Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-1119-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1119-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Towards a context-driven research: a state-of-the-art review of resilience research on climate change
Ringo Ossewaarde
CORRESPONDING AUTHOR
Department of Public Administration, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Tatiana Filatova
Department of Governance and Technology for Sustainability,
University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Yola Georgiadou
Department of Urban and Regional Planning and Geo-Information Management, University of Twente, Enschede, Hengelosestraat 99, 7514AE Enschede, the Netherlands
Andreas Hartmann
Department of Construction Management and Engineering, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Gül Özerol
Department of Governance and Technology for Sustainability,
University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Karin Pfeffer
Department of Urban and Regional Planning and Geo-Information Management, University of Twente, Enschede, Hengelosestraat 99, 7514AE Enschede, the Netherlands
Peter Stegmaier
Department of Science, Technology and Policy Studies, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Rene Torenvlied
Department of Public Administration, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Mascha van der Voort
Department of Design Production and Management, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Jord Warmink
Department of Water Engineering and Management, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Bas Borsje
Department of Water Engineering and Management, University of Twente, Enschede, Drienerlolaan 5, 7522NB Enschede, the Netherlands
Related authors
No articles found.
Iván Cárdenas-León, Rodrigoandrés Morales-Ortega, Mila Koeva, Funda Atún, and Karin Pfeffer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 67–74, https://doi.org/10.5194/isprs-annals-X-4-2024-67-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-67-2024, 2024
Arne Vogt, Johannes Flacke, Karin Pfeffer, Fenna Imara Hoefsloot, Jane Strugar Kolesnik, and Johannes Schnell
AGILE GIScience Ser., 4, 48, https://doi.org/10.5194/agile-giss-4-48-2023, https://doi.org/10.5194/agile-giss-4-48-2023, 2023
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
This article is included in the Encyclopedia of Geosciences
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
This article is included in the Encyclopedia of Geosciences
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
This article is included in the Encyclopedia of Geosciences
Koen D. Berends, Menno W. Straatsma, Jord J. Warmink, and Suzanne J. M. H. Hulscher
Nat. Hazards Earth Syst. Sci., 19, 1737–1753, https://doi.org/10.5194/nhess-19-1737-2019, https://doi.org/10.5194/nhess-19-1737-2019, 2019
Short summary
Short summary
River flooding is a major safety concern. Sophisticated models are used to design ways to decrease flood risk, but until recently it was not feasible to calculate how uncertain these model predictions are. Using a new approach, we have now quantified the uncertainty of 12 interventions along the River Waal. Results show significant but not problematically high uncertainty. We demonstrate that the choice between interventions can be different when uncertainty is taken into account.
This article is included in the Encyclopedia of Geosciences
J. J. Warmink
Adv. Geosci., 39, 115–121, https://doi.org/10.5194/adgeo-39-115-2014, https://doi.org/10.5194/adgeo-39-115-2014, 2014
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood risk assessment through large-scale modeling under uncertainty
Migration as a Hidden Risk Factor in Seismic Fatality: A Spatial Modeling Approach to the Chi-Chi Earthquake and Suburban Syndrome
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Using a convection-permitting climate model to predict wine grape productivity: two case studies in Italy
Current status of water-related planning for climate change adaptation in the Spree River basin, Germany
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Ready, set, go! An anticipatory action system against droughts
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
A Guide of Indicators Creation for Critical Infrastructures Resilience. Based on a Multi-criteria Framework Focusing on Optimisation Actions for Road Transport System
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Cost estimation for the monitoring instrumentation of landslide early warning systems
The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
Scientists as storytellers: the explanatory power of stories told about environmental crises
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Between global risk reduction goals, scientific-technical capabilities and local realities: a novel modular approach for multi-risk assessment
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
This article is included in the Encyclopedia of Geosciences
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
This article is included in the Encyclopedia of Geosciences
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
This article is included in the Encyclopedia of Geosciences
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
This article is included in the Encyclopedia of Geosciences
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
This article is included in the Encyclopedia of Geosciences
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
This article is included in the Encyclopedia of Geosciences
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
This article is included in the Encyclopedia of Geosciences
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-114, https://doi.org/10.5194/nhess-2024-114, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investors, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows to identify the critical points where single value estimates may underestimate the risk, and the areas of vulnerability to prioritize risk reduction efforts.
