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Abstract. The use of mass flow simulations in volcanic haz-
ard zonation and mapping is often limited by model com-
plexity (i.e. uncertainty in correct values of model param-
eters), a lack of model uncertainty quantification, and lim-
ited approaches to incorporate this uncertainty into hazard
maps. When quantified, mass flow simulation errors are typi-
cally evaluated on a pixel-pair basis, using the difference be-
tween simulated and observed (“actual”) map-cell values to
evaluate the performance of a model. However, these com-
parisons conflate location and quantification errors, neglect-
ing possible spatial autocorrelation of evaluated errors. As a
result, model performance assessments typically yield mod-
erate accuracy values. In this paper, similarly moderate ac-
curacy values were found in a performance assessment of
three depth-averaged numerical models using the 2012 de-
bris avalanche from the Upper Te Maari crater, Tongariro
Volcano, as a benchmark. To provide a fairer assessment of
performance and evaluate spatial covariance of errors, we use
a fuzzy set approach to indicate the proximity of similarly
valued map cells. This “fuzzification” of simulated results
yields improvements in targeted performance metrics rela-
tive to a length scale parameter at the expense of decreases
in opposing metrics (e.g. fewer false negatives result in more
false positives) and a reduction in resolution. The use of this
approach to generate hazard zones incorporating the iden-
tified uncertainty and associated trade-offs is demonstrated
and indicates a potential use for informed stakeholders by
reducing the complexity of uncertainty estimation and sup-
porting decision-making from simulated data.

1 Introduction

Mass flow numerical models are frequently used to predict
the hazard from future events (e.g. Procter et al., 2010b;
Scott et al., 1997, 2005; Aguilera et al., 2004; Pistolesi et al.,
2014; Darnell et al., 2013; Thouret et al., 2013), understand
fundamental processes within mass flows, investigate previ-
ous events (e.g. Iverson and George, 2016), and determine
impacts to elements exposed to the flow (e.g. Zeng et al.,
2015; Mead et al., 2017). Their utility and advancing com-
putational power have positioned numerical models, of vari-
ous scales and complexity, as a critical risk management and
decision-making tool (Bennett et al., 2013). An important el-
ement of risk management and decision-making in a natural
hazard context is the quantification and communication of
uncertainty (Thompson et al., 2015; Doyle et al., 2014). In
numerical modelling, much uncertainty is associated with a
model’s predictive accuracy in which inaccuracies can stem
from input and boundary conditions, model assumptions, and
numerical limitations. However, testing model accuracy, elic-
iting the effect of inputs, assumptions, and limitations on ac-
curacy, and communicating these effects is a non-trivial task
(Bennett et al., 2013; Jakeman et al., 2006; Wealands et al.,
2005; McDougall, 2016).

The fundamental requirement for assessing model accu-
racy is the establishment of a baseline, “true”, dataset for
comparison between model and reality. Experimental facil-
ities and studies (e.g. Iverson et al., 2010; Lube et al., 2015)
can provide detailed observations of mass flow processes to
validate, develop, and benchmark numerical models. Some
known, important processes (e.g. initial conditions, uncon-
fined flow, interaction with topography) are simplified in
these facilities, and an assessment of “subsystem” model
accuracy (using definitions of Esposti Ongaro et al., 2020;
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Oberkampf and Trucano, 2002) requires the application to
“real world” mass flow observations. However, such mea-
surements of mass flow characteristics are mostly limited to
post hoc analyses of events in which data are derived from
static (i.e. single points of data not varying in time) obser-
vations such as deposit depth, flow outlines, and flow height
markers (Charbonnier et al., 2013, 2017; Procter et al., 2014).
Temporally varying measurements of mass flows do exist, for
example, when the occurrence is known a priori (e.g. in Proc-
ter et al., 2010a) or when permanent sensors (e.g. seismome-
ters) capture some aspect of the flow (Coviello et al., 2018;
Walsh et al., 2016). While these direct observations can pro-
vide benchmarking opportunities for mass flow models, they
are rare and currently not comprehensive enough to quantify
the entire range of mass flow sizes and behaviours. There-
fore, performance measurement will predominantly need to
utilise static, post hoc observations.

In general, quantifications of model performance can be
split into global or local comparisons (Wealands et al., 2005).
Global comparisons characterise a mass flow into single,
easy to interpret metrics (e.g. length of flow, area inundated;
Charbonnier et al., 2017; Mergili et al., 2017) but can dis-
guise both spatial and temporal divergent behaviour (Bennett
et al., 2013). Local comparisons of model performance typ-
ically utilise a confusion matrix (Bennett et al., 2013; Char-
bonnier et al., 2017; Mergili et al., 2017) to classify pro-
portions of correctly or incorrectly simulated data points, in
which spatial accuracy of simulators can be evaluated by
comparing pixel pairs on a map (Wealands et al., 2005).
However, there is no universal metric for quality (Bennett
et al., 2013), and various measures can be used depending on
objectives or potential uses of the simulator (Bennett et al.,
2013; Jakeman et al., 2006). Pixel-pair comparisons are also
prone to registration issues (e.g. when systematic errors in
base data or observations shift results; Wealands et al., 2005;
Koch et al., 2015; Foody, 2002) that, even if small, can de-
crease overall accuracy metrics (see, for example, Charbon-
nier et al., 2017) due to the lack of tolerance for spatially or
quantitatively minor errors. The conflation of quantity and
spatial errors is particularly relevant for mass flow models,
in which the likelihood of errors generally decreases as flow
depths increase.

