Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying location error to define uncertainty in volcanic mass flow hazard simulations
Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
Jonathan Procter
Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
Gabor Kereszturi
Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
Related authors
No articles found.
Mark S. Bebbington, Melody G. Whitehead, and Gabor Kereszturi
Nat. Hazards Earth Syst. Sci., 25, 3455–3460, https://doi.org/10.5194/nhess-25-3455-2025, https://doi.org/10.5194/nhess-25-3455-2025, 2025
Short summary
Short summary
In volcanic fields, the location of an eruptive vent controls the hazards, their intensities, and ultimately the impact of the eruption. Estimates of where future eruptions are likely to occur inform evacuation plans, the (re)location of vital infrastructure, and the placement of early-warning monitoring equipment. Current estimates assume that locations with more past-vents are more likely to produce future-vents. We provide the formulae for an alternative hypothesis of magma depletion.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Braden Walsh, Charline Lormand, Jon Procter, and Glyn Williams-Jones
Nat. Hazards Earth Syst. Sci., 23, 1029–1044, https://doi.org/10.5194/nhess-23-1029-2023, https://doi.org/10.5194/nhess-23-1029-2023, 2023
Short summary
Short summary
Here, we delve into the properties of a lake-breakout mass flow that grew up to a volume of ~ 4.4 × 106 m3 over the course of 83 km that occurred on 18 March 2007 at Mt. Ruapehu, Aotearoa / New Zealand. The combination of seismic analysis (frequency and directionality) with on-the-ground measurements (e.g., video, sediment concentration) shows how a lahar evolves over time and distance and how using seismic techniques can help monitor the ever-changing dynamics and properties of a flow event.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Cited articles
Aguilera, E., Pareschi, M. T., Rosi, M., and Zanchetta, G.: Risk from Lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador), Nat. Hazards, 33, 161–189, https://doi.org/10.1023/B:NHAZ.0000037037.03155.23, 2004.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton,
S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P.,
Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B.
D., and Andreassian, V.: Characterising performance of environmental models,
Environ. Model. Softw., 40, 1–20, https://doi.org/10.1016/j.envsoft.2012.09.011, 2013.
Calder, E., Wagner, K., and Ogburn, S. E.: Volcanic hazard maps, in: Global
Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9781316276273.022, 2015.
Charbonnier, S. J., Germa, A., Connor, C. B., Gertisser, R., Preece, K., Komorowski, J. C., Lavigne, F., Dixon, T., and Connor, L.: Evaluation of the
impact of the 2010 pyroclastic density currents at Merapi volcano from
high-resolution satellite imagery, field investigations and numerical
simulations, J. Volcanol. Geoth. Res., 261, 295–315,
https://doi.org/10.1016/j.jvolgeores.2012.12.021, 2013.
Charbonnier, S. J., Connor, C. B., Connor, L. J., Sheridan, M. F., Oliva Hernández, J. P., and Richardson, J. A.: Modeling the October 2005
lahars at Panabaj (Guatemala), Bull. Volcanol., 80, 4, https://doi.org/10.1007/s00445-017-1169-x, 2017.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Costanza, R.: Model goodness of fit: A multiple resolution procedure, Ecol. Model., 47, 199–215, https://doi.org/10.1016/0304-3800(89)90001-X, 1989.
Coviello, V., Capra, L., Vázquez, R., and Márquez-Ramírez, V. H.: Seismic characterization of hyperconcentrated flows in a volcanic environment, Earth Surf. Proc. Land., 43, 2219–2231, https://doi.org/10.1002/esp.4387, 2018.
Darnell, A. R., Phillips, J. C., Barclay, J., Herd, R. A., Lovett, A. A., and Cole, P. D.: Developing a simplified geographical information system approach to dilute lahar modelling for rapid hazard assessment, Bull. Volcanol., 75, 713, https://doi.org/10.1007/s00445-013-0713-6, 2013.
Doyle, E. E. H., McClure, J., Johnston, D. M., and Paton, D.: Communicating
likelihoods and probabilities in forecasts of volcanic eruptions, J. Volcanol. Geoth. Res., 272, 1–15, https://doi.org/10.1016/j.jvolgeores.2013.12.006, 2014.