This article is included in the Encyclopedia of Geosciences
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1493, https://doi.org/10.5194/egusphere-2024-1493, 2024
Short summary
Short summary
This study reveals migration patterns as a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing in the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
This article is included in the Encyclopedia of Geosciences
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
This article is included in the Encyclopedia of Geosciences
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
This article is included in the Encyclopedia of Geosciences
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
This article is included in the Encyclopedia of Geosciences
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
This article is included in the Encyclopedia of Geosciences
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
This article is included in the Encyclopedia of Geosciences
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-82, https://doi.org/10.5194/nhess-2024-82, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history, means the data required for vulnerability evaluation by the insurance industry is scarce. A systematic literature review is conducted in this study, to determine the suitability of current, published literature for this purpose. Knowledge gaps are charted, and a representative asset-hazard taxonomy is proposed, to guide future, quantitative research.
This article is included in the Encyclopedia of Geosciences
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
This article is included in the Encyclopedia of Geosciences
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
This article is included in the Encyclopedia of Geosciences
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
This article is included in the Encyclopedia of Geosciences
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
This article is included in the Encyclopedia of Geosciences
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
This article is included in the Encyclopedia of Geosciences
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-758, https://doi.org/10.5194/egusphere-2024-758, 2024
Short summary
Short summary
Natural disturbances will increase in the future endangering our forests and their provision of wood, protection against natural hazards and carbon sequestration. Considering the hazard to forests by wind or fire damage together with vulnerability of carbon, it is possible to prioritize high-risk forest stands. In this study we propose a new methodological approach helping with decision-making process for climate-smart forest management.
This article is included in the Encyclopedia of Geosciences
Laura Teresa Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-941, https://doi.org/10.5194/egusphere-2024-941, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based both on temperature and precipitation. These indices are correlated to grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change affects wine production in the future.
This article is included in the Encyclopedia of Geosciences
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-59, https://doi.org/10.5194/nhess-2024-59, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in water management, spatial and landscape planning in the Spree River basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this planning gap, more frequent updates of plans, a stronger focus on multifunctional measures and the adaptation of best practice examples for systematic integration of climate change impacts and adaptation are needed.
This article is included in the Encyclopedia of Geosciences
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
This article is included in the Encyclopedia of Geosciences
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
This article is included in the Encyclopedia of Geosciences
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Bonifácio
EGUsphere, https://doi.org/10.5194/egusphere-2024-538, https://doi.org/10.5194/egusphere-2024-538, 2024
Short summary
Short summary
The "Ready, Set & Go!" system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
This article is included in the Encyclopedia of Geosciences
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
This article is included in the Encyclopedia of Geosciences
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
This article is included in the Encyclopedia of Geosciences
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
This article is included in the Encyclopedia of Geosciences
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
This article is included in the Encyclopedia of Geosciences
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
This article is included in the Encyclopedia of Geosciences
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
EGUsphere, https://doi.org/10.5194/egusphere-2024-204, https://doi.org/10.5194/egusphere-2024-204, 2024
Short summary
Short summary
Operationalision of “resilience” will be a major milestone contributing to hazard management for Critical infrastructures (CIs). To integrate resilience assessment into operational management, this study designs a step-by-step guide that enables users to create specific indicators to suit their particular situation. The assessment results can assist CIs managers in their decision-making as it is based on a multi-criteria framework that considers the various interests of stakeholders.
This article is included in the Encyclopedia of Geosciences
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
This article is included in the Encyclopedia of Geosciences
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
This article is included in the Encyclopedia of Geosciences
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
This article is included in the Encyclopedia of Geosciences
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
This article is included in the Encyclopedia of Geosciences
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
This article is included in the Encyclopedia of Geosciences
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
This article is included in the Encyclopedia of Geosciences
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
This article is included in the Encyclopedia of Geosciences
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
This article is included in the Encyclopedia of Geosciences
Maria-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-225, https://doi.org/10.5194/nhess-2023-225, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The Central Volcanic Zone of the Andes is shared by four countries and groups 59 volcanoes. We identified the ones with the most intense and frequent eruptions (e.g., El Misti and Ubinas), the cities with the highest density of elements at risk (e.g., Arequipa and Mequegua), and the volcanoes with the highest potential impact (e.g., Cerro Blanco and Yucamane). Our study contributes into the prioritization of risk reduction resources, which is crucial for surrounding communities.
This article is included in the Encyclopedia of Geosciences
Marta Sapena, Moritz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 23, 3913–3930, https://doi.org/10.5194/nhess-23-3913-2023, https://doi.org/10.5194/nhess-23-3913-2023, 2023
Short summary
Short summary
A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation.
This article is included in the Encyclopedia of Geosciences
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
Nat. Hazards Earth Syst. Sci., 23, 3789–3803, https://doi.org/10.5194/nhess-23-3789-2023, https://doi.org/10.5194/nhess-23-3789-2023, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response efficacy and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study, policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
This article is included in the Encyclopedia of Geosciences
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
This article is included in the Encyclopedia of Geosciences
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
This article is included in the Encyclopedia of Geosciences
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-142, https://doi.org/10.5194/nhess-2023-142, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we provide a brief introduction on the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-hazard risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructures to increase their capabilities.