The conflation of these scale and location errors and re-
liance on precise co-location in comparisons contrast with
human (i.e. qualitative) comparisons that provide for some
error tolerance and, through focusing on basic spatial struc-
ture, logical coherence and importance-weighting of similar-
ities (Hagen, 2003; Koch et al., 2015; Wealands et al., 2005).
Human visual comparison is a powerful method for com-
paring and evaluating spatial field results (Wealands et al.,
2005), and many comparison approaches attempt to emulate
the human ability to distinguish between residual or random
errors and errors in registration (i.e. account for co-location
errors) and resolution (i.e. account for errors that are only sig-
nificant at certain scales; Costanza, 1989). These approaches,

identified and reviewed in Wealands et al. (2005), include
multi-resolution comparisons (Costanza, 1989) to identify
similarity of measurements with scale; region clustering, seg-
mentation, and homogenisation to identify and compare pat-
terns in the spatial field; importance weighting to focus per-
formance evaluation on the most (hydrologically) important
regions; and fuzzy comparisons to represent relative mem-
bership (“fuzziness”) of each map cell to a certain category
(e.g. inundated/not inundated). Despite this range of poten-
tial performance evaluation methods, there is no universal
criterion or method to evaluate model quality (Bennett et al.,
2013), and there are few examples of mass flow model per-
formance evaluations that identify the level of both location
and quantification error.

Robust, objective, and complete evaluations of model per-
formance that quantify the uncertainty of predictions and ef-
fect of model and input parameters are essential for the de-
velopment and use of mass flow models as a reliable hazard
forecasting tool (McDougall, 2016; Calder et al., 2015). The
selection of input parameters and modelling approach can
be achieved through calibration (often visual; McDougall,
2016); however, this limits a quantitative elicitation of the
effect model and input parameter choices have on the haz-
ard prediction. Appropriate model performance evaluation
would not only quantify this uncertainty but also commu-
nicate the scale and spatial dependence of these effects, pre-
senting opportunities for new hazard delineation methodolo-
gies. This paper presents a performance evaluation approach
using a multi-scale fuzzy comparison technique that incor-
porates positional error tolerance to assess debris flow model
performance. The 2012 debris flow from the Upper Te Maari
crater, Tongariro volcanic centre (New Zealand), is used as a
benchmark to test the effect of debris flow model choice on
simulation accuracy. Given the necessity to assess model per-
formance on the basis of its constructed purpose (Jakeman et
al., 2006), each model is evaluated in terms of its ability to
delineate hazardous debris avalanche inundation zones, and
this demonstrates a new approach to define these zones with
quantified uncertainty.

2 Case study: 2012 Upper Te Maari debris avalanche

The 6 August 2012 eruption in the Tongariro volcanic centre
was a short (< 60 s) but complex eruption sequence begin-
ning with a slope failure on the outer, western flank of the
Upper Te Maari Crater, followed by a series of (in order)
eastward, westward, and vertically directed blasts that gener-
ated pyroclastic surges and ballistics covering an area greater
than 6 km2 (Jolly et al., 2014; Lube et al., 2014; Procter et
al., 2014; Fournier and Jolly, 2014). The Te Maari debris
avalanche emplacement, morphology, and deposit character-
istics were identified and summarised in Procter et al. (2014);
here we summarise only the necessary details for this study.
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Figure 1. Te Maari debris avalanche case study region (a) pre-eruption, (b) post-eruption, and (c) debris avalanche deposit depth and outline.
The blue rectangle in (c) shows area of spurious elevations from source digital terrain model.

The debris avalanche generated from the slope failure is
presumed to have begun at 11:49:06 UTC, which is when an
earthquake located at the avalanche head scarp is detected in
the seismic record by Jolly et al. (2014). The cohesive, clay-
rich debris avalanche was mostly confined by the Mangatipua
Stream, travelling downslope to reach a run-out of approxi-
mately 2 km (Lube et al., 2014; Procter et al., 2014; Walsh
et al., 2016). Volume of the debris avalanche was estimated
between 6.83 and 7.74×105 m3 in Procter et al. (2014), mea-
sured as the difference between a 10 m pre-event digital ter-
rain model (DTM) and post-event lidar-derived DTM. The
mud–sand matrix-supported debris flow deposits were pri-
marily emplaced in four lobes along Mangatipua Stream (see
Fig. 1). Coarse, poorly sorted clasts ranging in size from
pebbles to large boulders were also present, particularly at
frontal lobes and lateral margins of the deposit, generally de-
creasing in quantity downstream. Between the lobes, steep
channel sides limited deposition with 1 to 2 m of erosion into
the soil substrate and thin (0.2 to 0.5 m) veneer deposits, de-
marcating maximum extents of the flow.

