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Abstract. Information on the spatial distribution of triggered
landslides following an earthquake is invaluable to emer-
gency responders. Manual mapping using optical satellite
imagery, which is currently the most common method of gen-
erating this landslide information, is extremely time consum-
ing and can be disrupted by cloud cover. Empirical models
of landslide probability and landslide detection with satellite
radar data are two alternative methods of generating infor-
mation on triggered landslides that overcome these limita-
tions. Here we assess the potential of a combined approach,
in which we generate an empirical model of the landslides
using data available immediately following the earthquake
using the random forest technique and then progressively
add landslide indicators derived from Sentinel-1 and ALOS-
2 satellite radar data to this model in the order they were
acquired following the earthquake. We use three large case
study earthquakes and test two model types: first, a model
that is trained on a small part of the study area and used to
predict the remainder of the landslides and, second, a pre-
liminary global model that is trained on the landslide data
from two earthquakes and used to predict the third. We as-
sess model performance using receiver operating characteris-
tic analysis and 2, and we find that the addition of the radar
data can considerably improve model performance and ro-
bustness within 2 weeks of the earthquake. In particular, we
observed a large improvement in model performance when
the first ALOS-2 image was added and recommend that these
data or similar data from other L-band radar satellites be rou-
tinely incorporated in future empirical models.

1 Introduction

Earthquake-triggered landslides are a major secondary haz-
ard associated with large continental earthquakes and disrupt
emergency response efforts. Information on their spatial dis-
tribution is required to inform this emergency response but
must be generated within 2 weeks of the earthquake in order
to be most useful (Inter-Agency Standing Committee, 2015;
Williams et al., 2018). The most common method of gener-
ating landslide information is manual mapping using optical
satellite imagery, but this is a time-consuming process and
can be delayed by weeks or even months due to cloud cover
(Robinson et al., 2019), leading to incomplete landslide in-
formation during the emergency response.

In the absence of optical satellite imagery, there are two
options for generating information on the spatial extent of
triggered landsliding in the immediate aftermath of a large
earthquake. The first is to produce empirical susceptibility
maps, using factors such as slope, lithology and estimations
of ground shaking intensity to predict areas where landslides
are likely to have occurred (e.g. Nowicki Jessee et al., 2018;
Robinson et al., 2017; Tanyas et al., 2019). The second is
to estimate landslide locations based on their signal in satel-
lite synthetic aperture radar (SAR) data, which can be ac-
quired through cloud cover and so is often able to provide
more complete spatial coverage than optical satellite imagery
in the critical 2-week response window (e.g. Aimaiti et al.,
2019; Burrows et al., 2019, 2020; Jung and Yun, 2019; Kon-
ishi and Suga, 2019; Mondini et al., 2019, 2021).
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To generate an empirical model of triggered landslides
following an earthquake, a training dataset of landslides is
analysed alongside maps of “static” factors known to in-
fluence landslide likelihood, e.g. slope and land cover, as
well as “dynamic” causative factors, e.g. ground shaking
estimates, and a model is produced that predicts landslide
likelihood based on these inputs. A range of methods have
been used to generate landslide susceptibility models, in-
cluding fuzzy logic (Kirschbaum and Stanley, 2018; Kritikos
et al., 2015; Robinson et al., 2017), logistic regression (Cui
et al., 2020; Nowicki Jessee et al., 2018; Tanyas et al., 2019)
and random forests (Catani et al., 2013; Chen et al., 2017;
Fan et al., 2020). When generating a susceptibility map for
emergency response, the training dataset can be either a col-
lection of landslide inventories triggered by multiple earth-
quakes worldwide (e.g. Kritikos et al., 2015; Nowicki Jessee
et al., 2018; Tanyas et al., 2019) or a small sample of the
affected area mapped immediately following the earthquake
(e.g. Robinson et al., 2017). Here, we refer to these two
model types as “global” and ‘“same-event” models respec-
tively. The global model of Nowicki Jessee et al. (2018) is
routinely used to generate landslide predictions after large
earthquakes, which are published on the United States Geo-
logical Survey (USGS) website (https://earthquake.usgs.gov/
data/ground-failure/, last access: 27 January 2021). These
products provide useful predictions of landslides triggered by
earthquakes within hours of the event (e.g. Thompson et al.,
2020). However, this model has been shown to struggle in the
case of complicated events, for example in 2018, when land-
slides were triggered by a series of earthquakes in Lombok,
Indonesia, rather than a single large event (Ferrario, 2019).

Several SAR methods have been developed for use in
earthquake-triggered landslide detection based on the SAR
amplitude (e.g. Ge et al., 2019; Konishi and Suga, 2018;
Mondini et al., 2019) or interferometric SAR (InSAR) co-
herence (a pixel-wise estimate of InSAR signal quality) (e.g.
Burrows et al., 2019, 2020; Olen and Bookhagen, 2018; Yun
et al., 2015) or on some combination of the two (e.g. Jung
and Yun, 2019). SAR data can be acquired in all weather
conditions, and with recent increases in the number of satel-
lites in operation, data are likely to be acquired within days of
an earthquake anywhere on Earth. The removal of vegetation
and movement of material caused by a landslide alters the
scattering properties of the ground surface, giving it a signal
in SAR data. Burrows et al. (2020) demonstrated that InNSAR
coherence methods can be widely applied in vegetated areas
and can produce usable landslide information within 2 weeks
of an earthquake. However, in some cases false positives can
arise from building damage or factors such as snow or wind
damage to forests.

Recently, Ohki et al. (2020) and Aimaiti et al. (2019) have
demonstrated the possibility of combining SAR-based land-
slide indicators with topographic parameters in order to im-
prove classification ability. Aimaiti et al. (2019) used a de-
cision tree method to combine topographic slope with SAR
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intensity and InSAR coherence to detect landslides triggered
by the 2018 Hokkaido earthquake, and Ohki et al. (2020)
used random forest classification to combine several land-
slide indicators based on polarimetric SAR and topography
to detect landslides triggered by two events in Japan: the
2018 Hokkaido earthquake and heavy rains in Kyushu in
2017. While these studies established the promise of a com-
bined approach to landslide detection, they did not assess
the relative merits of empirical, SAR and combined meth-
ods. Furthermore, the two studies combined only SAR and
topographic landslide indicators, omitting factors such as
lithology, land cover and ground shaking data, which are
also commonly used in empirical modelling of earthquake-
triggered landslides (Nowicki Jessee et al., 2018; Robinson
etal., 2017).

Here we aim to establish which of these three options pro-
vides the best indication of areas strongly affected by trig-
gered landslides after an earthquake: landslide susceptibility
maps, detection with InNSAR coherence or a combination of
these. In order to do this, we began with an empirical model
of landslide susceptibility based on ground shaking, topog-
raphy, lithology and land cover, all of which are available
within hours of an earthquake. To this model, we then pro-
gressively added landslide indicators derived from InSAR
coherence in the order that the SAR images became avail-
able following each case study earthquake. At each stage in
this process, we assessed the ability of the model to recreate
the landslide areal density (LAD) in the test area of the land-
slide dataset using receiver operating characteristic (ROC)
analysis and by calculation of the coefficient of determi-
nation (r2). For the modelling, we used random forests, a
machine learning technique that has been demonstrated to
perform well in landslide detection (Chen et al., 2017; Fan
et al., 2020). Rather than attempting to delineate individ-
ual landslides, we chose to model LAD as both empirical
models and detection methods based on InSAR coherence
perform well at relatively coarse spatial resolutions (within
the range 0.01-1 km?, Burrows et al., 2019; Nowicki Jessee
et al., 2018; Robinson et al., 2017). Similarly, the empirical
models of landslide susceptibility released by the USGS fol-
lowing large earthquakes take the form of a predicted LAD,
which can be interpreted as the probability for any location
within the cell to be affected by a landslide (Nowicki Jessee
et al., 2018; Thompson et al., 2020). We used three case
study earthquakes and assessed the effect of adding SAR-
based landslide indicators to both the same-event model type
and a preliminary global model, which was trained on two
events and used to predict the third, allowing speculation on
the performance of a global model trained on a larger number
of earthquakes.
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Figure 1. SAR coverage of the three case study regions: (a) the 2015 Gorkha, Nepal, earthquake; (b) the 2018 Hokkaido, Japan, earthquake;
and (c) the 2018 Lombok, Indonesia, earthquake. Sentinel-1 scenes shown in blue. ALOS-2 scenes shown in green. Landslide data from
Ferrario (2019), Roback et al. (2017) and Zhang et al. (2019). White stars show earthquake epicentres. White arrows show satellite orbit (O)

and look direction (L). Adapted from Burrows et al. (2020).

