-
tioning factors affect the overall prediction of landslides in
the context of the province of Belluno, northeastern Italy. An
important aspect of this study was to identify whether remov-
ing the least important conditioning factors in the modelling
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process affects the performance in predicting new unknown
landslides.

As understood, ML models require conditioning factors
as input for LSM; however, investing on the importance of
the features (conditioning factors) could possibly provide a
better understanding of landslide occurrences with respect to
the available conditioning factor maps for LSM. This study
indicates that various models behave differently with differ-
ent features, whereby the same features that are important in
one instance of a particular model can be the least important
in other models. Therefore, this study gives new insights into
the use of already available conditioning factor maps, with-
out exhausting resources for generating other conditioning
factor maps that might not be available.

In this study we also concluded that the landslides and
non-landslides samples impact the feature importance, es-
pecially in the ML models, and in contrast, the statistical
model used only landslide samples. Therefore, it was found
to be crucial in asserting a balance between the two data sam-
ples to avoid overfitting or underfitting. This study illustrates
that feature selection is a very important step for carrying out
LSMs. We found that there are differences in the final LSMs
derived from the statistical and ML models, which are at-
tributed to the above-mentioned sample selection techniques.

This research introduces the importance of post-training
feature importance algorithms for LSM. This approach can
also be used to assess the susceptibility of other natural dis-
asters. The results can eventually comment on whether cer-
tain conditioning factors can be discarded while modelling
landslide occurrences. In many parts of the globe, the avail-
ability of data is limited, and therefore, with the ability to
model landslides without relying on the conventional factors,
we can still predict landslides spatially over a given region.
Although there are certain drawbacks like that (1) the same
factor maps will not be available everywhere, (2) factors that
are least important in one region might not repeat the same
behaviour in other regions of the world, and (3) model capa-
bility changes with respect to different regions, the resulting
susceptibility maps can still give quality information regard-
ing local emergency relief measures, the planning of disaster
risk reduction and mitigation, and the evaluation of poten-
tially affected areas.
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