Geomorphic change associated with the debris flow was
calculated through comparisons between the 10 m pre- and
post-event lidar-derived DTMs. The pre-event DTM was cre-
ated from contours generated from stereo-photogrammetry
captured in 1975, with an accuracy of 90 % within 10 m.
The lidar post-event DTM was acquired on 8–9 Novem-
ber 2012 and has a 1σ accuracy of 0.25 m horizontally and
0.15 m vertically. While the accuracy of both terrain models
is within acceptable limits, there are a number of issues in
terrain model interpolation, representation, and acquisition
time, which limits the comparison between terrain models
and usage in numerical modelling. Interpolation of contours
to generate the pre-event DTM results in a smoothed repre-
sentation of terrain with no sharp gradients, which results in
an inaccurate representation of steep features and narrow sec-
tions of Mangatipua Stream (Procter et al., 2014). One major
zone of misrepresentation is in the upper section of lobe 4,
highlighted in Fig. 1. In this region, elevation of the pre-event
DTM increases to form a barrier to flow along Mangatipua
Stream which is not present in the field. The magnitude of
this error is unknown, but the height difference between pre-
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and post-event DTMs indicate it could be between 10 and
15 m. Additionally, the lidar survey used to generate the post-
event DTM was taken 3 months after the debris flow and
almost 1 month after a breakout lahar (13 October 2012,
Walsh et al., 2016) caused through damming of Mangatipua
Stream by the initial debris avalanche (Walsh et al., 2016;
Procter et al., 2014). The breakout lahar, and possibly sub-
sequent streamflow, eroded and entrained the 6 August de-
bris avalanche and ash deposits, redistributing sediment fur-
ther downstream and cutting a new stream into the deposit.
Therefore, the post-event DTM does not represent the exact
morphology of Mangatipua Stream immediately after the de-
bris flow.

Despite the previously mentioned uncertainties, the differ-
ence between the pre- and post-eruption DTMs form a use-
ful dataset for evaluating the accuracy of numerical models.
Figure 1c shows the deposit outline (dotted black line) used
in the accuracy assessment (see “Model performance assess-
ment” section) and points of deposit depth. Deposit depth
points are a subset of deposit depths in Procter et al. (2014)
in which the depth estimates are least affected by uncertain-
ties in both terrain models. The points all have depths greater
than 0.5 m (i.e. larger than lidar inaccuracies, avoiding ve-
neer deposits) and are located where the pre-event terrain
slope is moderate (< 15◦) to avoid the effects of smoothing
high-gradient slopes in the pre-event DTM. An outline of the
debris avalanche, shown as the black line in Fig. 1, was cre-
ated as the union of the debris avalanche outline in Procter et
al. (2014) and outline of the debris avalanche detected using
image classifications from an airborne hyperspectral survey
in 2016. While this survey was undertaken 4 years after the
eruption, thin veneer deposits appear to be detected and clas-
sified well (Kereszturi et al., 2018), improving the estimates
of flow outline.

3 Debris avalanche simulation

3.1 Numerical mass flow models

Numerical techniques to predict the motion of debris
avalanches (and debris flows) commonly employ depth-
averaging to simulate large-scale geophysical flows (Mc-
Dougall, 2016; Fischer et al., 2012), being favoured for
their computational efficiency (in comparison to three-
dimensional models), comparative scales, and level of detail
to field measurements (Iverson and Ouyang, 2014). How-
ever, the physics of granular and granular-mixture flows is an
area of active research, and there are no universally accepted
constitutive laws for debris flows (McDougall, 2016). As a
result, several models, varying in complexity from single-
phase rheologies (e.g. Voellmy–Salm, Christen et al., 2010;
O’Brien et al., 1993) to two-fluid (Pitman and Le, 2005) and
multiphase approaches (Pudasaini, 2012; George and Iver-
son, 2014), have been used to simulate debris flows and

avalanches (e.g. Iverson and George, 2016; Procter et al.,
2010c; Mergili et al., 2017; Iverson et al., 2016; Sosio et al.,
2007, 2012; Sheridan et al., 2005).