This article is included in the Encyclopedia of Geosciences
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
This article is included in the Encyclopedia of Geosciences
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
This article is included in the Encyclopedia of Geosciences
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
This article is included in the Encyclopedia of Geosciences
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, and Zacharias Fasoulakis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-137, https://doi.org/10.5194/nhess-2023-137, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Central Asia is prone to earthquake losses which can impact population and assets of different types. This paper presents the details of a probabilistic earthquake model which made use of a regionally consistent approach to assess the feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed to facilitate a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
This article is included in the Encyclopedia of Geosciences
Cited articles
Acosta, C., Ortega, M., Bunsen, T., Koirala, B. P., and Ghorbani, A.:
Facilitating energy transition through energy commons: an application of
socio-ecological systems framework for integrated community energy systems,
Sustainability, 10, 366, https://doi.org/10.3390/su10020366, 2018.
Adger, W. N., Brown, K., Nelson, D. R., Berkes, F., Eakin, H., Folke, C.,
Galvin, K., Gunderson, L., Goulden, M., O'Brien, M., Ruitenbeek, J., and
Tompkins, E. L.: Resilience implications of policy responses to climate
change, WIRE's Clim. Change, 2, 757–766, 2011.
Aiken, S. F.: Pragmatism, Naturalism, and Phenomenology, Human Stud., 29,
317–340, 2006.
Alexander, D. E.: Resilience and disaster risk reduction: an etymological journey, Nat. Hazards Earth Syst. Sci., 13, 2707–2716, https://doi.org/10.5194/nhess-13-2707-2013, 2013.
Alexander, S. and Yacoumis, P.: Degrowth, energy descent, and “low-tech” living: Potential pathways for increased resilience in times of crisis, J. Clean. Product., 197, 1840–1848, 2018.
Allen, C. R., Angeler, D. G., Germestani, A. S., Gunderson, L. H., and Holling, C. S.: Panarchy: Theory and Application, Ecosystems, 17, 578–589, 2014.
Alova, G.: A global analysis of the progress and failure of electric utilities to adapt their portfolios of power-generation assets to the energy
transition, Nat. Energy, 5, 1–8, 2020.
Anderson, B.: What kind of thing is resilience?”, Politics, 35, 60–66, 2015.
Andler, D.: Is social constructivism soluble in critical naturalism?, in:
New Directions in the Philosophy of Science. The Philosophy of Science
in a European Perspective, edited by: Galavotti, M., Dieks, D., Gonzalez, W., Hartmann, S., Uebel, T., and Weber, M., Springer, London, 2014.
Bahadur, A. and Tanner, T.: Transformational resilience thinking: putting
people, power and politics at the heart of urban climate resilience,
Environ. Urban., 26, 200–214, 2014.
Beck, U.: Emancipatory catastrophism: What does it mean to climate change and risk society?, Curr. Sociol., 63, 75–88, 2015.
Belkhir, J. A. and Charlemaine, C.: Race, Gender and Class Lessons from
Hurricane Katrina, Race Gender Class, 14, 120–152, 2007.
Béné, C., Mehta, L., McGranahan, G., Cannon, T., Gupte, J., and
Tanner, T.: Resilience as a policy narrative: potentials and limits in the
context of urban planning, Clim. Dev., 10, 116–133, 2018.
Berbés-Blázquez, M., Mitchell, C. L., Burch, S. L., and Wandel, J.:
Understanding climate change and resilience: assessing strengths and
opportunities for adaptation in the Global South, Climatic Change, 141,
227–241, 2017.
Berendt, B.: AI for the common good?! Pitfalls, challenges, and ethics
pen-testing, Paladyn, 10, 44–65, 2019.
Bergmann, Z. and Ossewaarde, R.: Youth climate activists meet environmental
governance: Ageist depictions of the FFF movement and Greta Thunberg in
German newspaper coverage, J. Multicult. Discours., 15, 267–290, https://doi.org/10.1080/17447143.2020.1745211, 2020.
Bergström, J.: An archaeology of societal resilience, Safe. Sci., 110, 32–38, 2018.
Berkes, F. and Ross, H.: Panarchy and community resilience: Sustainability
science and policy implications”, Environ. Sci. Policy, 61, 185–193, 2016.
Bierbaum, R. and Stults, M.: Adaptation to climate change: Context matters, Michig. J. Sustainabil., 1, 15–30, 2013.
Blühdorn, I.: The governance of unsustainability: ecology and democracy
after the post-democratic turn, Environ. Polit., 22, 16–36, 2013.
Boas, I. and Rothe, D.: From conflict to resilience? Explaining recent changes in climate security discourse and practice, Environ. Polit., 25, 613–632, 2016.
