Articles | Volume 21, issue 10
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, 2021
https://doi.org/10.5194/nhess-21-2993-2021
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, 2021
https://doi.org/10.5194/nhess-21-2993-2021
Research article
07 Oct 2021
Research article | 07 Oct 2021

Integrating empirical models and satellite radar can improve landslide detection for emergency response

Katy Burrows et al.

Related authors

Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022,https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
A systematic exploration of satellite radar coherence methods for rapid landslide detection
Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020,https://doi.org/10.5194/nhess-20-3197-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Katy Burrows, Odin Marc, and Dominique Remy
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/nhess-22-2637-2022,https://doi.org/10.5194/nhess-22-2637-2022, 2022
Short summary
Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022,https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022,https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022,https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Geographic information system models with fuzzy logic for susceptibility maps of debris flow using multiple types of parameters: a case study in Pinggu District of Beijing, China
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci., 22, 2239–2255, https://doi.org/10.5194/nhess-22-2239-2022,https://doi.org/10.5194/nhess-22-2239-2022, 2022
Short summary

Cited articles

Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-Induced Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 Data, Remote Sens., 11, 2351, https://doi.org/10.3390/rs11202351, 2019. a, b, c, d, e, f
Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., and Rengers, F. K.: Improving Near-Real-Time Coseismic Landslide Models: Lessons Learned from the 2016 Kaikōura, New Zealand, Earthquake Improving Near-Real-Time Coseismic Landslide Models, B. Seismol. Soc. Am., 108, 1649–1664, 2018. a
Au, T. C.: Random forests, decision trees, and categorical predictors: the “Absent levels” problem, J. Mach. Learn. Res., 19, 1737–1766, 2018. a, b
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b, c
Burrows, K., Walters, R. J., Milledge, D., Spaans, K., and Densmore, A. L.: A New Method for Large-Scale Landslide Classification from Satellite Radar, Remote Sens., 11, 237, https://doi.org/10.3390/rs11030237, 2019. a, b, c, d, e, f, g, h
Download
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Altmetrics
Final-revised paper
Preprint