For all models studied here, the depth-averaged system of
equations can be expressed in Cartesian coordinates as fol-
lows (Patra et al., 2005; Pudasaini, 2012):
∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S, (1)

where U is the height and momentum vector, F and G are
momentum fluxes in the x and y directions respectively, and
S is the source term representing the net driving force (Pa-
tra et al., 2005, 2018). The three models in our study utilise
different assumptions and simplifications, and all four vec-
tors (U , F , G, and S) vary between models. The models
studied here are the Pitman and Le (2005) two-fluid model
and Voellmy–Salm rheology model (Salm, 1993; Fischer et
al., 2012), both implemented in the Titan2D toolkit (Patra
et al., 2005; Pitman et al., 2003), and the Pudasaini (2012)
two-phase model, implemented in the avaflow software pack-
age (Mergili et al., 2017). The aim of this section is to sum-
marise the features and key differences between each model
that may affect model comparison. Readers are referred to
the source publications for complete model implementation
details and justification of assumptions.

The Voellmy–Salm model (Salm, 1993) is a single-phase
rheological approach similar to shallow-water approaches,
solved to find the unknown vector U = (h,hu,hv)T , where
h is the debris flow depth, and u and v are the depth-averaged
x and y direction velocities. The source term in this model
assumes a combination of coulomb-like basal friction, pro-
portional to the coefficient µ, and a velocity-dependent tur-
bulent friction, with coefficient ξ (Christen et al., 2010). This
combination of friction terms enables the simulation of both
high- and low-velocity phases of the debris flow (Christen et
al., 2010) but requires calibration of two coefficients (µ, ξ )
which may vary depending on topography and material prop-
erties (Fischer et al., 2012).

The Pitman and Le (2005) and Pudasaini (2012) ap-
proaches approximate the combined motion of granular ma-
terial and interstitial fluid, solving for the unknown momen-
tum of both components (fluids in Pitman and Le, 2005, and
phases in Pudasaini, 2012). In the Pitman and Le (2005)
approach, the vector U = (h,hϕ,hϕus,hϕvs,huf,hvf, )

T ,
where ϕ is the solid volume fraction, and subscripts “s” and
“f” indicate the solid and fluid components of velocity. The
Pitman and Le (2005) model contains several features (com-
parted to the Voellmy–Salm model) that may affect the debris
avalanche simulations:

i. To account for the non-hydrostatic pressure distribution
in granular materials (Scheidl et al., 2014), the earth
pressure coefficient Ka/p is used to relate the bed par-
allel (σl) to bed normal (σn) stresses. The active and
passive earth pressures are calculated from the inter-
nal (φi) and basal (φb) frictions (Savage and Hutter,
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1989; Pitman and Le, 2005; Iverson, 1997) depending
on whether the flow is expanding (accelerating) or con-
tracting (decelerating).

ii. Solid (granular) and fluid (water) interaction is ac-
counted for through a Darcy-like drag model and buoy-
ancy effects, which alter energy dissipation within the
flow.

This additional detail requires the specification of the vol-
ume fraction ϕ and the granular materials internal (φi) and
basal (φb) friction coefficients.

The Pudasaini (2012) model, in a different formulation
to that of Pitman and Le (2005), also accounts for buoy-
ancy effects but also considers the effect of relative mo-
tion between fluid and granular phases through a “virtual
mass” term C. This parameter and the density ratio γ =
ρf
ρs

are in the vector U = (h,hϕ,(1−ϕ)h,hϕ(us− γ (uf−

us)),hϕ(vs− γ (vf− vs)), (1−ϕ)h(uf+
ϕ

1−ϕ (uf−us)), (1−
ϕ)h(vf+

ϕ
1−ϕ (vf− vs)))

T . While this formulation appears
more complex than previous models, this approach still only
contains six unknown variables (i.e. as in Pitman and Le,
2005, approach). The most notable differences in regards to
debris avalanche simulations are as follows:

i. The virtual mass, C, means the solid and fluid com-
ponents of the debris flow are not assumed to be “in-
terlocked” (relative velocity between phases of 0), and
phase separation (such as at deposition) is accounted
for, which is a key difference between the Pitman and
Le (2005) and Pudasaini (2012) models.

ii. The source term contains a buoyancy-modified
Coulomb term as in Pitman and Le (2005) and a
“generalised drag” term incorporating viscous drag
effects. The generalised drag accounts for granular and
fluid contributions to drag, the ratio of which depends
on the interpolation parameter P with an exponent, J ,
controlling whether the drag term is linear or quadratic
(i.e. similar to Voellmy–Salm models). At P = 0
and J = 1, the Pitman and Le (2005) drag model is
recovered.

The generalised drag term and virtual mass coefficient ex-
tends the applicability of the model for all types of granular–
fluid flows, including at extremes (i.e. high or low solid
fraction flows), but requires the specification of 14 param-
eters. While many of these parameters can be specified from
field/material properties (see, for example, Mergili et al.,
2017), some values (e.g. I , P , C) require calibration.

From an application point of view (i.e. neglecting differ-
ences in numerical solution techniques), these models vary
in their level of description (“completeness”) of debris flow
physics. It is important to identify that even well-observed
and quantified debris flows, such as the one studied here, may
have considerable uncertainty in material properties, which

can expand the unknown (i.e. to be calibrated) parameter
space. Therefore, while some models may offer more com-
plete descriptions of debris flow physics, there may not be a
commensurate improvement in prediction compared to less
complex models when uncertainty in material properties is
considered. Therefore, this study analyses the performance
of all three models to elicit, under locational uncertainty, the
relative improvements and trade-offs in accuracy considering
calibration and parameterisation needs.