2 Data and methods

Empirical models of landslide hazard (represented here by
LAD) adopt a functional form that is driven by a training
dataset of mapped landslides rather than by the mechanics of
slope stability. Since LAD is a continuous measure, our aim
was to carry out a regression between a training dataset of
mapped LAD and a selection of input features (e.g. slope, el-
evation, land cover) that influence landslide likelihood. The
resultant function can then be used to predict LAD in areas
where there are no mapped landslide data available based
on these input features. In this section, we first describe the
landslide data used to train and test our models. Second, we
describe the different input features which we used in the
regression to predict LAD. Third we describe the random
forests method and its implementation in this study. Finally
we describe the metrics used to assess model performance.

2.1 Landslide datasets

We used polygon landslide inventories compiled for three
large earthquakes that each triggered thousands of landslides:
the inventory of Roback et al. (2017) of 24915 landslides
triggered by the M, 7.8 2015 Gorkha, Nepal, earthquake; the
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inventory of Zhang et al. (2019) of 5265 landslides triggered
by the My, 6.6 Hokkaido, Japan, earthquake; and the inven-
tory of Ferrario (2019) of 4823 landslides triggered by the
M,, 6.8 Lombok, Indonesia, earthquake on 5 August 2018
(see Fig. 1 for the extent of triggered landslides from each of
these earthquakes and the spatial and temporal coverage of
the SAR data used here). The performance of five SAR-based
methods using the same SAR data used here has already been
carried out for these three case study earthquakes (Burrows
et al., 2020). This allows a direct comparison between the
performance of the models developed in this study and that
of existing SAR-based methods of landslide detection. Pre-
dicted LAD based on the empirical model of Nowicki Jessee
et al. (2018) was also available to download for these three
events from the USGS website.

We converted the three polygon landslide inventories to
rasters with a cell size of 20 x 22 m. We then calculated LAD
within 10 x 10 squares of these 20 x 22 m cells, resulting in an
aggregate landslide surface with a resolution of 200 x 220 m.
This is the same as the resolution at which Burrows et al.
(2020) assessed SAR-based methods of landslide detection,
allowing a direct comparison with that study, and similar to
the resolution of the model of Nowicki Jessee et al. (2018),
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whose products are provided at a resolution of 0.002° (ap-
proximately 220 m, depending on latitude).

2.2 Training and test datasets

When developing an empirical model, it is necessary to di-
vide the data into two parts: a training dataset, which is used
to train the random forest; and a test dataset, which is used
to test model performance. Here we used two types of model
setup: same-event models trained on a small mapped area of
an event to predict the landslide distribution across the rest
of the affected area (e.g. Robinson et al., 2017) and global
models trained on historic landslide inventories to predict a
new event (e.g. Kritikos et al., 2015; Nowicki et al., 2014;
Nowicki Jessee et al., 2018; Tanyas et al., 2019).

The real-world application of a same-event model is that
a small number of landslides can be mapped manually from
optical satellite imagery in the days following the earthquake.
Provided these landslides are dispersed across the study area
to constitute a representative training dataset, their distri-
bution can then be used to predict the landslide distribu-
tion across the whole affected area in much less time than
would be required to manually map the whole area (Robin-
son et al., 2017). For our same-event model, we randomly
selected 250 landslide (LAD > 0.01) and 250 non-landslide
(LAD < 0.01) pixels for use as training data. Robinson et al.
(2017) demonstrated that 250 landslide samples were suffi-
cient to train their landslide probability model. Since here we
use 200 x 220 m pixels, 250 pixels is equivalent to a mapped
area of around 11 km?.

For the second approach, in which an empirical model
is trained on a global inventory of past landslides, we
trained the random forest on two of our case study events
and predicted the third. In this case, we randomly se-
lected 1000 landslide (LAD > 0.01) and 1000 non-landslide
(LAD < 0.01) pixels from each event. The resulting model
was therefore trained on equal numbers of pixels from the
two training events, which prevents it from being domi-
nated by the larger training event. We trained an ensemble
of 100 models, performing the random undersampling inde-
pendently each time so that each model within the ensemble
is trained on a different set of cells. We then estimated LAD
using each model and took the median ensemble prediction
as our final model. This process allows the model to use more
of the available training data and improves robustness. It also
allows calculation of upper and lower bounds for the LAD of
every cell, as well as other statistical parameters such as the
variance in predicted LAD.

It should be noted that successful global empirical land-
slide prediction models are trained on data from considerably
more case study events than this; for example, the model used
by the USGS of Nowicki Jessee et al. (2018) was trained
on 23 landslide inventories, and the model of Tanyas et al.
(2019) was trained on 25. Ohki et al. (2020) demonstrated
that when using fully polarimetric SAR data alongside topo-
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graphic input features, it was possible to predict the spatial
distribution of landslides triggered by the Hokkaido earth-
quake using a model trained on landslides triggered by a
heavy rainfall event in Kyushu, 2017, but that it was not
possible to predict landslides triggered by the Kyushu event
using a model trained on Hokkaido. Therefore, given the
small number of case studies used here to train our prelimi-
nary global model, we expect a similar performance to that
observed by Ohki et al. (2020); i.e. we do not expect high
performance on all predicted events. Instead, a high perfor-
mance on at least one predicted event would suggest that
our approach is worthy of further investigation and is likely
to improve when trained on a number of case studies more
comparable to those used by current gold-standard models
(i.e. 23-25).

2.3 Input features

A large number of possible input features have been used in
previous work on landslide susceptibility mapping, includ-
ing a wide range of topographic parameters, ground shaking
estimates, rainfall data, lithology, land cover, and distance to
features such as rivers, roads and faults. Here we limited the
model input features to globally available datasets in order
to ensure the widest applicability of the results. We targeted
our model at earthquake- rather than rainfall-triggered land-
slides, as these have been more widely used as case studies
when developing and testing SAR-based methods of land-
slide detection (e.g. Aimaiti et al., 2019; Burrows et al., 2019;
Jung and Yun, 2019; Yun et al., 2015), and detailed poly-
gon inventories of thousands of landslides triggered by a sin-
gle earthquake (Ferrario, 2019; Roback et al., 2017; Zhang
et al., 2019) provide a good source of test and training data
for the model. In this section, we describe the topographic,
ground shaking, land cover and lithology input features used
to generate the initial same-event models. We also describe
the model of Nowicki Jessee et al. (2018), which we used as
a base for the global models, and the SAR-based input fea-
tures that we added to the same-event and global models. A
summary of these inputs and which of our models they are
used in is given in Table 1.

2.3.1 Topographic features

For input features derived from topography, we used the 30 m
Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) (Farr et al., 2007). When processing the SAR
data, this DEM was resampled to a resolution of 20 m x 22 m
using linear interpolation. From this resampled DEM, we cal-
culated slope and aspect using a 3 x3 moving window and the
compound topographic index (CTI), a static proxy for pore
water pressure, which alters the effective normal stress on the
failure surface and thus the material strength (Moore et al.,
1991). We aggregated 10 x 10 grids of these cells to produce
input features at a 200 m x 220 m scale. For each aggregate
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Table 1. Input features used in the random forest models and whether they were used in the same-event or global models. The table is divided
into conventional predictors of landslide likelihood and those based on InSAR coherence. For the latter, the case where only data from the
Sentinel-1 (S-1) satellite were used is noted; otherwise, both Sentinel-1 and ALOS-2 data were used.

