Articles | Volume 20, issue 12
https://doi.org/10.5194/nhess-20-3501-2020
https://doi.org/10.5194/nhess-20-3501-2020
Research article
 | 
17 Dec 2020
Research article |  | 17 Dec 2020

The potential of Smartstone probes in landslide experiments: how to read motion data

J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein

Related subject area

Landslides and Debris Flows Hazards
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023,https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023,https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary

Cited articles

Aaron, J. and McDougall, S.: Rock avalanche mobility: The role of path material, Eng. Geol., 257, 105126, https://doi.org/10.1016/j.enggeo.2019.05.003, 2019. a
Becker, K., Gronz, O., Wirtz, S., Seeger, M., Brings, C., Iserloh, T., Casper, M. C., and Ries, J. B.: Characterization of complex pebble movement patterns in channel flow – a laboratory study, Cuadernos de Investigación Geográfica, 41, 63–85, https://doi.org/10.18172/cig.2645, 2015. a
Bosch Sensortec GmbH: BMC150: Data sheet: 6-axis eCompass, available at: https://www.bosch-sensortec.com/bst/products/all_products/bmc150 (last access: 3 March 2019), 2014. a, b
Bosch Sensortec GmbH: BMI160: Data sheet: Small, low power inertial measurement unit, available at: https://www.bosch-sensortec.com/bst/products/all_products/bmi160 (last access: 3 March 2019), 2015. a, b
Cameron, C.: A Wireless Sensor Node for Monitoring the Effects of Fluid Flow on Riverbed Sediment, Project report, University of Glasgow, Glasgow, 2012. a
Download
Short summary
We show the potential to observe the unconfined internal-motion behaviour of single clasts in landslides using a wireless sensor measuring acceleration and rotation. The probe's dimensions are 10 mm × 55 mm. It measures up to 16 g and 2000° s−1 with a 100 Hz sampling rate. From the data, we derive transport mode, velocity, displacement and 3D trajectories of several probes. Results are verified by high-speed image analysis and laser distance measurements.
Altmetrics
Final-revised paper
Preprint