3.2 Initial and boundary conditions

The DTM, location, and height of debris avalanche source
material are common inputs to all debris avalanche sim-
ulators in this study. The DTM input was defined from
the 10 m pre-event terrain model, modified to (a) remove
the previously discussed misrepresentation of elevation (see
Fig. 1) along Mangatipua Stream and (b) remove the debris
avalanche source from the terrain model. The spurious ele-
vation was modified by adjusting elevations in this region to
equal the post-event lidar survey elevations. Terrain model
elevations in the source area were also adjusted to account
for debris avalanche material to be simulated, using source
depths from Procter et al. (2014) which were used as the in-
put for the initial pile of debris avalanche material.

The parameters used in each debris avalanche model sim-
ulation are shown in Table 1. For the selection, these values
were derived from previous examples of debris avalanche
simulations in the literature and the authors’ experience
(e.g. Mergili et al., 2017; Sosio et al., 2012; Mead and Mag-
ill, 2017), as well as visual comparisons to flow and deposit
properties (i.e. similar to visual calibration in McDougall,
2016). Best-fit values for similar parameters (basal friction
and solid volume fraction) in Table 1 vary as a result of the
differing drag contributions, parameter sensitivity, rheolog-
ical and constitutive models, and the calibration approach.
For example, the two-phase models only apply basal fric-
tion to the solid volume fraction, whereas the (single-phase)
Voellmy–Salm approach considers a bulk basal friction of
the fluid–solid mixture, and additional viscous stresses in the
Pudasaini (2012) model appeared to reduce the sensitivity
and value of basal friction. Since the aim of this study is
to demonstrate performance evaluation to delineate hazard
zones a priori, we chose not to undertake further calibration
of parameters (such as in Charbonnier et al., 2017). This best
represents typical conditions in which the only data available
are flow and deposit outlines.

3.3 Simulation results

Snapshots of the simulated debris flow depth are shown in
Fig. 2 for each model. Simulated debris flow behaviour is
generally similar for all three modelling approaches, being
an acceleration of material from rest at the debris avalanche
source to the upper reaches of Mangatipua Stream (0–40 s)
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Figure 2. Snapshots of simulated debris flow height for each flow model at 0, 40, 150, and 300 s after initiation. Aerial basemap sourced
from LINZ Waikato Aerial Photos 2012–2013.

Table 1. Debris flow simulation parameter settings for all models.

Voellmy–Salm Pitman and Le (2005) Pudasaini (2012)

Parameter Value Parameter Value Parameter Value

Basal friction coefficient, µ 0.15 Basal friction angle, φb 31◦ Basal friction angle, φb 21◦

Turbulent friction coefficient, ξ 1091 Internal friction angle, φi 36◦ Internal friction angle, φi 36◦

Solid volume fraction, α 0.80 Solid volume fraction, α 0.83
Virtual mass, C 0.5
Solid material density, ρs 2500
Fluid material density, ρf 1000
Fluid–solid drag contributions, P 0.5
Fluid–solid drag exponent, J linear
All other parameters as in Mergili et al. (2017), Table 2
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Figure 3. Simulated deposit depth for (a) Voellmy–Salm, (b) Pitman and Le (2005), and (c) Pudasaini (2012) models compared with the
observed deposit and source outline (black). Aerial basemap sourced from LINZ Waikato Aerial Photos 2012–2013.

where debris flow material ponded (∼ 40–100 s, not shown)
and gradually travelled downstream to its rest (150–300 s).
This is in agreement with field and lidar-based interpretations
of the event (Procter et al., 2014), and best-fit volume frac-
tion (0.8–0.85) parameters of the Pitman and Le (2005) and
Pudasaini (2012) models support the hypothesis of an unsatu-
rated debris flow. Visual, qualitative comparisons of flow and
deposit outlines also appear to match reasonably well to ob-
servations. While the Voellmy–Salm simulation shows less
ponding in upper Mangatipua Stream and has a more defined
(i.e. steeper) distal deposit compared to the other simulations,
other differences between simulations appear minor.

Figure 3 shows the simulated deposit depth (at 300 s) for
each model. Black lines indicate the observed deposit and
source outlines from Procter et al. (2014). Accurate predic-
tion of deposition is difficult in these depth-averaged ap-
proaches as none explicitly consider stopping of material
(Mergili et al., 2017). The predicted deposit outlines for all
simulations appear (qualitatively) to have similar levels of
accuracy as other depth-averaged debris flow case studies
(e.g. Rickenmann et al., 2006; Iverson and George, 2016;
Charbonnier et al., 2017). The most notable difference in
simulated deposits is between Voellmy–Salm (i.e. a rheolog-
ical approach, Fig. 3a) and the two-fluid approaches (Fig. 3b
and c). The Voellmy–Salm simulated deposit is mostly con-
fined to the Mangatipua Stream, whereas the two-fluid ap-
proaches show more spreading of the distal deposit and shal-
low flow in areas of super elevation.