Input feature

Same-event models

Global models

Mean elevation

Standard deviation of elevations
Maximum slope

Mean slope

Standard deviation of slopes
Circular mean of slope aspect
Mean compound topographic index
Relief

Peak ground velocity

Lithology

Land cover

USGS ground failure product

AN N N N N NENEN

v

Co-event coherence

Co-event coherence loss (CECL)
Boxcar—sibling coherence (Bx—S)
Post-event coherence

Post-event coherence increase (PECI)
Sum of CECL and PECI

Maximum CECL or PECI

SN N NN

v
v
v (S-1 only)
V" (S-1 only)
v
v
v

(S-1 only in Nepal)

200x 220 m cell, we calculated the mean 20 m x 22 m cell el-
evation (used by Catani et al., 2013; Nowicki et al., 2014), the
standard deviation of cell elevations (used by Catani et al.,
2013), the maximum slope within an aggregate cell (used
by Nowicki et al., 2014), the mean slope within an aggre-
gate cell (used by Nowicki Jessee et al., 2018; Robinson
et al., 2017; Kritikos et al., 2015; Tanyas et al., 2019), the
standard deviation of pixel slopes within an aggregate cell
(used by Catani et al., 2013; Tanyas et al., 2019), the circu-
lar mean of the aspect (used by Chen et al., 2017), the mean
compound topographic index (used by Nowicki Jessee et al.,
2018; Tanyas et al., 2019), and the relief or maximum ele-
vation difference between all 20 m x 22 m pixels within the
aggregate cell (used by Tanyas et al., 2019).

2.3.2 Ground shaking estimates

The inclusion of ground shaking information is what differ-
entiates an earthquake-specific prediction of triggered land-
sliding (used here) from a static estimate of landslide sus-
ceptibility (e.g. Nadim et al., 2006). Past studies have used
Modified Mercalli Intensity (Kritikos et al., 2015; Tanyas
etal., 2019), peak ground acceleration (Robinson et al., 2018;
Nowicki et al., 2014; Tanyas et al., 2019) and peak ground
velocity (PGV) (Nowicki Jessee et al., 2018; Tanyas et al.,
2019). Here, we used PGV, as this does not saturate at high
shaking intensities (Nowicki Jessee et al., 2018). Gridded
PGV estimates are available with pixel spacing 0.00083° as
part of the USGS ShakeMap product. We resampled this onto
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the 200 x 220 m geometry used here using a linear interpo-
lation. The uncertainty of the ShakeMap product varies de-
pending on the local seismic network used to gather the shak-
ing data on which the shaking estimates are based (Worden
et al., 2020) but is not currently taken into account when
using these estimates in empirical models (Nowicki Jessee
etal., 2018).

An initial estimate of ground shaking is generally available
within hours of an earthquake from the USGS ShakeMap
web page and is then refined as more data become avail-
able. The difference that these updates to the ground shaking
estimates can make to empirical models of landsliding has
been explored by Allstadt et al. (2018) and Thompson et al.
(2020). Here our aim was to investigate changes to modelled
landsliding due to the incorporation of SAR data, and so for
simplicity we chose to keep all other input features constant
through time. We used the final version of PGV published for
each event in all our models. In reality, model performance
would evolve both due to updates to the estimated PGV and
the availability of SAR data, but SAR data are also used to
improve PGV estimates, and the final “best” PGV estimate is
often achieved when the first post-event SAR data are incor-
porated. Therefore, in practice, SAR-based landslide indica-
tors will only be added to final or close-to-final versions of
these empirical models.

Nat. Hazards Earth Syst. Sci., 21, 2993-3014, 2021
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2.3.3 Lithology

Lithology is one factor that determines rock strength, and
therefore landslide likelihood (Nadim et al., 2006), and has
been used in several empirical landslide susceptibility mod-
els (Chen et al., 2017; Kirschbaum and Stanley, 2018; Now-
icki Jessee et al., 2018). We used the Global Lithologi-
cal Map database (GLiM) (Hartmann and Moosdorf, 2012),
which has 13 basic lithological classes, with additional “wa-
ter bodies”, “ice and glacier” and “no data” classes, which
are supplied as polygon data. These data are provided in
vector format. We rasterised these data onto the 20 x 22 m
grid at which the SAR data were processed. Then for each
200 x 220 m aggregate pixel, we took the dominant basic
lithological class (i.e. that with the largest area share), re-
sulting in a categorical input feature. Random forests can
accept both continuous and categorical input features, but
empty categories in the training data can lead to biases in
the model (Au, 2018). To avoid this, we used the “one-hot”
method, in which each category is supplied to the model as
a separate dummy input feature, i.e. a binary surface of, for
example, “unconsolidated sediment” and “everything else”
(Au, 2018). The number of input feature maps used for each
model was equivalent to the number of lithological categories
present in each case: six in Hokkaido, nine in Nepal and six
in Lombok.

2.3.4 Land cover

Nowicki Jessee et al. (2018) used land cover as a proxy for
vegetation coverage and type, as the composition of the soil
and the presence or absence of plant roots can affect slope
stability. Here we used land cover data downloaded from the
European Space Agency (ESA) Climate Change Initiative,
which includes yearly maps of 22 land cover categories com-
piled at a 300 m resolution from 1992-2015 (ESA, 2017).
We used the 2014 map as the most recent land cover map
preceding all of our case study events. Like lithology, land
cover is a categorical variable; thus, we used the same one-
hot method described in Sect. 2.3.3 to avoid biasing due to
empty categories and selected the dominant land cover type
within each 200 m x 220 m aggregate cell. As for lithology,
the number of land cover input feature maps used for each
case study area was equivalent to the number of categories
present: 15 in Hokkaido, 16 in Nepal and 16 in Lombok.

2.3.5 USGS ground failure product

For our global model, instead of the set of individual input
feature maps described above, we use one single feature map
that encapsulates the likely best results from a global model
trained across a large number of events: the output USGS
Ground Failure product of Nowicki Jessee et al. (2018). This
was necessary since we found that models generated from
individual input feature maps had limited skill in Hokkaido
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and no skill in Lombok or Nepal, which is not representa-
tive of the performance of existing global models (e.g. Now-
icki Jessee et al., 2018; Tanyas et al., 2019). This poor per-
formance is likely to be due to the limited number of case
studies used as training data in our global models and would
make it difficult to draw conclusions on the benefits of adding
SAR to a global empirical model. We found that by replacing
the individual input features with the model output of Now-
icki Jessee et al. (2018), we improved model performance
in Nepal and Lombok and obtained a more consistent result
across the three events.

The models of Nowicki Jessee et al. (2018) are published
within hours following a large earthquake for use in haz-
ard assessment and emergency response coordination and are
available from the USGS website. They are generated using
logistic regression based on PGV, slope, CTI, lithology and
land cover data (Nowicki Jessee et al., 2018). As described
in Sect. 2.3.2, USGS estimates of PGV are updated multiple
times after an earthquake, and the ground failure products
based on these are also updated. Again, we use final pub-
lished version of the ground failure product (based on the
final PGV estimates) in all our models. However, any conclu-
sions drawn here about the advantage of incorporating SAR
into the model should remain valid for earlier versions of the
ground failure product. The models of Nowicki Jessee et al.
(2018) are published at a similar spatial resolution (around
0.002°) to our models. Therefore, the only processing step
required was to resample them onto the geometry of our other
input data (200 x 220 m pixels).

2.3.6 InSAR coherence features (ICFs)

Multiple studies have demonstrated that methods based on
InSAR coherence can be used in landslide detection (e.g.
Aimaiti et al., 2019; Burrows et al., 2019, 2020; Jung and
Yun, 2019; Yun et al., 2015). An interferogram is formed
from two SAR images acquired over the same area at differ-
ent times, and its coherence is sensitive to a number of fac-
tors including changes to scatterers between the two image
acquisitions and, particularly in areas of steep topography,
changes to the image acquisition geometry (Zebker and Vil-
lasenor, 1992). Changes in soil moisture (Scott et al., 2017);
movement of vegetation due to wind (Tanase et al., 2010);
growth, damage or removal of vegetation (Fransson et al.,
2010); and damage to buildings (Fielding et al., 2005; Yun
etal., 2015) are all examples of processes which can alter the
scattering properties of the Earth’s surface and so lower the
coherence of an interferogram. InNSAR coherence is a mea-
sure of the signal-to-noise ratio of an interferogram estimated
on a pixel-by-pixel basis from the similarity in amplitude and
phase change of small numbers of pixels (Just and Bamler,
1994).