Esposti Ongaro, T., Cerminara, M., Charbonnier, S. J., Lube, G., and Valentine, G. A.: A framework for validation and benchmarking of pyroclastic
current models, Bull. Volcanol., 82, 51, https://doi.org/10.1007/s00445-020-01388-2, 2020.
Fischer, J.-T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature
effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74–75, 21–30, https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.
Foody, G. M.: Status of land cover classification accuracy assessment, Remote Sens. Environ., 80, 185–201, https://doi.org/10.1016/S0034-4257(01)00295-4, 2002.
Formetta, G., Capparelli, G., and Versace, P.: Evaluating performance of
simplified physically based models for shallow landslide susceptibility,
Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016, 2016.
Fournier, N. and Jolly, A. D.: Detecting complex eruption sequence and
directionality from high-rate geodetic observations: The August 6, 2012 Te Maari eruption, Tongariro, New Zealand, J. Volcanol. Geoth. Res., 286, 387–396, https://doi.org/10.1016/j.jvolgeores.2014.05.021, 2014.
George, D. L. and Iverson, R. M.: A depth-averaged debris-flow model that
includes the effects of evolving dilatancy. II. Numerical predictions and
experimental tests, P. Roy. Soc. A, 470, 2170, https://doi.org/10.1098/rspa.2013.0819, 2014.
Hagen, A.: Fuzzy set approach to assessing similarity of categorical maps, Int. J. Geogr. Inform. Sci., 17, 235–249, https://doi.org/10.1080/13658810210157822, 2003.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Iverson, R. M. and George, D. L.: Modelling landslide liquefaction, mobility
bifurcation and the dynamics of the 2014 Oso disaster, Géotechnique, 66,
175–187, https://doi.org/10.1680/jgeot.15.LM.004, 2016.
Iverson, R. M. and Ouyang, C.: Entrainment of bed material by Earth-surface
mass flows: Review and reformulation of depth-integrated theory, Rev. Geophys., 53, 27–58, https://doi.org/10.1002/2013RG000447, 2014.
Iverson, R. M., Logan, M., LaHusen, R. G., and Berti, M.: The perfect debris
flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res.-Earth, 115, F03005, https://doi.org/10.1029/2009JF001514, 2010.
Iverson, R. M., George, D. L., and Logan, M.: Debris flow runup on vertical
barriers and adverse slopes, J. Geophys. Res.-Earth, 121, 2333–2357, https://doi.org/10.1002/2016JF003933, 2016.
Jakeman, A. J., Letcher, R. A., and Norton, J. P.: Ten iterative steps in
development and evaluation of environmental models, Environ. Model. Softw., 21, 602–614, https://doi.org/10.1016/j.envsoft.2006.01.004, 2006.
Jolly, A. D., Jousset, P., Lyons, J. J., Carniel, R., Fournier, N., Fry, B.,
and Miller, C.: Seismo-acoustic evidence for an avalanche driven phreatic
eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption, J. Volcanol. Geoth. Res., 286, 331–347, https://doi.org/10.1016/j.jvolgeores.2014.04.007, 2014.
Kereszturi, G., Schaefer, L. N., Schleiffarth, W. K., Procter, J., Pullanagari, R. R., Mead, S., and Kennedy, B.: Integrating airborne
hyperspectral imagery and LiDAR for volcano mapping and monitoring through
image classification, Int. J. Appl. Earth Obs. Geoinform., 73, 323–339, https://doi.org/10.1016/j.jag.2018.07.006, 2018.
Koch, J., Jensen, K. H., and Stisen, S.: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy
theory, and EOF-analysis benchmarked by the human perception and evaluated
against a modeling case study, Water Resour. Res., 51, 1225–1246,
https://doi.org/10.1002/2014WR016607, 2015.
Lube, G., Breard, E. C. P., Cronin, S. J., Procter, J. N., Brenna, M., Moebis, A., Pardo, N., Stewart, R. B., Jolly, A., and Fournier, N.: Dynamics
of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari
eruption, Mt. Tongariro, New Zealand, J. Volcanol. Geoth. Res., 286, 348–366, https://doi.org/10.1016/j.jvolgeores.2014.05.010, 2014.