4 Model performance assessment

The previous qualitative comparisons between field obser-
vations and simulation results can provide some credibility
to flow predictions; however, modern, robust hazard assess-
ments require quantitative evaluations of model performance
to understand the level of uncertainty in model predictions.
Previous assessments of flow simulation accuracy (Mergili
et al., 2017; Charbonnier et al., 2017) use various ratios of
data points classified as either true negative (TN), false nega-

Figure 4. Illustration of confusion matrix classification for simula-
tion performance assessment. Dashed black outline represents the
observed flow outline, and solid red outline represents the simu-
lated flow outline. Areas outside of both simulated and observed
flow outlines are classed as true negatives (TNs, dotted region); ar-
eas outside simulated outline but inside observed outline are classed
as false negatives (FNs); areas inside both simulated and observed
outline are classed as true positives (TPs); and areas inside simu-
lated outline but outside observed outline are classed as false posi-
tives (FPs).

tive (FN), true positive (TP), or false positive (FP) to quantify
aspects of accuracy as a single value (between 0.0 and 1.0).
Map-cell classification is achieved through a pairwise com-
parison of simulation results and the observed flow outline
(solid line in Fig. 1c), as illustrated in Fig. 4.

There is a wide range of ratios (see e.g. Sing et al., 2005)
to quantify model accuracy, and there is usually no single
“best” metric (Charbonnier et al., 2017). Rather, several met-
rics are usually analysed together to achieve a comprehensive
understanding of performance. However, as demonstrated in
Fig. 4, the proportion of TN values is dependent on the size
of the model domain and can have significantly higher counts
than other values. Therefore, for model evaluation purposes,
most metrics that consider TN values in the denominator or
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numerator are unsuitable. Here, as with previous approaches
(Charbonnier et al., 2017; Mergili et al., 2017), we calcu-
late positive predictive value (PPV), sensitivity, and critical
success index (CSI; Formetta et al., 2016; also called the Jac-
card similarity coefficient) performance metrics for each flow
model.

Figure 5 shows the calculated performance metrics for
each flow simulation at inundation thresholds up to 10 m.
The inundation threshold value is used to convert simulated
flow depths into a binary (i.e. inundated/not inundated) clas-
sification, and performance curves were calculated using the
ROCR package (Sing et al., 2005) in the R statistical lan-
guage. The PPV, shown in Fig. 5a, is the proportion of cor-
rectly simulated (TP) areas within the simulated inundation
footprint, calculated as PPV= TP

TP+FP . As FP values are in
the denominator, this measure penalises over-prediction of
debris flow extents. This metric increases with depth cut-
off values, indicating it is less likely that simulations are
incorrect in areas where deep flow is predicted. Sensitivity
(Fig. 5b), the proportion of correctly simulated (TP) areas
within the observed inundation footprint (Sens= TP

TP+FN ),
penalises under-prediction of debris flow extents and shows
the opposite trend. The CSI (Fig. 5c) penalises both under-
and over-prediction flow extents, calculated as the proportion
of correctly simulated (TP) areas within a combined simula-
tion and observed inundation footprint (CSI= TP

TP+FP+FN ).
Values of this metric are much lower than the sensitivity or
PPV as both under- and over-prediction are penalised. In ef-
fect, this metric identifies the proportion of the simulated in-
undation footprint that is correctly simulated. In effect, this
means values of CSI less than 0.5 indicate the simulation is
more “incorrect” than “correct” (more FP and FN than TP).

In Table 2, we report performance metrics at a depth cut-
off at which CSI indicates the simulations are more “correct”
than “incorrect” (0.5 m). The accuracy metrics reported here
are comparable to similar flow simulation studies in which
accuracy metrics are explicitly reported (e.g. Charbonnier et
al., 2017; Mergili et al., 2017). However, as previously dis-
cussed, single-value metrics are useful for model compari-
son but can conflate and disguise sources and the distribu-
tion of error. In particular, the spatial distribution of error is
not random; rather, it is related to topography (e.g. degree
of confinement to the channel) and distance from source. To
demonstrate this effect, the maximum flow depth for each
cell (10 m resolution) was mapped to its corresponding PPV
(i.e. from Fig. 5) and is shown in Fig. 6. At the centre of
the debris flow, where flow depth is high, PPVs are gener-
ally higher, and the largest area of low PPVs for all simu-
lations are most distal from the source (where flow depth is
low). This indicates trends of decreasing PPV away from the
source and topography affecting PPV, with areas of low to-
pographic slope having lower PPVs. The correlation of flow
depth and PPV from topographic and distance from source
effects results in a degree of spatial autocorrelation in the

Figure 5. Flow outline performance with depth for Voellmy–
Salm (solid line), Pudasaini (2012) (dashed line), and Pitman and
Le (2005) (dotted line) flow models. Performance metrics are
(a) positive predictive value (PPV), (b) sensitivity, and (c) critical
success index (CSI).

performance metrics that is un-reported in global PPV mea-
sures.