We used single-polarisation SAR data from two SAR sys-
tems in this study: the C-band Sentinel-1 SAR satellite op-
erated by ESA and the Phased Array type L-band SAR-
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2 (PALSAR-2) sensor on the Advanced Land Observation
Satellite 2 (ALOS-2) operated by the Japan Aerospace Ex-
ploration Agency (JAXA). For each case study earthquake,
we used ascending- and descending-track Sentinel-1 SAR
imagery and a single track of ALOS-2 PALSAR-2 imagery
(Fig. 1). This volume of SAR data is available in the immedi-
ate aftermath of the majority of earthquakes (Burrows et al.,
2020). These two satellite systems acquire SAR data at dif-
ferent wavelengths and so interact slightly differently with
the ground surface, with ALOS-2 generally being less noisy
in heavily vegetated areas than Sentinel-1 (Zebker and Vil-
lasenor, 1992). SAR data are acquired obliquely, which in ar-
eas of steep topography can lead to some slopes being poorly
imaged by the SAR sensor. Here all data were acquired at an
angle of 31.4-43.8° to vertical. Descending-track data were
acquired with the satellite moving south and looking west,
while ascending-track data were acquired with the satellite
moving north and looking east. Therefore, slopes which are
poorly imaged in ascending data are likely to be better im-
aged by the descending track and vice versa. It is for this
reason that we employed two tracks of Sentinel-1 data, but
this is currently not often available for L-band SAR. We pro-
cessed the SAR data using GAMMA software, with Sentinel-
1 data processed using the LICSAR package (Lazecky et al.,
2020). The data were processed in a range x azimuth coor-
dinate system and then projected into a geographic coordi-
nate system with a spatial resolution of 20 m x 22 m. Further
details on the spatial and temporal resolution of these SAR
data, on their processing and on parameter choices made
in the generation of the CECL, Bx-S, PECI, AC_sum and
AC_max surfaces can be found in Burrows et al. (2020).
We aimed to combine InSAR coherence methods with em-
pirical models. To achieve this, we used multiple InSAR
coherence methods as input features. The first coherence
method we used was the coherence of the co-event interfer-
ogram (formed from two images spanning the earthquake).
The movement of material and removal of vegetation by a
landslide alters the scattering properties of the Earth’s sur-
face, resulting in low coherence. This gives landslides a low
coherence in a co-event interferogram. Burrows et al. (2019)
and Vajedian et al. (2018) demonstrated that this had some
potential in triggered landslide detection. Second, we used
the coherence of the post-event interferogram (formed from
two images acquired after the earthquake). Coherence is de-
pendent on the land cover, with vegetated areas generally
having a lower coherence than bare rock or soil (Tanase et al.,
2010). Therefore, the bare rock or soil exposed following a
landslide is likely to have a higher coherence than the sur-
rounding vegetation. This input feature was found to be ben-
eficial in most cases, but the distribution of post-event coher-
ence values varied significantly between events when using
ALOS-2 data. This may be because the wait time between the
first and second post-event images varied significantly be-
tween the events (from 14 to 154 d, Burrows et al., 2020).
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The post-event ALOS-2 coherence was therefore omitted
from our global models.

As well as the raw coherence surfaces, we used the five
coherence-based methods tested by Burrows et al. (2020)
as input features, all of which showed some level of land-
slide detection skill in that study. The output of each of these
methods is a continuous surface that can be interpreted as
a proxy for landslide intensity. First, the co-event coher-
ence loss (CECL) method uses the decrease in coherence
between a pre-event and co-event interferogram to identify
“damaged” pixels (Fielding et al., 2005; Yun et al., 2015).
The boxcar—sibling (Bx—S) method of Burrows et al. (2019)
uses the difference between two different co-event coherence
estimates to remove large-spatial-scale coherence variations
from the landslide detection surface. Finally three methods
presented by Burrows et al. (2020) incorporate the coherence
of a post-event interferogram to detect landslides, making
use of the fact that the coherence decrease caused by a land-
slide is temporary. The post-event coherence increase (PECI)
method uses the difference between the post-event and co-
event coherences. The PECI and CECL methods are then
combined in two further methods: the sum of the co-event co-
herence loss and post-event coherence increase (AC_sum);
and the maximum coherence change (AC_max), where for
every pixel, whichever is largest of PECI or CECL is taken.

The majority of the methods outlined in this section use
a “boxcar” coherence estimate, using pixels from within a
3 x 3 window surrounding the target pixel in the coherence
estimation. The only exception to this is the Bx—S method,
which also uses a “sibling” coherence estimate in which an
ensemble of pixels is selected from within a wider window
for coherence estimation using the RapidSAR algorithm of
Spaans and Hooper (2016) (Burrows et al., 2019). This sib-
ling coherence estimation requires additional data (a mini-
mum of six pre-seismic images), and so it was not possible
to calculate this using ALOS-2 data for the 2015 Nepal earth-
quake, as this event occurred very early in the lifetime of the
satellite. The Bx—S method with ALOS-2 data was therefore
not used in Nepal or in any of the global models we tested.

2.4 Random forest theory and implementation

Random forests are an extension of the decision tree method,
a supervised machine learning technique in which a sequence
of questions are applied to a dataset in order to predict some
unknown property, for example to predict landslide suscep-
tibility based on features of the landscape (e.g. Chen et al.,
2017). A random forest comprises a large number of decision
trees, each seeing different combinations of input data, which
then make a combined prediction. This avoids overfitting the
training data, a problem when using individual decision trees
(Breiman, 2001). First the training dataset is bootstrapped so
that each tree sees only a subset of the original pixels. Each
tree carries out a series of “splits”, in which the data are di-
vided in two based on the value of an input feature. These
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Table 2. Hyperparameter options for the random forest in scikit-learn over which a grid search optimisation was carried out (Pedregosa et al.,

2011).

Hyperparameter Definition

GridSearch

n_estimators
max_{features
max_depth
min_samples_split
min_samples_leaf

The maximum depth of the tree

The number of decision trees that make up a forest
The number of input features (as a function of the total) considered when looking for a split

The minimum number of samples at a node for a split to be allowed
The minimum number of samples that would result at each leaf for a split to be allowed

[75, 100, 125]
[“log2”, “sqrt”]
[10, 15, 20, 30]
[2,3,4,5]
[2,10]

splits are chosen based on the improvement they offer to the
ability of each tree to correctly predict its training data. Every
tree remembers how it split the training data and then applies
the same splits as it attempts to model the test data. For ran-
dom forest regression, the mean value of all trees is taken
as the model output for every sample (Breiman, 2001). To
aid understanding, we include a simple example of random
forest regression in the Supplement.

Here, we used random forests to carry out the regression
between the input features described in Sect. 2.3 and LAD.
Random forests are well suited to the combination of SAR
methods with static landslide predictors for several reasons.
Random forests are relatively computationally inexpensive
and, because of this, can use a large number of input features.
Random forests do not require input features to be indepen-
dent, which is advantageous here since InSAR coherence is
sensitive to both slope and land cover, as well as the presence
or absence of landslides. Input features of random forests do
not need to be monotonic and can be categoric or continuous.
Catani et al. (2013), Chen et al. (2017), Fan et al. (2020) and
Onhki et al. (2020) have demonstrated that random forests can
yield good results in landslide prediction.

To implement the random forests method, we used the
Python scikit-learn package (Pedregosa et al., 2011). The
model is defined by a number of hyperparameters that can
have a noticeable effect on the model. The first of these is
the criteria on which a split should be assessed. In our mod-
els, splits were carried out that minimised the mean absolute
error (MAE). This criterion was selected based on Ziegler
and Konig (2014). The second hyperparameter describes the
bootstrapping step. Here the data were bootstrapped so that a
number of random samples was taken equal to the number of
pixels in the training dataset. Each individual pixel is there-
fore likely to appear at least once in around two-thirds of
the bootstrapped datasets (Efron and Tibshirani, 1997). This
process improves the stability of the model by ensuring that
each tree is trained on a slightly different subset of the train-
ing data (Breiman, 2001).

Table 2 shows a further five hyperparameters that define
the setup of a random forest model in scikit-learn (Pedregosa
et al., 2011). First the number of trees, n_estimators, defines
the number of decision trees that make up a forest. More
trees can increase model accuracy up to a point but also
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result in a more computationally expensive model. Second,
max_features defines the fraction of possible input features
considered when selecting how the split of the data is calcu-
lated. For example, our initial same-event models had 11 in-
put features (Table 1), so with square root (sqrt) selected,
the model will assess possible splits based on /11 ~ 3 in-
put features before identifying the best split. The “depth” of
each decision tree describes the number of times the data
will be split if it takes the longest path from the begin-
ning of the tree to the end. This is limited by Max_depth,
which defines the maximum depth of each decision tree. Fi-
nally, min_samples_split is the minimum number of samples
anode has to contain before splitting for a split to be allowed,
while min_samples_leaf is the minimum number of samples
assigned to either branch after splitting for a split to be al-
lowed. For each of these five hyperparameters, we selected
several possible options, which are shown in the final col-
umn of Table 2. We then used the GridSearchCV function in
sci-kit learn to select an optimised model. This function ran
models with every possible combination of these values, us-
ing 4-fold cross-validation over our training data to identify
the optimal hyperparameter combination (Pedregosa et al.,
2011).