Boyer, J.: Toward an Evolutionary and Sustainability Perspective of the
Innovation Ecosystem: Revisiting the Panarchy Model, Sustainability, 12, 3232, https://doi.org/10.3390/su12083232, 2020.
Borsje, B. W., van Wesenbeeck, B., Dekker, F., Paalvast, P., Bouma, T. J., and De Vries, M. B.: How ecological engineering can serve in coastal protection – a review, Ecol. Eng., 37, 113–122, 2011.
Bourbeau, P.: Resilience and international politics: Premises, debates, agenda, Int. Stud. Rev., 17, 374–395, 2015.
Bourbeau, P. and Ryan, C.: Resilience, resistance, infrapolitics and enmeshment, Eur. J. Int. Relat., 24, 221–239, 2018.
Boyd, E., Nykvist, B., Borgström, S., and Stacewicz, I. A.: Anticipatory
governance for social-ecological resilience, Ambio, 44, 149–161, 2015.
Braun, B. P.: A new urban dispositif? Governing life in an age of climate
change, Environ. Plan. D, 32, 49–64, 2014.
Buschmann, P. and Oels, A.: The overlooked role of discourse in breaking carbon lock-in: The case of the German energy transition, Wiley Interdisciplin. Rev.: Clim. Change, 10, 1–14, 2019.
Carolan, M. S.: Realism without reductionism: toward an ecologically embedded sociology, Human Ecol. Rev., 12, 1–20, 2005.
Chandler, D.: Beyond neoliberalism: resilience, the new art of governing
complexity, Resilience, 1, 47–63, 2014.
Clément, V. and Rivera, J.: From adaptation to transformation: An extended research agenda for organizational resilience to adversity in the
natural environment, Organiz. Environ., 30, 346–365, 2017.
Code, L.: Ecological naturalism: Epistemic responsibility and the politics of knowledge, Dialog. Universal., 15, 87–101, 2005.
Cole, A.: All of us are vulnerable, but some are more vulnerable than others: The political ambiguity of vulnerability studies, an ambivalent critique, Crit. Horizon., 17, 260–277, 2016.
Conte, R. and Paolucci, M.: On agent-based modeling and computational social science, Front. Psychol., 5, 668, https://doi.org/10.3389/fpsyg.2014.00668, 2014.
Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R., Verheggen, B., Maibach, E. W., and Nuccitelli, D.: Consensus on consensus: a synthesis of consensus estimates on human-caused global warming, Environ. Res. Lett., 11, 048002, https://doi.org/10.1088/1748-9326/11/4/048002, 2016.
Cote, M. and Nightingale, A. J.: Resilience thinking meets social theory:
Situating social change in socio-ecological systems (SES) research, Prog. Human Geogr., 36, 475–489, 2012.
Dahlberg, R.: Resilience and complexity: Conjoining the discourses of two
contested concepts, Cult. Unbound, 7, 541–557, 2015.
Dahlberg, R., Johannessen-Henry, C. T., Raju, E., and Tulsiani, S.: Resilience in disaster research: Three versions, Civ. Eng. Environ. Syst., 32, 44–54, 2015.
Davoudi, S.: Just resilience, City Commun., 17, 3–7, 2018.
Derickson, K. D.: Resilience is not enough, City, 20, 161–166, 2016.
Dijkman, J., Klomp, R., and Villars, M.: Flood management strategies for the
Rivers Rhine and Meuse in The Netherlands, IAHS Publications – Series of
Proceedings and Reports – Intern Assoc Hydrological Sciences, 239, 371–382,
1997.
Douglas, M. and Wildavsky, A.: Risk and Culture. An Essay on the Selection of Technological and Environmental Dangers, University of California Press, Berkeley, 1983.
Dryzek, J. S. and Pickering, J.: The Politics of the Anthropocene, Oxford University Press, Oxford, 2019.
Duit, A.: Resilience thinking: Lessons for public administration, Publ.
Administrat., 94, 364–380, 2016.
Estêvão, P., Calado, A., and Capucha, L.: Resilience: Moving from a
“heroic” notion to a sociological concept, Sociologia, Problemas E Práticas, 85, 9–25, 2017.
Evans, B. and Reid, J.: Dangerously exposed: the life and death of the resilient subject, Resilience, 1, 83—98, 2013.
Fainstein, S.: Resilience and justice, Int. J. Urban Reg. Res., 39, 157–167, 2014.
Farmer, J. D. and Foley, D.: The economy needs agent-based modelling, Nature,
460, 685–686, 2009.
