Dost, J. B., Gronz, O., Casper, M. C., and Krein, A.: Smartstone probe data of a landslide experiment, Zenodo,
https://doi.org/10.5281/zenodo.4316597, 2020.
a
EIDEN: Kenner Betonwerk EIDEN GmbH: Schüttgüter – Preisliste,
available at:
http://www.kenner-betonwerk.de/de/produkte/schüttgüter, last access: 21 April 2017. a
Ergenzinger, P., Schmidt, K. H., and Busskamp, R.: The pebble transmitter
system (PETS): first results of a technique for studying coarse material
erosion, transport and deposition, Z. Geomorphol., 33, 503–508, 1989. a
Fox, D., Burgard, W., and Thrun, S.: Markov Localization for Mobile Robots in
Dynamic Environments, J. Artific. Intel. Res., 11, 391–427,
https://doi.org/10.1613/jair.616, 1999.
a
Frosio, I., Pedersini, F., and Borghese, N. A.: Autocalibration of MEMS
Accelerometers, IEEE T. Instrum. Meas., 58, 2034–2041,
https://doi.org/10.1109/TIM.2008.2006137, 2009.
a
Gronz, O., Hiller, P. H., Wirtz, S., Becker, K., Iserloh, T., Seeger, M.,
Brings, C., Aberle, J., Casper, M. C., and Ries, J. B.: Smartstones: A small
9-axis sensor implanted in stones to track their movements, Catena, 142,
245–251,
https://doi.org/10.1016/j.catena.2016.03.030, 2016.
a,
b,
c,
d,
e,
f,
g,
h
Hanisch, J., Ergenzinger, P., and Bonte, M.: Dumpling – an intelligent boulder for studying internal processes of debris flows, in: Debris-flow hazards mitigation: Mechanics, prediction, and assessment, vol. 2, edited by: Rickenmann, D. and Chen, C. L., Millpress, Rotterdam, the Netherlands,
843–850, 2003. a
Hanson, A. J.: Visualizing quaternions, Morgan Kaufmann series in interactive
3D technology, Morgan Kaufmann, San Francisco, CA, Amsterdam, Boston, 2006. a
Hofland, B., Arefin, S. S., van der Lem, C., and Van Gent, M. R. A.: Smart
Rocking Armour Units, in: Proceedings of the 7th International Conference on
the Application of Physical Modelling in Coastal and Port Engineering and
Science, edited by: Coastlab18, Santander, Cantabria, Spain, 2018. a
Jazar, R. N.: Advanced dynamics: Rigid body, multibody, and aerospace
applications, Wiley, Hoboken, NJ, 2011. a
Madgwick, S. O. H., Harrison, A. J. L., and Vaidyanathan, A.: Estimation of IMU and MARG orientation using a gradient descent algorithm, IEEE Int. Conf. Rehabil. Robot., 2011, 5975346,
https://doi.org/10.1109/ICORR.2011.5975346, 2011.
a,
b,
c
Manzella, I.: Dry rock avalanche propagation: unconstrained flow experiments
with granular materials and blocks at small scale, PhD thesis,École
Polytechnique Fédérale de Lausanne, Laussanne,
https://doi.org/10.5075/EPFL-THESIS-4032, 2008.
a
Manzella, I. and Labiouse, V.: Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches, Eng. Geol., 109, 146–158,
https://doi.org/10.1016/j.enggeo.2008.11.006, 2009.
a,
b
Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., and Wang, G.: Failure processes in a full-scale landslide experiment using a rainfall
simulator, Landslides, 1, 277–288,
https://doi.org/10.1007/s10346-004-0034-0, 2004.
a,
b
Ochiai, H., Okada, Y., Furuya, G., Okura, Y., Matsui, T., Sammori, T.,
Terajima, T., and Sassa, K.: A fluidized landslide on a natural slope by
artificial rainfall, Landslides, 1, 211–219,
https://doi.org/10.1007/s10346-004-0030-4, 2004.
a
Ochiai, H., Sammori, T., and Okada, Y.: Landslide Experiments on Artificial and Natural Slopes, in: Progress in Landslide Science, edited by: Sassa, K., Springer, Berlin, 209–226, 2007.
a,
b
Okura, Y., Kitahara, H., Sammori, T., and Kawanami, A.: The effects of rockfall volume on runout distance, Eng. Geol., 58, 109–124,
https://doi.org/10.1016/S0013-7952(00)00049-1, 2000.
