Articles | Volume 21, issue 10
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, 2021
https://doi.org/10.5194/nhess-21-3161-2021

Special issue: Advances in flood forecasting and early warning

Nat. Hazards Earth Syst. Sci., 21, 3161–3174, 2021
https://doi.org/10.5194/nhess-21-3161-2021
Research article
 | Highlight paper
19 Oct 2021
Research article  | Highlight paper | 19 Oct 2021

Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China

Haixia Zhang et al.

Related authors

Joint probability analysis of storm surge and wave caused by tropical cyclone for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and Hainan Island of China
Zhang Haixia, Cheng Meng, and Fang Weihua
EGUsphere, https://doi.org/10.5194/egusphere-2022-847,https://doi.org/10.5194/egusphere-2022-847, 2022
Short summary

Related subject area

Hydrological Hazards
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022,https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022,https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022,https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022,https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022,https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary

Cited articles

Albano, R., Sole, A., Adamowski, J., Perrone, A., and Inam, A.: Using FloodRisk GIS freeware for uncertainty analysis of direct economic flood damages in Italy, Int. J. Appl. Earth Obs., 73, 220–229, https://doi.org/10.1016/j.jag.2018.06.019, 2018. 
Alfieri, L., Feyen, L., and Di Baldassarre, G.: Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies, Clim. Change, 136, 507–521, https://doi.org/10.1007/s10584-016-1641-1, 2016. 
Amadio, M., Mysiak, J., Carrera, L., and Koks, E.: Improving flood damage assessment models in Italy, Nat. Hazards, 82, 2075–2088, https://doi.org/10.1007/s11069-016-2286-0, 2016. 
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., and Nestmann, F.: Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks, Nat. Hazards Earth Syst. Sci., 6, 485–503, https://doi.org/10.5194/nhess-6-485-2006, 2006. 
Cao, S., Fang, W., and Tan, J.: Vulnerability of building contents to coastal flooding based on questionnaire survey in Hainan after typhoon Rammasun and Kalmeagi, J. Catastrophology, 31, 188–195, https://doi.org/10.3969/j.issn.1000-811X.2016.02.036, 2016. 
Download
Short summary
Taking a single flood disaster in Lishui city as an example, a rapid and refined assessment of economic loss is studied and verified, which can effectively simulate the distribution of loss ratio and loss value. It includes the construction of land use type and value based on data fusion and an expert questionnaire survey, the fitting and calibration of vulnerability curves based on an existing database and disaster loss reporting, and estimation of loss ratio and loss value by spatial analysis.
Altmetrics
Final-revised paper
Preprint