Fazey, I., Moug, P., Allen, S., Beckmann, K., Blackwood, D., Bonaventura, M.,
Burnett, K., Danson, M., Falconer, R., Gagnon, A. S., Harkness, R., Hodgson, A., Holm, L., Irvine, K. N., Low, R., Lyon, C., Moss, A., Moran, C., Naylor, L., O'Brien, K., Russell, S., Skerratt, S., Rao-Williams, J., and Wolstenholme, R.: Transformation in a changing climate: a research agenda, Clim. Dev., 10, 197–217, 2018.
Feenstra, M. and Özerol, G.: Using energy justice as a search light for
gender and energy policy research: a systematic review, in: 12th ECPR General
Conference, August 2018, Hamburg, Germany, 2018.
Filatova, T., Polhill, J. G., and Van Ewijk, S.: Regime shifts in coupled
socio-environmental systems: Review of modelling challenges and approaches,
Environ. Model. Softw., 75, 333–347, 2016.
Fischer, F.: Climate crisis and the democratic prospect: participatory governance in sustainable communities, Oxford University Press, Oxford, 2017.
Floridi, L.: A plea for non-naturalism as constructionism, Minds Mach., 27, 269–285, 2017.
Folke, C.: Resilience: The emergence of a perspective for social–ecological
systems analyses, Global Environ. Change, 16, 253–267, 2006.
Gallopin, G. C.: Linkages between vulnerability, resilience, and adaptive
capacity, Global Environ. Change, 16, 293–303, 2006.
Geels, F. W.: Regime resistance against low-carbon transitions: introducing
politics and power into the multi-level perspective, Theor. Cult. Soc., 31, 21–40, 2014.
Gençsü, I., Whitley, S., Trilling, M., van der Burg, L., McLynn, M., and Worrall, L.: Phasing out public financial flows to fossil fuel production in Europe, Clim. Policy, 20, 1010–1023, 2020.
Glaser, M., Plass-Johnson, J. G., Ferse, S. C. A., Neil, M., Satari, D. Y.,
Teichberg, M., and Reuter, H.: Breaking resilience for a sustainable future: Thoughts for the Anthropocene, Front. Mar. Sci., 5, 34, https://doi.org/10.3389/fmars.2018.00034, 2018.
Groß, M. and Stauffacher, M.: Transdisciplinary environmental science:
problem-oriented projects and strategic research programs, Interdisciplin.
Sci. Rev., 39, 299–306, 2014.
Grove, K. and Chandler, D.: Introduction: Resilience and the Anthropocene:
The stakes of “renaturalising” politics”, Resilience, 5, 79–91, 2017.
Haasnoot, M., Kwakkel, J. H., Walker, W. E., and Ter Maat, J.: Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world, Global Environ. Change, 23, 485–498, 2013.
Hamers, T., Kamstra, J. J., Van Gils, J. Kotte-Albertus, M. C., and Van Hattum, G. M.: The influence of extreme river discharge conditions on the
quality of suspended particulate matter in Rivers Meuse and Rhine (The
Netherlands), Environm. Res. A, 143, 241–255, 2015.
Hawes, C. and Reed, C.: Theoretical steps towards modelling resilience in
complex systems, in: Computational Science and Its Applications, ICCSA 2006, Lecture Notes in Computer Science, vol. 3980, edited by: Gavrilova, M., Springer, Berlin, 2006.
Heffron, R. J. and McCauley, D.: The concept of energy justice across the
disciplines, Energy Policy, 105, 658–667, 2017.
Henkel, K. E., Dovidio, J. F., and Gaertner, S. L.: Institutional discrimination, individual racism, and Hurricane Katrina, Anal. Social Issue. Publ. Policy, 6, 99–124, 2006.
Hoefsloot, F. I., Pfeffer, K., and Richter, C.: People and places uncounted: Legibility in the water infrastructure of Lima, Peru, Paper presented at City Futures 2019, Dublin, Ireland, 1–17, 2018.
Hoekstra, A. Y., Bredenhoff-Bijlsma, R., and Krol, M. S.: The control versus resilience rationale for managing systems under uncertainty, Environ. Res. Lett., 13, 103002, https://doi.org/10.1088/1748-9326/aadf95, 2018.
Hoffmann, S., Weyer, J., and Longen, J.: Discontinuation of the automobility regime. An integrated approach to multi-level governance, Transport. Res. A, 103, 391–408, 2017.
Holling, C. S.: Resilience and stability of ecological systems, Annu. Rev. Ecol. System., 4, 1–23, 1973.
Holling, C. S.: Understanding the complexity of economic, ecological, and social systems, Ecosystems, 4, 390–405, 2001.
Howell, A.: Resilience as enhancement: Governmentality and political economy
beyond “responsibilisation”, Politics, 35, 67–71, 2015.
Huang, H., Boranbay-Akan, S., and Huang, L.: Media, protest diffusion, and
authoritarian resilience, Polit. Sci. Res. Meth., 7, 23–42, 2016.