Lube, G., Breard, E. C. P., Cronin, S. J., and Jones, J.: Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE, J. Geophys. Res.-Solid, 120, 1487–1502, https://doi.org/10.1002/2014JB011666, 2015.
McDougall, S.: Landslide Runout Analysis – Current Practice and Challenges,
Can. Geotech. J., 54, 605–620, https://doi.org/10.1139/cgj-2016-0104, 2016.
Mead, S.: stuartmead/volcanoplugin: Fuzzy Location Release (FuzzyLocation) [code], Zenodo, https://doi.org/10.5281/zenodo.2797984, 2019.
Mead, S. R. and Magill, C. R.: Probabilistic hazard modelling of rain-triggered lahars, J. Appl. Volcanol., 6, 8, https://doi.org/10.1186/s13617-017-0060-y, 2017.
Mead, S. R., Magill, C., Lemiale, V., Thouret, J. C., and Prakash, M.: Examining the impact of lahars on buildings using numerical modelling, Nat.
Hazards Earth Syst. Sci., 17, 703–719, https://doi.org/10.5194/nhess-17-703-2017, 2017.
Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1,
an advanced open-source computational framework for the propagation and
interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569,
https://doi.org/10.5194/gmd-10-553-2017, 2017.
Oberkampf, W. L. and Trucano, T. G.: Verification and validation in computational fluid dynamics, Prog. Aerosp. Sci., 38, 209–272,
https://doi.org/10.1016/S0376-0421(02)00005-2, 2002.
O'Brien, J., Julien, P., and Fullerton, W.: Two-Dimensional Water Flood and
Mudflow Simulation, J. Hydraul. Eng., 119, 244–261,
https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244), 1993.
Patra, A. K., Bauer, A. C., Nichita, C. C., Pitman, E. B., Sheridan, M. F.,
Bursik, M., Rupp, B., Webber, A., Stinton, A. J., Namikawa, L. M., and Renschler, C. S.: Parallel adaptive numerical simulation of dry avalanches
over natural terrain, J. Volcanol. Geoth. Res., 139, 1–21, https://doi.org/10.1016/j.jvolgeores.2004.06.014, 2005.
Patra, A. K., Bevilacqua, A., and Safei, A. A.: Analyzing Complex Models Using Data and Statistics, in: Computational Science – ICCS 2018, Cham,
724–736, 2018.
Pistolesi, M., Cioni, R., Rosi, M., and Aguilera, E.: Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations, Geomorphology, 207, 51–63,
https://doi.org/10.1016/j.geomorph.2013.10.026, 2014.
Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows,
1832, 1573–1601, https://doi.org/10.1098/rsta.2005.1596, 2005.
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.: Computing granular avalanches and landslides, Phys. Fluids, 15,
3638–3646, https://doi.org/10.1063/1.1614253, 2003.
Procter, J., Cronin, S. J., Fuller, I. C., Lube, G., and Manville, V.:
Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu,
New Zealand, Geology, 38, 67–70, https://doi.org/10.1130/g30129.1, 2010a.
Procter, J., Cronin, S., Platz, T., Patra, A., Dalbey, K., Sheridan, M., and
Neall, V.: Mapping block-and-ash flow hazards based on Titan 2D simulations:
a case study from Mt. Taranaki, NZ, Nat. Hazards, 53, 483–501,
https://doi.org/10.1007/s11069-009-9440-x, 2010b.
Procter, J. N., Cronin, S. J., Fuller, I. C., Sheridan, M., Neall, V. E., and Keys, H.: Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu, Geomorphology,
116, 162–174, https://doi.org/10.1016/j.geomorph.2009.10.016, 2010c.
Procter, J. N., Cronin, S. J., Zernack, A. V., Lube, G., Stewart, R. B., Nemeth, K., and Keys, H.: Debris flow evolution and the activation of an
explosive hydrothermal system; Te Maari, Tongariro, New Zealand, J. Volcanol. Geoth. Res., 286, 303–316, https://doi.org/10.1016/j.jvolgeores.2014.07.006, 2014.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Rickenmann, D., Laigle, D., McArdell, B. W., and Hübl, J.: Comparison of
2D debris-flow simulation models with field events, Comput. Geosci., 10,
241–264, https://doi.org/10.1007/s10596-005-9021-3, 2006.