2.4.1 Feature importances

The importance of each input feature was calculated from
the decrease in MAE resulting from splits on that feature for
each tree and then averaged over all the trees to obtain fea-
ture importance at the forest level. This calculation gives an
indication of how reliant the model is on each feature, with
the sum of importances across all input features equal to one
(Liaw and Wiener, 2002). Feature importance therefore helps
with interpreting the model and can allow unimportant fea-
tures to be eliminated from future models, reducing compu-
tation time (e.g. Catani et al., 2013; Diaz-Uriarte and De An-
dres, 2006). However, it should be noted that the importance
of categorical input features (here lithology and land cover) is
often underestimated, since in this case the number of possi-
ble splits is limited to the number of categories present in the
training data. Furthermore, since our input features are not
independent (for example, InNSAR coherence can be affected
by land cover and slope), caution should be taken when draw-
ing conclusions from importance values.
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2.5 Performance metrics

Each model generated a raster of continuous predictor vari-
ables, corresponding to the modelled LAD in the range [0, 1].
We assessed model performance by comparing the test areas
of these predicted surfaces with the mapped LAD calculated
from the inventories of Ferrario (2019), Roback et al. (2017)
and Zhang et al. (2019) in Sect. 2.1. We used two metrics in
assessing model performance: ROC analysis and the coeffi-
cient of determination (r2).

ROC analysis has been widely used in studies of land-
slide prediction and detection and is relatively simple to in-
terpret (e.g. Burrows et al., 2020; Robinson et al., 2017,
Tanyas et al., 2019). Additionally, the use of ROC analysis
allows comparison between the models in this study and the
InSAR-coherence-based methods of Burrows et al. (2020).
ROC analysis requires a binary landslide surface for vali-
dation, so we applied a threshold to the mapped LAD sur-
face calculated in Sect. 2.1, assigning aggregate cells with
LAD > 0.1 as “landslide” and < 0.1 as “non-landslide”. Set-
ting this threshold higher would test the model’s ability to
detect more severely affected pixels, while setting it lower
would test the model’s ability to more completely capture
the extent of the landsliding. We chose 0.1 to strike a bal-
ance between these two factors. These aggregate cells with
LAD > 0.1 contain 77 % of the total area of the individual
landslide polygons in Nepal, 94 % in Hokkaido and 46 % in
Lombok. Using this binary aggregate landslide surface, the
false positive rate (the fraction of mapped non-landslide pix-
els wrongly assigned as landslide by the model) and true
positive rate (the fraction of mapped landslide pixels cor-
rectly assigned as landslide by the model) were calculated
at a range of thresholds and plotted against each other to pro-
duce a curve. The area under this curve (AUC) then indicates
the predictive skill of the model, with a value of 0.5 indicat-
ing no skill and 1.0 indicating a perfect model (Hanley and
McNeil, 1982). The ROC AUC values calculated here there-
fore represent the ability of the model to identify pixels with
LAD > 0.1.

The second method we used to assess model performance
was to carry out a linear regression between the observed and
predicted LAD. The r2 of this regression is calculated as the
fraction of the variability in predicted LAD that is explained
by this linear model. A high r? coefficient value (up to a max-
imum of 1.0) indicates low levels of random errors, while an
r? close to zero indicates that levels of random errors in the
model are too high to obtain a good fit to observed LAD.
Therefore, r2 indicates the ability of our random forest mod-
els to avoid random errors in their prediction of LAD, while
the ROC AUC indicates their ability to identify severely af-
fected pixels.

https://doi.org/10.5194/nhess-21-2993-2021

3 Results
3.1 Same-event models

Figure 2 shows the effect on model AUC (Fig. 2a—c) and r2
(Fig. 2d—f) of adding Sentinel-1 and ALOS-2 data to a land-
slide susceptibility model trained on 250 landslide and non-
landslide pixels mapped following an event and tested on the
remaining pixels. Since the model performance varied de-
pending on which 500 pixels were used as training data, we
ran each model 30 times and give the mean AUC and r2 of
these models in Fig. 2a—f.

The initial models for Hokkaido, Nepal and Lombok had
AUC values of 0.60, 0.75 and 0.79 and r2 values of 0.17,
0.027 and 0.020 respectively. We observed this combination
of comparatively high ROC AUC values and very low r2 val-
ues for all of the models tested in this paper as well as for the
models of Nowicki Jessee et al. (2018). These low 2 values
have implications for how the current generation of empiri-
cal models should be interpreted, and we discuss this further
in Sect. 4.1.

In almost all cases, incorporating ICFs improved model
performance in terms of AUC, with the biggest improvement
observed when ICFs from the first ALOS-2 image are added.
The addition of these first ALOS-2 ICFs also results in an
increase in 2 for each case study region. The biggest im-
provement is seen in Hokkaido, where the addition of these
ALOS-2 ICFs results in a increase in 2 from 0.17 to 0.45
and an increase in AUC from 0.68 to 0.78. Although these
ALOS-2 ICFs result in the largest improvement in model per-
formance, in all three events the model incorporating both
ALOS-2 and Sentinel-1 ICFs outperforms the model using
ALOS-2 ICFs alone in terms of AUC. In terms of r2, the
combined model outperforms the ALOS-2 only model in
Nepal, but the ALOS-2 only model performs best in Lom-
bok. In Hokkaido, the combined model performs best after
the third Sentinel-1 acquisition. Sentinel-1 data are also often
available sooner after a triggering earthquake than ALOS-2
data, due to the short revisit time of the Sentinel-1 satellites.

3.2 Global models

An alternative to training on a small part of the affected area
is to train the model on inventories from past earthquakes.
To test the effect that incorporating ICFs might have on such
models using our three case studies, we applied a leave-one-
out cross-validation approach: we tested predictions of LAD
for each earthquake that were generated using models trained
on the other two earthquakes. Figure 2 shows the effect on
model AUC (Fig. 2g—i) and r2 (Fig. 2 j-1) of adding ALOS-2
and Sentinel-1 ICFs to the input features used in training the
model.

The USGS landslide model of Nowicki Jessee et al. (2018)
had AUC values of 0.65 in Hokkaido, 0.62 in Lombok and
0.77 in Nepal and 7> of 0.026, 0.033 and 0.0022 respec-
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Figure 2. Step plots showing the change in ROC AUC (a—c, g-i) and 2 (d—f, j-I) for each of the three events. Models in panels (a)—(f) were
trained on a small part of each study area, while in panels (g)—(l) landslide areal density was predicted using a model trained on the other two

case study regions in each case.

tively. In order to test the effect of adding ICFs to a global
model, we used the USGS model as an input feature along-
side the ICFs listed in Sect. 2.3. As with the same-event
models (Sect. 3.1), incorporating ICFs improved model per-
formance in almost all cases, with the largest improvement
in terms of both AUC and r? seen with the addition of the
first ALOS-2 ICFs. In all three cases, our global models at
2 weeks have an AUC > 0.8 and outperform the USGS land-
slide model of Nowicki Jessee et al. (2018) in terms of AUC
and r2. Overall, the addition of ICFs derived from SAR data
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acquired within 2 weeks of each earthquake results in better
and more consistent model performance. This improvement
can be observed in Fig. 4, which shows the models of Now-
icki Jessee et al. (2018) alongside those incorporating SAR
data acquired within 2 weeks of each earthquake.
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Figure 3. Timelines of modelled landslide areal density for each event, starting with no SAR data (a, d, g). Panels (b), (e) and (h) show the
model using SAR data acquired within 2 weeks of the earthquake, and panels (c), (f) and (i) show landslide areal density calculated from
polygon inventories for each event (Ferrario, 2019; Roback et al., 2017; Zhang et al., 2019). The mapping extent of each of these inventories
is shown by a black polygon. White polygons in the final row show areas unmapped by Roback et al. (2017) due to cloud cover in optical

imagery.