a,
b,
c,
d
Olinde, L. and Johnson, J. P. L.: Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream, Water Resour. Res., 51, 7572–7589,
https://doi.org/10.1002/2014WR016120, 2015.
a
Ooi, G. L., Wang, Y.-H., Tan, P. S., So, C. F., Leung, M. L., Li, X., and Lok, K. H.: An Instrumented Flume to Characterize the Initiation Features of Flow Landslides, Geotech. Test. J., 37, 20130158,
https://doi.org/10.1520/GTJ20130158, 2014.
a,
b
Ooi, G. L., Tan, P. S., Lin, M.-L., Wang, K.-L., Zhang, Q., and Wang, Y.-H.:
Near real-time landslide monitoring with the smart soil particles, in: The
15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, vol. 2 of Japanese Geotechnical Society Special Publication, Japanese Geotechnical Society, Fukuoka, Japan, 1031–1034,
https://doi.org/10.3208/jgssp.HKG-05, 2016.
a
Phillips, J. C., Hogg, A. J., Kerswell, R. R., and Thomas, N. H.: Enhanced
mobility of granular mixtures of fine and coarse particles, Earth Planet. Sc. Lett., 246, 466–480,
https://doi.org/10.1016/j.epsl.2006.04.007, 2006.
a
Ravindra, G. H., Gronz, O., Dost, J. B., and Sigtryggsdóttir, F. G.:
Description of failure mechanism in placed riprap on steep slope with unsupported toe using smartstone probes, Eng. Struct., 221, 111038,
https://doi.org/10.1016/j.engstruct.2020.111038, 2020.
a
Ried, M. E., Iverson, R. M., Logan, M., LaHusen, R. H. G., Godt, J. W., and Griswold, J. P.: Entrainment of Bed Sediment by Debris Flows: Results from large-scale Experiments, in: Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation, edited by: Genevois, R., Hamilton, D. L., and Prestininzi, A., Rome, 2011. a
Santos, J. A., Pedro, F., Coimbra, M., Figuero, A., Fortes, C. J. E., Sande,
J., Körner, M., Lemos, R., Bornschein, A., Weimper, J., van den Bos, J., Dost, B., Hofland, B., Carvalho, R. F., Alvarellos, A., Peña, E., Pohl, R., Kerpen, N. B., and Reis, M. T.: 3-D Scale Model Study of Wave Run-Up, Overtopping and Damage in a Rubble-Mound Breakwater Subject to Oblique Extreme Wave Conditions, Defect and Diffusion Forum, 396, 32–41,
https://doi.org/10.4028/www.scientific.net/DDF.396.32, 2019.
a
Schilirò, L., Esposito, C., de Blasio, F. V., and Scarascia Mugnozza, G.:
Sediment texture in rock avalanche deposits: insights from field and
experimental observations, Landslides, 16, 1629–1643,
https://doi.org/10.1007/s10346-019-01210-x, 2019.
a
Spreitzer, G., Gibson, J., Tang, M., Tunnicliffe, J., and Friedrich, H.:
SmartWood: Laboratory experiments for assessing the effectiveness of smart
sensors for monitoring large wood movement behaviour, Catena, 182, 104145,
https://doi.org/10.1016/j.catena.2019.104145, 2019.
a,
b
Wang, Y.-F., Cheng, Q.-G., Lin, Q.-W., Li, K., and Yang, H.-F.: Insights into
the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms, Geomorphology, 317,
170–183,
https://doi.org/10.1016/j.geomorph.2018.05.025, 2018.
a
x-io Technologies: Gait tracking with x-IMU, available at:
http://x-io.co.uk/gait-tracking-with-x-imu/ (last access: 3 August 2017), 2013.
a,
b,
c,
d
Yang, H., Wei, F., Hu, K., Chernomorets, S., Hong, Y., Li, X., and Xie, T.:
Measuring the internal velocity of debris flows using impact pressure
detecting in the flume experiment, J. Mount. Sci., 8, 109–116,
https://doi.org/10.1007/s11629-011-2083-x, 2011.
a
Yang, W. Y., Chang, T. G., Somg, I. H., Cho, Y. S., Heo, J., Jeon, W. G., Lee, J. W., and Kim, J. K. (Eds.): Signals and Systems with MATLAB, Springer-Verlag, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-540-92954-3, 2009.
a