Hughes, S.: The politics of urban climate change policy: Towards a research
agenda, Urban Affair. Rev., 53, 362–380, 2017.
Indirli, M.: An historical flight and some open questions towards a pluralistic but holistic view of resilience, Geogr. Anthrop., 2, 194–248, 2019.
Jenkins, K., McCauley, D., Heffron, R., Stephan, H., and Rehner, R.: Energy
justice: A conceptual review, Energ. Res. Social Sci., 11, 174–182, 2016.
Jesse, B.-J., Heinrichs, H. U., and Kuchshinrichs, W.: Adapting the theory of resilience to energy systems: a review and outlook, Energ. Sustain. Soc., 9, 27, https://doi.org/10.1186/s13705-019-0210-7, 2019.
Johnson, J. L., Zanotti, L., Ma, Z., Yu, D. J., Johnson, D. R., Kirkham, A., and Carothers, C.: Interplays of Sustainability, Resilience, Adaptation and Transformation, in: Handbook of Sustainability and Social Science Research, World Sustainability Series, edited by: Leal Filho, W., Marans, R., and Callewaert, J., Springer, Cham, 2018.
Juncos, A. E.: Resilience as the new EU foreign policy paradigm: a pragmatist turn?, Europ. Secur., 26, 1–18, 2017.
Juncos, A. E.: Resilience in peacebuilding: Contesting uncertainty, ambiguity, and complexity, Contemp. Secur. Policy, 39, 559–574, 2018.
Katomero, J. and Georgiadou, Y.: The elephant in the room: Informality in
Tanzania's rural waterscape, ISPRS Int. J. Geo-Inform., 7, 437, https://doi.org/10.3390/ijgi7110437, 2018.
Kelman, I.: Disaster by choice: how our actions turn natural hazards into
catastrophes, Oxford University Press, Oxford, 2020.
Khakurel, J., Penzenstadler, B., Porras, J., Knutas, A., and Zhang, W.: The
rise of artificial intelligence under the lens of sustainability, Technologies, 6, 100, https://doi.org/10.3390/technologies6040100, 2018.
Köhler, J., Geels, F. W., Kernc, F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., Fünfschilling, L., Hess, D., Holtz, G., Hyysalok, S., Jenkins, K., Kivimaa, P., Martiskainen, M., McMeekin, A., Muhlemeier, M. S., Nykvist, B., Pel, B., Raven, R., Rohracher, H., Sandén, B., Schot, J., Sovacool, B., Turnheim, B., Welch, D., and Wells, P.: An agenda for sustainability transitions research: State of the art and future directions, Environ. Innov. Soc. Transit., 31, 1–32, 2019.
Kolers, A.: Resilience as a political ideal, Eth. Policy Environ., 19, 91–107, 2016.
Ksenia, C., Lizarralde, G., Dainty, A., and Bosher, L.: Unpacking resilience policy discourse, Cities, 58, 70–79, 2016.
Kuhlmann, S., Stegmaier, P., and Konrad, K.: The tentative governance of emerging science and technology – A conceptual introduction, Res. Policy, 48, 1091–1097, 2019.
Kythreotis, A. P. and Bristow, G. I.: The “resilience trap”: exploring the practical utility of resilience for climate change adaptation in UK city-regions, Reg. Stud., 51, 1530–1541, 2017.
Lockie, S.: Beyond resilience and systems theory: reclaiming justice in
sustainability discourse, Environ. Sociol., 2, 115–117, 2016.
Lyster, R.: Climate justice, adaptation and the Paris Agreement: A recipe for disasters?, Environ. Polit., 26, 438–458, 2017.
Martin, R. and Schlüter, M.: Combining system dynamics and agent-based
modeling to analyze social-ecological interactions – an example from modeling restoration of a shallow lake, Front. Environ. Sci., 3, 66, https://doi.org/10.3389/fenvs.2015.00066, 2015.
McGreavy, B.: Resilience as discourse, Environ. Commun., 10, 104–121, 2016.
Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G.,
Walker, B., Birkmann, J., Van der Leeuw, S., Rockström, J., Hinkel, J.,
Downing, T., Folke, C., and Nelson, D.: Resilience and vulnerability:
Complementary or conflicting concepts?, Ecol. Soc., 15, 11, 2010.
Miller, T.: Explanation in artificial intelligence: Insights from the social sciences, Artific. Intel., 267, 1–38, 2019.
Mirchandani, C.: Resilience Modeling in Complex Systems, Proced. Comput. Sci., 168, 232–240, 2020.
Mooney, H. A., Duraiappah, A., and Larigauderie, A.: Evolution of natural and
social science interactions in global change research programs, P. Natl. Acad. Sci. USA, 110, 3665–3672, 2013.
