Articles | Volume 20, issue 8
https://doi.org/10.5194/nhess-20-2351-2020
https://doi.org/10.5194/nhess-20-2351-2020
Research article
 | 
26 Aug 2020
Research article |  | 26 Aug 2020

GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran

Mohammad Malakootian and Majid Nozari

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023,https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023,https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023,https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Comparison of machine learning techniques for reservoir outflow forecasting
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022,https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary

Cited articles

Aller, L., Bennett, T., Lehr J. H., and Petty, R. J.: DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings, U.S Environmental Protection Agency, USA, 1985. 
Ayazi, M. H., Pirasteh, S., Arvin, A., Pradhan, B., Nikouravan, B., and Mansor, S.: Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geoinformatics techniques, Disaster Adv., 3, 51–57, 2010. 
Baalousha, H.: Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC, J. Environ. Geol., 50, 405–414, https://doi.org/10.1007/s00254-006-0219-z, 2006. 
Babiker, I. S., Mohamed, M. A., Hiyama, T., and Kato, K.: A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Sci. Total Environ., 345, 127–140, https://doi.org/10.1016/j.scitotenv.2004.11.005, 2005. 
Baghapour, M. A., Talebbeydokhti, N., Tabatabee, H., and Nobandegani, A. F.: Assessment of groundwater nitrate pollution and determination of groundwater protection zones using DRASTIC and composite DRASTIC 404 (CD) models: the case of Shiraz unconfined aquifer, J. Health. Sci. Surveill. Syst., 2, 54–65, 2014. 
Download
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and ‎composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, ‎identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and ‎require protective measures.
Altmetrics
Final-revised paper
Preprint