3.3 Do these models outperform individual InSAR
coherence methods?

To assess whether a combined model of ICFs and landslide
susceptibility is useful, it is necessary to compare it to the in-
formation that could be obtained from SAR alone. The SAR
data and case studies used here are the same as those used
by Burrows et al. (2020) in their systematic assessment of
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InSAR coherence methods for landslide detection. AUC val-
ues have been calculated here at the same resolution and with
the same definition of a landslide or non-landslide aggregate
cell. This allows direct comparison between the performance
of the models applied here and the InSAR coherence meth-
ods alone. To assess the value added to the InSAR coher-
ence methods by the static landslide predictors (e.g. slope),
we also applied the random forest technique using the ICFs
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described in Sect. 2.3.6 as the only input features. Figure 5
shows AUC values for (1) the combined model, (2) a SAR-
only model and (3) the InSAR-coherence-based method rec-
ommended for each SAR image acquisition by Burrows et al.
(2020, Supplement).

For the same-event models (Fig. 5a—c), the combined
model outperforms the SAR-only model in almost all cases,
and in the initial days following the earthquake, when only
Sentinel-1 is available, the combined model outperforms the
coherence methods. This is particularly noticeable for Lom-
bok, as four Sentinel-1 images were acquired before the first
ALOS-2 image following this event, and the model has a
consistently higher AUC than the individual Sentinel-1 co-
herence surfaces (approximately 0.8 compared to 0.6). When
the coherence methods recommended by Burrows et al.
(2020) are employed using ALOS-2 data, they outperform
both the combined and SAR-only models in terms of AUC
in two cases (the first ALOS-2 image after Hokkaido and the
second after Nepal) and perform similarly in the other four
cases.

For the global models, the difference between the SAR-
only and combined model is less pronounced, but in most
cases, the combined model has a higher AUC than the SAR-
only model. Both models outperform the individual InSAR
coherence methods that use Sentinel-1 data in all cases ex-
cept the first Sentinel-1 image following the Nepal earth-
quake. The coherence methods of Burrows et al. (2020) out-
perform both models when the second ALOS-2 image is
available in Nepal and Lombok but have a similar perfor-
mance in the other cases.

We are also able to make a visual comparison between the
InSAR coherence products of Burrows et al. (2020) and the
2-week models shown here in Figs. 3 and 4. Burrows et al.
(2020) observed false positives south of the landslides trig-
gered by the Hokkaido earthquake, which they attribute to
wind damage to vegetation associated with Typhoon Jebi.
They also observed false positives in built-up areas close to
the coast in Lombok. These areas of false positives are visi-
bly dampened in both our same-event and our global 2-week
models.

3.4 Feature importances

Figure 6 shows the relative importance of each input fea-
ture in a random forest model when the model is trained on
data from Hokkaido (Fig. 6a), Nepal (Fig. 6b) and Lombok
(Fig. 6¢). For simplicity, the parameters have been grouped
by the data required to create them. For example, the impor-
tance of “topography” in Fig. 6 was calculated as the sum
of the importances of maximum slope, mean slope, standard
deviation of slope, elevation, standard deviation of elevation,
relief, CTI and aspect. As described in Sect. 2.4.1, these mea-
sures of importance are limited since our input features are
not fully independent, but it is clear that the importance of
the ICFs increases through time in each case. For each case
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study, topography was initially the most important input fea-
ture but its importance gradually decreased as more SAR
data were added, particularly in Hokkaido, where it ceased
to be the most important feature after the ICFs from the first
ALOS-2 image were added to the model. In the final mod-
els, ALOS-2 ICFs were consistently more important than
Sentinel-1, particularly in Hokkaido where these become the
most important feature in the model.

4 Discussion

We have presented the results of adding ICFs to two types of
landslide model: a same-event model trained on a small area
of each case study earthquake and a global model, which is
trained on two earthquakes to predict the third. In both cases,
we have demonstrated that model performance was signifi-
cantly improved by the addition of ICFs derived from data
acquired within 2 weeks of an earthquake. In this section, we
discuss some of the factors that could affect the applicability
of these models in an emergency response situation.

4.1 Model interpretation based on ROC AUC and r?

We have demonstrated that the addition of ICFs to empirical
models of LAD based on topography, ground shaking esti-
mates, land cover and lithology significantly improves their
performance in terms of ROC AUC and r2. However, while
the final AUC values are around 0.8 or higher, r2 remains
below 0.05 in Nepal and Lombok. We also observed this
combination of relatively high AUC (0.63-0.77) alongside
low r2 (0.0002-0.03) for the models of Nowicki Jessee et al.
(2018), which are published on the USGS website. This re-
sult directly impacts how the current generation of empir-
ical models at this spatial scale should be interpreted: the
low r? values we have observed indicate that the ability of
the models to predict LAD as a continuous variable is poor,
while the more encouraging AUC values indicate that the
models are well suited to discriminating between affected
and unaffected pixels. Therefore, in an emergency response
scenario, the model of Nowicki Jessee et al. (2018) and the
models presented here can be used to provide an estimate of
the spatial extent and distribution of the triggered landsliding
after an earthquake but should not be interpreted as a reliable
estimate of LAD.

4.2 Selection of the training data for the same-event
model type

The same-event case we have presented here uses 500 train-
ing data cells randomly selected from across the study area.
The aim of this process is to reduce the area that is required
to be manually mapped from optical satellite data or field in-
vestigations before an estimate of LAD can be generated over
the whole affected area and therefore to reduce the time taken
to generate a complete overview of the landsliding. An alter-
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Figure 4. Timelines of modelled landslide areal density for each event. Panels (a), (d) and (g) show the results of the model of Nowicki Jessee
et al. (2018) for each event. Panels (b), (e) and (h) show the model using SAR data acquired within 2 weeks of the earthquake, and panels (c),
(f) and (i) show landslide areal density calculated from polygon inventories for each event (Ferrario, 2019; Roback et al., 2017; Zhang et al.,
2019). The mapping extent of each of these inventories is shown by a black polygon. White polygons in the final row show areas not mapped

by Roback et al. (2017) due to cloud cover in optical imagery.

native scenario would be the case where cloud cover prevents
manual landslide mapping in some parts of the affected area.
Robinson et al. (2017) noted that this clustering had a detri-
mental effect on the performance of their same-event model.

To explore this, we tested the ability of a same-event model
to predict LAD for a selected area using only training data
from outside that area (Fig. 7). We chose to test this in Nepal,
as this event covered the largest area. We began with a train-
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ing dataset comprising all of the data outside the test area
(Fig. 7d), which contained 5210 cells with LAD > 1 % across
an area of 47 km?, so that after balancing by undersampling
non-landslide cells (see Sect. 2.4), the training dataset com-
prised 10420 cells. The model shown in Fig. 7e used only
the data west of the training area (6106 pixels after balancing
across an area 21km?). From here, the longitudinal extent
of the training data used was halved each time, resulting in
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balanced training datasets of 3728 (Fig. 7f), 1466 (Fig. 7g),
538 (Fig. 7h) and 180 (Fig. 7i) cells.

Figure 7 clearly shows that models trained on a smaller
area have lower values of AUC (Fig. 7a) and r? (Fig. 7b),
which is to be expected. r2 increased in most cases as ICFs
were added, with the exception of model (i), which was
trained on only 180 cells. All models improved in terms of
both AUC and > when the first ALOS-2 ICFs were added.
As more ICFs were added to the model, AUC improved for
all models, and the difference in AUC between the best and
worst models decreased. An alternative way of viewing this
is that the inclusion of ICFs in such models decreases the area
required to be mapped before an obscured area can be mod-
elled with the same AUC. For example, the model trained
on all the data outside of the test area (10420 mapped cells)
achieved an AUC > 0.7 before the ICFs were added. Using
ICFs derived from two Sentinel-1 images and one ALOS-
2 image, the model (Fig. 7h) also achieves an AUC > 0.7
with only 538 mapped cells. Figure 7d—i shows the model
using ICFs derived from all SAR data acquired in the first 2
weeks following the earthquake (two Sentinel-1 images and
one ALOS-2 image). In the locations where landslides were
observed, the model signal strength visibly increases from
Fig. 7i—d as the training area is increased, and in most cases,
noise in the northern area of the model decreases.