Mummery, J. and Mummery, J.: Transformative climate change adaptation: Bridging existing approaches with post-foundational insights on justice, Local Environ., 24, 919–930, 2019.
Olsson, L.: Why resilience is unappealing to social science: Theoretical and empirical investigations of the scientific use of resilience, Sci. Adv., 1, 4, https://doi.org/10.1126/sciadv.1400217, 2015.
Ossewaarde, M. and Gülenç, E.: National varieties of AI discourses:
Myth, utopianism and solutionism in West European policy expectations, Computer, 53, 53–61, 2020.
Ostrom, E.: A diagnostic approach for going beyond panaceas, P. Natl. Acad. Sci. USA, 104, 15181–15187, 2007.
Patriarca, R., Bergström, J., Di Gravio, G., and Costantino, F.: Resilience engineering: Current status of the research and future challenges, Safe. Sci., 102, 79–100, 2018.
Pelling, M., O'Brien, K., and Matyas, D.: Adaptation and transformation,
Climatic Change, 133, 113–127, 2015.
Pfeffer, K. and Georgiadou, Y.: Global ambitions, local contexts: Alternative ways of knowing the world, ISPRS Int. J. Geo-Inform., 8, 516 , https://doi.org/10.3390/ijgi8110516, 2019.
Pizzo, B.: Problematizing resilience: Implications for planning theory and
practice, Cities, 43, 133–140, 2015.
Pohl, C.: How to bridge between natural and social sciences? An analysis of
three approaches to transdisciplinary from the Swiss and German field of
environmental research, Nat. Sci. Soc., 9, 37–46, 2001.
Pompe, J. J. and Rinehart, J. R.: Environmental conflict: In search of common
ground, State University of New York Press, Albany, NY, 2002.
Popa, F., Guillermin, M., and Dedeurwaerdere, T.: A pragmatist approach to
transdisciplinarity in sustainability research: From complex systems theory to reflexive science, Futures, 65, 45–56, 2015.
Porter, L. and Davoudi, S.: The politics of resilience for planning: A
cautionary note, Plan. Theory Pract., 13, 329–333, 2012.
Proctor, J. D.: Expanding the scope of science and ethics, Ann. Assoc. Am. Geogr., 88, 290–296, 1998a.
Proctor, J. D.: The social construction of nature: Relativist accusations,
pragmatist and critical realist responses, Ann. Assoc. Am. Geogr., 88, 352–376, 1998b.
Pumpuni-Lenss, G., Blackburn, T., and Garstenauer, A.: Resilience in complex
systems: An agent-based approach, Syst. Eng., 20, 158–172, 2017.
Rajan, A. and Saffiotti, A.: Towards a science of integrated AI and robotics, Artific. Intel., 247, 1–9, 2017.
Redman, C. L.: Should sustainability and resilience be combined or remain
distinct pursuits?, Ecol. Soc., 19, 37, https://doi.org/10.5751/ES-06390-190237, 2014.
Ribault, T.: Resilience in Fukushima: Contribution to a political economy of consent, Alternatives, 44, 94–118, 2019.
Rothe, D.: Gendering resilience: Myths and stereotypes in the discourse on
climate-induced migration, Global Policy, 8, 40–46, 2017.
Saravi, S., Kalawsky, R., Joannou, D., Rivas Casado, M., Fu, G., and Meng, F.: Use of artificial intelligence to improve resilience and preparedness
against adverse flood events, Water, 11, 973, https://doi.org/10.3390/w11050973, 2019.
Schilling, T., Wyss, R., and Binder, C. R.: The resilience of sustainability transitions, Sustainability, 10, 4593, https://doi.org/10.3390/su10124593, 2018.
Schlosberg, D., Collins, L. B., and Niemeyer, S.: Adaptation policy and
community discourse: risk, vulnerability, and just transformation, Environ. Polit., 26, 413–437, 2017.
Schwartz, S.: Resilience in psychology: A critical analysis of the concept,
Theory and Psychology, 28, 528–541, 2018.
Simpson, A.: Challenging inequality and injustice: A critical approach to
energy security, in: Environmental Security: Approaches and Issues, edited by: Floyd, R. and Matthew, R. A., Routledge, London, 248–263, 2013.
Sjöstedt, M.: Resilience revisited: Taking institutional theory seriously, Ecol. Soc., 20, 23, https://doi.org/10.5751/ES-08034-200423, 2015.
Skillington, T.: Climate justice without freedom: Assessing legal and political responses to climate change and forced migration, Eur. J. Social Theory, 18, 288–307, 2015.
Smit, M. J., Goosen, H., and Hulsbergen, C. H.: Resilience and vulnerability: Coastal dynamics or Dutch dikes?, Geogr. J., 164, 259–268, 1998.