4.1 Locational tolerance in performance assessment

The uncertainties in terrain data, initial conditions, model
assumptions, and potential observation errors suggest that
precise quantitative and locational agreement between sim-
ulated and observed debris flows are unlikely. Some level
of error tolerance is therefore necessary in comparisons and
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Figure 6. Positive predictive values for (a) Voellmy–Salm, (b) Pitman and Le (2005), and (c) Pudasaini (2012) simulations. The observed
flow and source are outlined in black. Aerial basemap sourced from LINZ Waikato Aerial Photos 2012–2013.

Table 2. Pixel-pair performance assessment results for all flow sim-
ulations at a depth cut-off of 0.5 m.

Simulation Positive Sensitivity Critical
predictive success

value index
(PPV) (CSI)

Voellmy–Salm 0.62 0.93 0.59
Pitman and Le (2005) 0.53 0.93 0.51
Pudasaini (2012) 0.51 0.98 0.51

would produce performance metric values more aligned with
qualitative (i.e. human) assessments (Wealands et al., 2005).
The spatial autocorrelation of performance metrics, shown
in Fig. 6, indicate that locational tolerance may be accounted
for by considering the cell neighbourhood in model compar-
isons.

To incorporate the influence of neighbouring cells in defin-
ing inundation footprints for model comparison, a fuzzy
set approach is used. Our approach, based largely on Ha-
gen (2003), expands classification boundaries according to
a distance decay function. The classification of each cell is
converted into a “fuzzy” membership vector, calculated as
max(ci ·W), where ci is the “crisp” category membership
vector (e.g. 1/0 for a map with inundated/not inundated cat-
egories), and W is the distance decay function. Here, we use
a two-dimensional Gaussian-like weighting function:

Wi = e

−

(
i− λ−1

2

)2

2σ2 , (2)

whereWi is weighting of cell i, λ is the neighbourhood width
and length (in cells), i = 0 . . . λ− 1, and the standard devia-
tion is defined as a function of the neighbourhood size:

σ = 0.3
(
λ− 1

2
− 1

)
+ 0.8. (3)

This technique creates a “fuzzy” quantity (between 0 and 1)
that indicates the proximity of a cell to similar-valued cells.

Figure 7. Fuzzy performance metrics at 3-cell (30 m), 5-cell (50 m),
7-cell (70 m), 9-cell (90 m), and 11-cell (110 m) length scales (λ)
and fuzzy quantities of 0.1 (blue), 0.25 (black), and 0.5 (red) for
(a) model sensitivity and (b) positive predictive value for Voellmy–
Salm (solid line), Pudasaini (2012) (dashed line), and Pitman and
Le (2005) (dotted line) flow models.

Figure 7 shows the performance metrics fuzzified through
Eqs. (2) and (3). Regardless of fuzzy quantity, the target per-
formance metric (sensitivity, Fig. 7a) is improved by increas-
ing the length scale (λ) to account for spatial autocorrelation.
The increase in sensitivity is associated with a commensurate
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decrease in the opposing performance value (PPV), shown in
Fig. 7b. The greatest change in performance occurs between
length scales of 10 m (i.e. model scale, no fuzzification) and
30 m (i.e. 3 model cells), and the rate of change diminishes
with length scale with only marginal improvements in per-
formance beyond 70 m (7 model cells). This indicates the ap-
proximate scale of positional error in the model, demonstrat-
ing the length scale parameter could be an alternative metric
to quantify performance and evaluate models to their desired
purpose. For example, a “best” model could be chosen from
the model with the smallest length scale that exceeds a de-
sired performance level or through optimising the trade-off
between sensitivity and PPV beyond a given level.

The fuzzy quantity decreases the number of false negatives
(and decreases false positives) in the result by expanding the
zone of cells considered close to the central cell. The use of
the fuzzy quantity to tune performance is not reliable at small
length scales due to the discrete (cell-based) approximation
of the weighting function in Eq. (2) (e.g. a fuzzy quantity less
than 0.25 is not possible at 30 m length scale). As a result,
the fuzzy quantity is fixed at 0.25 (the minimum value of 3-
cell length scale), with length scale chosen to achieve desired
performance levels.