The initial model in Fig. 2b and e performs significantly
better than those in Fig. 7 according to ROC analysis, with
an AUC of 0.75 compared to AUCs ranging from 0.54—
0.74 from models in Fig. 7d—f, despite the fact that models
(Fig. 7d—g) are trained on considerably more data (1566—
10420 cells compared to 500). However, the improvement
in the model when the ICFs were added is greater in terms
of AUC in Fig. 7a than in Fig. 2b. For the model trained
on 500 randomly selected pixels, mean AUC increases
from 0.75 to 0.78 when ICFs from SAR data acquired within
2 weeks of the earthquake are added to the model. The AUC
of model in Fig. 7h, which is trained on a similar number
of pixels (538), improves from 0.62 to 0.77 when the same
ICFs were added. Therefore, it appears that the benefits to
same-event models offered by the addition of ICFs may be
particularly relevant when cloud cover obscures part of the
affected area.

4.3 Training data format

Here, we trained our same-event model on LAD calculated
from polygon landslide data. In some cases, polygon land-
slide data may be available following an earthquake; for ex-
ample the Geospatial Information Authority of Japan (GSI)
released a preliminary landslide map 1 week following the
2018 Hokkaido earthquake (GSI Japan, 2018). However, in
the majority of cases, landslides are more likely to be mapped
as points rather than polygons in order to produce maps
more quickly (e.g. Kargel et al., 2016; Williams et al., 2018).
Therefore, the polygon landslide data we use here may not
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always be available soon enough following an earthquake to
be used in training empirical models of landsliding.

The simple regression we have carried out here to recreate
LAD would not be possible using point-mapped landslide in-
ventories. The first alternative to this would be to carry out
regression on landslide number density (LND) instead. LND
and LAD are generally well correlated following an earth-
quake (Cui et al., 2020; Ferrario, 2019); therefore, we expect
that the improvement observed here when ICFs are added to
the model should also be observed when the regression is car-
ried out for LND. The second alternative, which is employed
by Nowicki Jessee et al. (2018) and Robinson et al. (2017),
is to train the model at the mapping resolution, use machine
learning to estimate the probability of landslide occurrence
and then to carry out an additional regression step to convert
this to an estimate of LAD at a lower spatial resolution. For
example, Nowicki Jessee et al. (2018) use the “two-buffer”
method of Zhu et al. (2017), in which point-mapped land-
slides are used as the landslide part of the training dataset.
Non-landslide training data points are selected that are far
enough from any landslide point to be unlikely to lie within
a landslide, while being close enough that they are likely to
have been included in the area mapped when the inventory
was generated. This technique could be employed for mod-
els incorporating ICFs in the case where only point-mapped
landslide data are available after an earthquake.

4.4 Towards a global landslide prediction model

The advantage of a global landslide prediction model, such as
those of Nowicki Jessee et al. (2018) and Tanyas et al. (2019),
is that there is no need to map any of the landslides trig-
gered by an earthquake before a model of their likely spatial
distribution and impacts can be produced. Our global mod-
els incorporating Sentinel-1 and ALOS-2 ICFs outperform
our same-event models in Nepal and Hokkaido in terms of
AUC. All of the model inputs used here are available glob-
ally and thus could be extended to a global model, but our
global models were trained on only two events. It is likely
that the model performance would improve if the model was
trained on more events. In comparing their model, which was
trained on 23 events, to a preliminary version trained on only
4 events (Nowicki et al., 2014), Nowicki Jessee et al. (2018)
observed a noticeable improvement in performance for the
model trained on more events.

Random forests are not capable of extrapolation, mean-
ing that if the predicted event has LAD values or input fea-
ture values outside the range of those present in the training
dataset, these will not be well modelled. A model trained
on more events will cover a wider range of input feature
and LAD values. Furthermore, although the model of Now-
icki Jessee et al. (2018), which we used as an input feature
to represent the combined effects of lithology, land cover,
slope, CTI and PGV on landslide likelihood, was trained on
a global set of landslide inventories, the combined effect of
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decreasing areas of data used for training the model.

this model and the ICFs was modelled on only two events. It
is therefore likely that the relationship between the original
factors, the ICFs and landslide probability could be better
captured by a model trained on more landslide inventories,
particularly since the model of Nowicki Jessee et al. (2018)
did not perform well in Hokkaido or Lombok. This could
have had an adverse effect on our models of Nepal, which
were trained on these two events. This may explain the rela-
tively poor performance of the combined Sentinel-1 models
in Nepal compared to the performance of the model of Now-
icki Jessee et al. (2018) in this location.

Despite only using two events as training data, the models
incorporating ICFs from at least one ALOS-2 image outper-
formed the original model of Nowicki Jessee et al. (2018)
in all three events, resulting in an improvement in AUC of
over 0.2 in Hokkaido and Lombok and in AUC > 0.8 in all
three cases. This suggests that the addition of ICFs would
improve both the performance and robustness of global mod-
els and would be particularly useful in the case of compli-
cated events, such as Hokkaido, where landslides were trig-
gered by both rainfall and an earthquake (Zhang et al., 2019).
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Model performance may improve further when trained on a
larger number of case study events. It may also be that when
a greater number of case study events is used as training
data, the addition of Sentinel-1 ICFs to the model will of-
fer a greater improvement. However, for models trained on
only two events, the addition of Sentinel-1 ICFs did not con-
sistently improve the model.

4.5 Current recommendations for best practice

Here we have tested an established global model from Now-
icki Jessee et al. (2018), InSAR coherence methods from
Burrows et al. (2020), and a set of same-event and prelim-
inary global models incorporating ICFs for three large earth-
quakes in vegetated areas. We are therefore able to make
some recommendations on which of these options is most
applicable at different stages following an earthquake in a
vegetated area. In Sect. 4.1, we argued that empirical models
are best suited to distinguishing between affected and unaf-
fected cells. For this application, the AUC values in Figs. 2
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and 7 are most relevant, and our recommendations are based
on this metric.

The model of Nowicki Jessee et al. (2018) initially has the
highest AUC. After the first ALOS-2 image is acquired, the
performance of the same-event and global models is simi-
lar in Lombok and Nepal, but the global model performed
considerably better than the same-event model in Hokkaido.
All models using these first ALOS-2 ICFs outperformed the
model of Nowicki Jessee et al. (2018). Therefore, at this stage
we would recommend adding the ICFs derived from ALOS-
2 data or from a similar L-band SAR satellite to a global
model.

In all of the cases here, Sentinel-1 data were acquired ear-
lier after the earthquake than ALOS-2 data, resulting in a
brief period where only ICFs from Sentinel-1 could be added
to the model. During this period, our same-event models out-
perform our global models in all three cases. The same-event
models incorporating Sentinel-1 ICFs also outperform the
model of Nowicki Jessee et al. (2018) by 0.18 in Lombok
and 0.03 in Hokkaido (the two models have the same AUC
in Nepal). Therefore, there might be an advantage to apply-
ing a same-event model using Sentinel-1 ICFs before the first
L-band SAR image is acquired. However, this would only be
possible when sufficient landslide data can be generated in
this time period to train the same-event model, something
which is likely to rely on cloud-free weather conditions and
the availability of personnel to manually map the landslides.
This is therefore only likely to be relevant in cases where the
first L-band image is acquired relatively late, as it was fol-
lowing the Lombok earthquake studied here. In most cases,
we do not expect this to happen, particularly as the number
of L-band SAR satellites is set to increase in the near future
(Sect. 4.6).

In some cases, the individual InNSAR coherence methods of
Burrows et al. (2020) had a higher ROC AUC than our mod-
els or those of Nowicki Jessee et al. (2018) (Fig. 5). However
in practice, switching from an empirical model of landslide
likelihood in the first few days of an emergency response to
a different product derived from coherence would cause un-
necessary confusion. It is preferable to have a single prod-
uct that can be updated as more information becomes avail-
able. For this reason, our overall reccommendation is that the
model of Nowicki Jessee et al. (2018) should be used un-
til the first L-band SAR image is acquired, and then ICFs
derived from this image should be incorporated into a com-
bined model that exploits the advantages of both SAR and
empirical landslide-mapping approaches.

