Articles | Volume 21, issue 10
https://doi.org/10.5194/nhess-21-2993-2021
https://doi.org/10.5194/nhess-21-2993-2021
Research article
 | 
07 Oct 2021
Research article |  | 07 Oct 2021

Integrating empirical models and satellite radar can improve landslide detection for emergency response

Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi

Related authors

Detection of landslide timing, reactivation and precursory motion during the 2018, Lombok, Indonesia earthquake sequence with Sentinel-1
Katy Burrows, David G. Milledge, and Maria Francesca Ferrario
EGUsphere, https://doi.org/10.5194/egusphere-2024-3264,https://doi.org/10.5194/egusphere-2024-3264, 2024
Short summary
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022,https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
A systematic exploration of satellite radar coherence methods for rapid landslide detection
Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020,https://doi.org/10.5194/nhess-20-3197-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025,https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025,https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025,https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary

Cited articles

Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-Induced Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 Data, Remote Sens., 11, 2351, https://doi.org/10.3390/rs11202351, 2019. a, b, c, d, e, f
Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., and Rengers, F. K.: Improving Near-Real-Time Coseismic Landslide Models: Lessons Learned from the 2016 Kaikōura, New Zealand, Earthquake Improving Near-Real-Time Coseismic Landslide Models, B. Seismol. Soc. Am., 108, 1649–1664, 2018. a
Au, T. C.: Random forests, decision trees, and categorical predictors: the “Absent levels” problem, J. Mach. Learn. Res., 19, 1737–1766, 2018. a, b
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b, c
Burrows, K., Walters, R. J., Milledge, D., Spaans, K., and Densmore, A. L.: A New Method for Large-Scale Landslide Classification from Satellite Radar, Remote Sens., 11, 237, https://doi.org/10.3390/rs11030237, 2019. a, b, c, d, e, f, g, h
Download
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Share
Altmetrics
Final-revised paper
Preprint