Smith, A. and Stirling, A.: The politics of social-ecological resilience and sustainable socio-technical transitions, Ecol. Soc., 15, 11, 2010.
Stegemann, L. and Ossewaarde, M.: A sustainable myth: A neo-Gramscian perspective on the populist and post-truth tendencies of the European green
growth discourse, Energ. Res. Social Sci., 43, 25–32, 2018.
Stegmaier, P., Kuhlmann, S., and Visser, V. R.: The discontinuation of socio-technical systems as governance problem, in: Governance of Systems Change, edited by: Borrás, S. and Edler, J., Edward Elgar, Cheltenham,
111–131, 2014.
Stegmaier, P., Visser, V. R., and Kuhlmann, S.: The incandescent light bulb
phase-out: Exploring patterns of framing the governance of discontinuing a
socio-technical regime, in review, 2020.
Sun, L., Stojadinovic, B., and Sansavini, G.: Agent-based recovery model for seismic resilience evaluation of electrified communities, Risk Anal., 39, 1597–1614, 2019.
Szablowski, D. and Campbell, B.: Struggles over extractive governance: Power, discourse, violence, and legality, Extract. Indust. Soc., 6, 635–641, 2019.
Taddeo, M. and Floridi, L.: How AI can be a force for good, Science, 361, 751–752, 2018.
Terry, G.: No climate justice without gender justice: an overview of the
issues, Gender Dev., 17, 5–18, 2009.
Thorén, H.: Resilience as a unifying concept, Int. Stud. Philos. Sci., 28, 303–324, 2014.
Tierney, K.: Resilience and the neoliberal project: Discourses, critiques,
practices – And Katrina, Am. Behav. Sci., 59, 1327–1342, 2015.
UN-Habitat:
Un-habitat unveils new chinese partnership to explore the use of artificial intelligence in cities, available at: https://unhabitat.org/un-habitat-unveils-new-chinese-partnership-to-explore-the-use
(last access: 8 February 2021), 2019.
Vahedifard, F., Ermagun, A., Mortezaei, K., and AghaKouchak, A.: Integrated
data could augment resilience, Science, 363, 6423, https://doi.org/10.1126/science.aaw2236, 2019.
VanderPlaat, M.: Activating the sociological imagination to explore the
boundaries of resilience research and practice, School Psychol. Int., 37, 189–203, 2016.
Walker, J. and Cooper, M.: Genealogies of resilience: From systems ecology to the political economy of crisis adaptation, Secur. Dialog., 42, 143–160, 2011.
Walsh-Dilley, M. and Wolford, W.: (Un)Defining resilience: Subjective
understandings of “resilience” from the field, Resilience, 3, 173–182,
2015.
Ward, P. J., Aerts, J. C. J. H., De Keizer, O., and Poussin, J. K.:
Adaptation to Meuse flood risk, Knowledge for Climate Report, KfC 93/2013,
available at: https://edepot.wur.nl/254248 (last access: 8 February 2021), 2013.
Warmink, J. J., Brugnach, M., Vinke-de Kruijf, J., Schielen, R. M. J., and
Augustijn, D. C. M.: Coping with uncertainty in river management: Challenges and ways forward, Water Resour. Manage., 31, 4587–4600, 2017.
Weichselgartner, J. and Kelman, I.: Geographies of resilience: Challenges and opportunities of a descriptive concept, Prog. Human Geogr., 39, 3, 249–267, 2015.
Wessel, R. A.: Cybersecurity in the European Union: Resilience through
regulation, in: Routledge Handbook of EU Security Law and Policy, edited by: Conde Pérez, E., Yaneva, Z., and Scopelliti, M., Routledge, London, 283–300, 2019.
Wiese, F.: Resilience thinking as an interdisciplinary guiding principle for energy system transitions, Resources, 5, 30, https://doi.org/10.3390/resources5040030, 2016.
Wilson, E. O.: Consilience: The unity of knowledge, Vintage, New York, 1998.
Yanarella, E. J. and Levine, R. S.: From sustainability to resilience: Advance or retreat?, Sustainability, 7, 197–208, 2014.
Ziervogel, G., Cowen, A., and Ziniades, J.: Moving from adaptive to transformative capacity: Building foundations for inclusive, thriving, and
regenerative urban settlements, Sustainability, 8, 955, https://doi.org/10.3390/su8090955, 2016.
Short summary
The aim of this paper is to review and structure current developments in resilience research in the field of climate change studies, in terms of the approaches, definitions, models, and commitments that are typical for naturalist and constructivist research and propose a research agenda of topics distilled from current developments in resilience research.
The aim of this paper is to review and structure current developments in resilience research in...
Altmetrics
Final-revised paper
Preprint