4.6 Future possible SAR inputs

Although here we limited the SAR inputs to coherence-based
landslide detection methods, there are other SAR-derived in-
puts that could be beneficial. First, the amplitude of the SAR
signal has been shown to both be sensitive to landslides and
skilful in their detection (Ge et al., 2019; Konishi and Suga,
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2018, 2019; Mondini et al., 2019, 2021). As amplitude is not
calculated from multiple pixels, it can be used to obtain in-
formation at a higher spatial resolution than coherence. There
have been three studies that successfully combined surfaces
derived from amplitude and coherence to detect landslides
triggered by the Hokkaido earthquake (Aimaiti et al., 2019;
Ge et al., 2019; Jung and Yun, 2019), suggesting that ampli-
tude methods may be beneficial to our model. However, other
studies have found amplitude to be unreliable in landslide
detection (Czuchlewski et al., 2003; Park and Lee, 2019).
SAR amplitude depends on several factors including surface
roughness, soil moisture content and slope orientation rel-
ative to the satellite sensor. The amplitude of non-landslide
pixels is therefore likely to vary significantly across the study
area. Landslides can result in both increases and decreases in
radar amplitude. Since the random forest technique relies on
establishing thresholds on which to divide data, input fea-
tures based on amplitude methods may not be suitable.

A second option would be polarimetric SAR, in which
data are recorded by the SAR satellite at two polarisa-
tions (dual-pol) or both projected and recorded at two polar-
isations (quad-pol). Polarimetric SAR data thus describe the
scattering properties of the Earth’s surface more completely
than the single-polarisation data we have used here. It has
been demonstrated that quad-pol data can be used to map
landslides (Czuchlewski et al., 2003; Ohki et al., 2020; Park
and Lee, 2019). However, few SAR systems acquire quad-
pol data, and those that do (e.g. ALOS-2) do not acquire them
routinely. Therefore, these data are often not available imme-
diately after an earthquake and so are not suitable for use in
a global model. The applicability of dual-pol SAR data to
landslide-detection is less well explored, but as these data
are acquired more commonly and are routinely acquired by
Sentinel-1, they are likely to be available following an earth-
quake and so could be incorporated. When testing a range
of polarimetric parameters that could be used in landslide
detection, Park and Lee (2019) demonstrated that landslides
could be identified in surfaces generated from dual-pol data,
although using dual-pol methods resulted in more noise than
quad-pol. Thus, when combined with the other landslide de-
tection and susceptibility parameters used in this study, dual-
pol Sentinel-1 data may offer an additional benefit.

It is also worth considering which SAR satellites could
provide data to be incorporated into empirical models. Here
we used two tracks of Sentinel-1 data and one of ALOS-
2. ALOS-2 data are acquired at a longer wavelength than
Sentinel-1 (L-band rather than C-band), so the data retain a
higher coherence in vegetated areas, a significant advantage
in landslide mapping. It is therefore unsurprising that the ad-
dition of the first ALOS-2 ICFs to the models offered the
greatest improvement to prediction of LAD. We have recom-
mended that when the first ALOS-2 image becomes available
after an earthquake, the ICFs derived from this image should
be incorporated into a global model. The ALOS-2 satellite
system has a 14 d repeat time, and one of the aims of the
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mission is to enable emergency response, so the first ALOS-
2 image is very likely to be available within 2 weeks of an
earthquake. In the future, we expect that it will also be possi-
ble to derive useful ICFs from L-band SAR data acquired by
the planned NASA-ISRO SAR (NISAR) mission, which is
due to launch in 2022. The NISAR mission will acquire data
continually with a 12d repeat time (Sharma, 2019). There-
fore, after the launch of this satellite system, it should be
possible to use both ascending and descending tracks of L-
band SAR data rather than just one track as we have used
here. NISAR will also acquire SAR data at a wider swath
width (240km) than the ALOS-2 data we have used here
(50-70 km) (Sharma, 2019), which is an advantage for earth-
quakes that trigger landslides across a large area. For exam-
ple, in the Nepal earthquake, the ALOS-2 scene we used in
this study covers less than half of the landslides that were
triggered by the earthquake (Fig. 1a). Therefore, in order to
obtain a complete model of a landslide event of this spatial
extent, it would be necessary to combine several adjacent
scenes, which are likely to be acquired on different days.
ALOS-2 PALSAR-2 data are also acquired at a wider swath
width (up to 490 km), but this is at the expense of spatial reso-
lution, which coarsens to 100 m per pixel. Since coherence is
calculated over a 3 x 3 window, the resolution at which land-
slides could be detected would therefore decrease to 300 m.
Therefore, we expect that data acquired by the NISAR mis-
sion could be extremely useful in generating ICFs.

4.7 Possible application in other settings

Here we began with a set of models that predicted the spa-
tial distribution of earthquake-triggered landslides predomi-
nantly based on topography and PGV and demonstrated that
the addition of ICFs could improve the performance of these
models. Landslides can also be triggered by rainfall events,
and as with earthquake-triggered landslides, cloud cover can
cause significant problems with mapping landslides using
optical satellite imagery. In particular, in areas with a mon-
soon climate (e.g. Nepal) the rainfall that triggers landslides
often occurs during a period of several months with almost
continuous cloud cover (Robinson et al., 2019). This means
that it is currently extremely difficult to obtain landslide in-
formation beyond that predicted by static empirical models
such as that of Kirschbaum and Stanley (2018) or the neces-
sarily patchy and incomplete information provided by report-
ing of individual landslides by individuals or organisations
(e.g. Froude and Petley, 2018).

Landslides in vegetated regions are likely to result in de-
creased coherence regardless of their triggering mechanism
due to associated movement of material and vegetation re-
moval, which alters the microwave scattering properties of
the Earth’s surface. Therefore, it seems likely that the added
prediction ability that can be gained by adding ICFs to em-
pirical models of earthquake-triggered landslide susceptibil-
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ity could also apply to models of rainfall-triggered landslide
susceptibility.

It is also worth considering the possible application of our
approach in an arid environment. The training and testing
of our model was limited to landslides in vegetated areas.
Due to significant differences in background InSAR coher-
ence between arid and vegetated regions, it is likely that sepa-
rate models would be required for vegetated and arid regions
of the world. C-band InSAR is generally more successful in
less heavily vegetated areas. Sentinel-1 ICFs might therefore
play a larger role in empirical models based in arid environ-
ments than they did here. Sentinel-1 InSAR coherence has
been used to map erosion in arid environments (Cabré et al.,
2020), indicating that it could also be applied to landslides.
Howeyver, it is also more difficult to derive landslide invento-
ries from optical satellite images in less vegetated areas. This
makes it more difficult to obtain the landslide data required
to train an empirical model, but it would also make such a
model more valuable if it could be developed.

5 Conclusions

We have tested the relative performance of InSAR-
coherence-based classifiers, empirical landslide susceptibil-
ity models and a combination of these using ROC analy-
sis and r2. The performance of all models was better with
ROC analysis than with 72, indicating that the models are
better suited to discriminating between landslide and non-
landslide areas following an earthquake than predicting con-
tinuous landslide areal density. We tested same-event and
preliminary global empirical models and found that adding
InSAR coherence features to these improved their perfor-
mance in terms of both ROC and r2. Importantly, a consid-
erable improvement in model performance was seen using
SAR data acquired within 2 weeks of each earthquake, mean-
ing that these improvements could be made rapidly enough
to be used in emergency response. We also expect that sim-
ilar models could be developed to combine InSAR coher-
ence and empirical models to predict rainfall-triggered land-
slides, or to predict earthquake-triggered landslides in more
arid environments, although we did not test these cases here.
For the same-event models, we observed that the empirical
models without SAR performed considerably worse when
the area available for training data was restricted as it could
be by cloud cover following an earthquake, consistent with
Robinson et al. (2017). However, we also found that the
improvement in terms of ROC AUC offered by the inclu-
sion of SAR data was particularly marked in this case. Both
Sentinel-1 and ALOS-2 InSAR coherence features were ob-
served to improve these models, with the best overall perfor-
mance observed when both were used together. Before the
acquisition of the first ALOS-2 image, when only Sentinel-
1 InSAR coherence features were available, our same-event
models outperformed our global models, but after this our
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global models performed best. Our global models were only
trained on two events, but the addition of the first ALOS-
2 SAR data acquired after each earthquake resulted in im-
proved and more consistent performance compared to the
model of Nowicki Jessee et al. (2018) in terms of ROC AUC.
We therefore recommend that in the future, InNSAR coherence
features from L-band SAR should be routinely incorporated
into empirical models of earthquake-triggered landsliding in
vegetated regions.
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