Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1741-2020
https://doi.org/10.5194/nhess-20-1741-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

Probabilistic tsunami hazard analysis for Tuzla test site using Monte Carlo simulations

Hafize Basak Bayraktar and Ceren Ozer Sozdinler

Related authors

Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary

Related subject area

Earthquake Hazards
Towards a harmonized operational earthquake forecasting model for Europe
Marta Han, Leila Mizrahi, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 25, 991–1012, https://doi.org/10.5194/nhess-25-991-2025,https://doi.org/10.5194/nhess-25-991-2025, 2025
Short summary
Modeling seismic hazard and landslide occurrence probabilities in northwestern Yunnan, China: exploring complex fault systems with multi-segment rupturing in a block rotational tectonic zone
Jia Cheng, Chong Xu, Xiwei Xu, Shimin Zhang, and Pengyu Zhu
Nat. Hazards Earth Syst. Sci., 25, 857–877, https://doi.org/10.5194/nhess-25-857-2025,https://doi.org/10.5194/nhess-25-857-2025, 2025
Short summary
Development of a regional probabilistic seismic hazard model for Central Asia
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, Marco Santulin, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 25, 817–842, https://doi.org/10.5194/nhess-25-817-2025,https://doi.org/10.5194/nhess-25-817-2025, 2025
Short summary
Computing the time-dependent activity rate using non-declustered and declustered catalogues – a first step towards time-dependent seismic hazard calculations for operational earthquake forecasting
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
Nat. Hazards Earth Syst. Sci., 25, 515–539, https://doi.org/10.5194/nhess-25-515-2025,https://doi.org/10.5194/nhess-25-515-2025, 2025
Short summary
Analysis of borehole strain anomalies before the 2017 Jiuzhaigou Ms 7.0 earthquake based on a graph neural network
Chenyang Li, Changfeng Qin, Jie Zhang, Yu Duan, and Chengquan Chi
Nat. Hazards Earth Syst. Sci., 25, 231–245, https://doi.org/10.5194/nhess-25-231-2025,https://doi.org/10.5194/nhess-25-231-2025, 2025
Short summary

Cited articles

Abrahamson, N. A. and Bommer, J. J.: Probability and uncertainty in seismic hazard analysis, Earthq. Spect., 21, 603–607, https://doi.org/10.1193/1.1899158, 2005. 
Aki, K.: Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res.-Solid, 89, 5867–5872, https://doi.org/10.1029/JB089iB07p05867, 1984. 
Aki, K.: Generation and propagation of G waves from the Niigata Earthquake of June 16 1964. Part 2. Estimation of earthquake movement, released energy, and stress-strain drop from the G wave spectrum, Bull. Earthq. Res. Inst., 44, 73–88, 1966. 
Aksu, A. E., Calon, T. J., Hiscott, R. N., and Yasar, D.: Anatomy of the North Anatolian Fault Zone in the Marmara Sea, Western Turkey: extensional basins above a continental transform, GSA Today, 10, 3–7, 2000. 
Allen, C. R.: The tectonic environments of seismically active and inactive areas along the San Andreas fault system, Stanford University Publications, Geol. Sci., 11, 70–80, 1968. 
Download
Short summary
In this study, probabilistic tsunami hazard analysis was performed for the Tuzla region in case of a Prince Island fault rupture, which is the closest fault zone to the megacity Istanbul, and it has been silent for centuries. A synthetic earthquake catalog is generated using Monte Carlo simulations, and these events are used for tsunami analysis. The results of the study show that the probability of exceedance of 0.3 m tsunami wave height is bigger than 90 % for the next 50 and 100 years.
Share
Altmetrics
Final-revised paper
Preprint