Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1971-2021
https://doi.org/10.5194/nhess-21-1971-2021
Research article
 | 
30 Jun 2021
Research article |  | 30 Jun 2021

Assessing local impacts of the 1700 CE Cascadia earthquake and tsunami using tree-ring growth histories: a case study in South Beach, Oregon, USA

Robert P. Dziak, Bryan A. Black, Yong Wei, and Susan G. Merle

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Atwater, B., Satoko, M. R., Satake, K., Yoshinobu, T., Kazue, U., and Yamaguchi, D. K.: The orphan tsunami of 1700-Japanese clues t a parent earthquake in the North America, US Geol. Survey Professional Paper 1707, US Geological Survey, Reston, Virginia, USA, p. 14, 2006. 
Atwater, B. F.: Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington, J. Geophys. Res., 97, 1901–1919, 1992. 
Atwater, B. F. and Yamaguchi, D. K.: Sudden, probably coseismic submergence of Holocene trees and grass in coastal Washington State, Geology, 19, 706–709, 1991. 
Atwater, B. F., Tuttle, M. P., Schweig, E. S., Rubin, E. S., Yamaguchi, D. K., and Hemphill-Haley, E.: Earthquake recurrence inferred from paleoseismology, Dev. Quatern. Sci., 1, 331–350, 2003. 
Black, B. A., Dunham, J. B., Blundon, B. W., Brim-Box, J., and Tepley, A. J.: Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest, Global Change Biol., 21, 594–604, 2015. 
Download
Short summary
On 26 January 1700 CE, a massive earthquake and tsunami struck the US Pacific Northwest west coast. The tsunami caused severe damage to coastal forests in Washington State. However, evidence of the impact on coastal Oregon trees has been difficult to find. We present some of the first evidence of tree-ring growth changes caused by the 1700 tsunami from an old-growth Douglas-fir stand located in South Beach, Oregon. We also present a tsunami inundation model of the 1700 earthquake.
Altmetrics
Final-revised paper
Preprint