Salm, B.: Flow, flow transition and runout distances of flowing avalanches,
Ann. Glaciol., 18, 221–226, https://doi.org/10.3189/S0260305500011551, 1993.
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215,
https://doi.org/10.1017/S0022112089000340, 1989.
Scheidl, C., McArdell, B. W., and Rickenmann, D.: Debris-flow velocities and
superelevation in a curved laboratory channel, Can. Geotech. J., 52, 305–317, https://doi.org/10.1139/cgj-2014-0081, 2014.
Scott, K. M., Vallance, J. W., Kerle, N., Luis Macías, J., Strauch, W.,
and Devoli, G.: Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation, Earth Surf. Proc. Land., 30, 59–79, https://doi.org/10.1002/esp.1127, 2005.
Scott, W. E., Pierson, T. C., Schilling, S. P., Costa, J. E., Gardner, C.
A., Vallance, J. W., and Major, J. J.: Volcano hazards in the Mount Hood
region, Oregon, Open File Report 97-89, US Geol. Surv., Vancouver, WA, 14 pp., 1997.
Sheridan, M. F., Stinton, A. J., Patra, A., Pitman, E. B., Bauer, A., and
Nichita, C. C.: Evaluating Titan2D mass-flow model using the 1963 Little
Tahoma Peak avalanches, Mount Rainier, Washington, J. Volcanol. Geoth. Res., 139, 89–102, https://doi.org/10.1016/j.jvolgeores.2004.06.011, 2005.
Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T.: ROCR: visualizing
classifier performance in R, Bioinformatics, 21, 3940–3941,
https://doi.org/10.1093/bioinformatics/bti623, 2005.
Sosio, R., Crosta, G. B., and Frattini, P.: Field observations, rheological
testing and numerical modelling of a debris-flow event, Earth Surf. Proc. Land., 32, 290–306, https://doi.org/10.1002/esp.1391, 2007.
Sosio, R., Crosta, G. B., and Hungr, O.: Numerical modeling of debris avalanche propagation from collapse of volcanic edifices, Landslides, 9,
315–334, https://doi.org/10.1007/s10346-011-0302-8, 2012.
Thompson, M., Lindsay, J., and Gaillard, J. C.: The influence of probabilistic volcanic hazard map properties on hazard communication, J. Appl. Volcanol., 4, 1–24, https://doi.org/10.1186/s13617-015-0023-0, 2015.
Thouret, J. C., Enjolras, G., Martelli, K., Santoni, O., Luque, J. A., Nagata, M., Arguedas, A., and Macedo, L.: Combining criteria for delineating
lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa,
Peru, Nat. Hazards Earth Syst. Sci., 13, 339–360, https://doi.org/10.5194/nhess-13-339-2013, 2013.
Tobler, W.: Measuring spatial resolution, in: Land Resources Information Systems Conference, 12–16 May 1987, Beijing, China, 1987.
Walsh, B., Jolly, A. D., and Procter, J. N.: Seismic analysis of the 13 October 2012 Te Maari, New Zealand, lake breakout lahar: Insights into flow dynamics and the implications on mass flow monitoring, J. Volcanol. Geoth. Res., 324, 144–155, https://doi.org/10.1016/j.jvolgeores.2016.06.004, 2016.
Wealands, S. R., Grayson, R. B., and Walker, J. P.: Quantitative comparison of spatial fields for hydrological model assessment – some promising approaches, Adv. Water Resour., 28, 15–32, https://doi.org/10.1016/j.advwatres.2004.10.001, 2005.
Zeng, C., Cui, P., Su, Z., Lei, Y., and Chen, R.: Failure modes of reinforced concrete columns of buildings under debris flow impact, Landslides, 12, 561–571, https://doi.org/10.1007/s10346-014-0490-0, 2015.
Short summary
Computer simulations can be used to estimate the flow path and inundation of volcanic mass flows; however, their accuracy needs to be appropriately measured and handled in order to determine hazard zones. This paper presents an approach to simulation accuracy assessment and hazard zonation with a volcanic debris avalanche as the benchmark. This method helped to identify and support key findings about errors in mass flow simulations, as well as potential end-use cases for hazard zonation.
Computer simulations can be used to estimate the flow path and inundation of volcanic mass...
Altmetrics
Final-revised paper
Preprint