5 Discussion

5.1 Model suitability, calibration, and performance

In this study, we restricted our use of post-event calibration to
a visual calibration within a limited bound of values similar
to previous literature (Mergili et al., 2017; Sosio et al., 2012).
Despite this restriction, the potential improvement in model
performance appears marginal when compared to more ex-
tensive calibration procedures such as parameter sweeping
(e.g. a CSI of ∼ 0.6 reported in Mergili et al., 2017) or rheo-
logical calibration (e.g. CSI of∼ 0.5 reported in Charbonnier
et al., 2017). These differences are on a similar scale to the
performance differences between models in our study. Poten-
tially, this indicates source and input (e.g. terrain) uncertain-
ties are a greater limitation on performance than uncertain-
ties introduced by model and parameter choice. The spatial
autocorrelation in performance values (Fig. 6) also supports
this assertion. Areas of deeper flow (centre of channels) are
likely to be less affected by terrain uncertainties than those
with shallower flows (at edges of channels). In contrast, per-
formance of the entire simulation domain would be affected
if model choice or poorly calibrated parameters were the pri-
mary source of error. This is not evident in simulations pre-
sented here, and the improvement in PPV when accounting
for autocorrelation further suggests terrain error, not model
error, is dominant in real-scale mass flow simulations.

5.2 Implications for hazard zonation

An advantage of the previously described fuzzy performance
evaluation approach is the identification of simulation uncer-
tainty at various length scales. This presents an avenue to
generate hazard zonations and maps that incorporate areal
uncertainty. For example, Fig. 8 shows debris avalanche haz-
ard outlines generated at model scale (10 m) and a correla-
tion function (see Eq. 2) length scale of 70 m (see caption
for details on delineation of the zones). The false negative
rate (i.e. 1 – model sensitivity) decreases from 0.07 to 0.01
between model and fuzzified estimates, a crucial reduction
from a life safety perspective. The technique also identifies
trade-offs in minimising the false negative rate, such as an
increase in area and decrease in positive predictive value
from 0.52 to 0.46.

The hazard zonation approach (and fuzzification technique
in general) demonstrated here can address key issues in the
generation of volcanic hazard zonations by

– quantifying and communicating model-based uncer-
tainty, including the trade-off between hazard zone area,
positive predictive value, and sensitivity, and

– identifying appropriate scales at which to display sim-
ulated hazard data. For example, if the chosen length
scale is 70 m, an appropriate hazard map scale is ap-
proximately 1 : 70000 (obtained by multiplying length
scale by 1000 as in Tobler, 1987).

This method can also reduce the complexity of estimating
uncertainty and making decisions using simulated data to a
problem that only requires judicious choice of a length scale
value. However, the lack of a currently defined (mathemat-
ical) basis to parameterise length scale means that a care-
ful consideration of hazard exposure and the acceptability
of risk to exposed elements is required. This may differ be-
tween users; we therefore believe this hazard zonation pro-
cess is currently best suited for use by informed stakeholders
as a decision support tool rather than an automated process
to generate publicly disseminated hazard zones.

6 Conclusion

The accuracy of three depth-averaged numerical models was
assessed using the 2012 Te Maari debris avalanche as a
benchmark. Results of the simulations show a similar quali-
tative accuracy of all three models to other published studies.
Quantitative performance metrics of inundation area show
high model sensitivity (i.e. a low proportion of false posi-
tives) with moderate values of positive predictive values and
the critical success index, which are similar in scale to other
published performance assessment studies.

Our investigation also demonstrates the positional depen-
dence of model performance, specifically the positive pre-
dictive value, in which model performance (i.e. accuracy) is
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Figure 8. Hazard zones generated from simulations at (left) 10 m model scale and (right) using a fuzzy length scale of 70 m. Hazard outline
for model scale is generated where flow heights exceed 0.5 m. Hazard outline for 70 m scale is generated where fuzzy quantity exceeds 0.25.
Hazard zones are overlain on New Zealand Topo50 map from Land Information New Zealand (LINZ). Blue grid lines are 1 km apart and are
oriented north–south and east–west.

highest in areas of deep flow or where topography is steep
with confined channels. Using this observation, a fuzzy set
approach is used to incorporate locational tolerance (the co-
variance of location and positive predictive value) into the
simulation performance assessment. We found increasing the
length scale (λ) of the correlation function can increase per-
formance metrics for a commensurate decrease in the oppos-
ing performance metric and resolution. For example, an in-
crease in sensitivity will result in a decrease in positive pre-
dictive value.

The identification of positional uncertainty in hazard sim-
ulations has positive implications for hazard zonation and
mapping. The process demonstrated here can improve de-
sired performance metrics (e.g. sensitivity), account for un-
certainty (by increasing hazard zone area), and identify trade-
offs to opposing metrics (e.g. positive predictive value). This
can be a valuable tool for informed stakeholders with well-
quantified exposures and risk tolerances. The process is,
however, less suited to publicly disseminated hazard infor-
mation due to the lack of a mathematically optimum solution
for length scale. An optimum solution may be identifiable,
and progress in hazard zonation methodologies would bene-
fit from deeper investigation of the trade-offs between area,
length scale, and model performance to fully leverage bene-
fits of the fuzzy performance evaluation approach.
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