Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1741-2020
https://doi.org/10.5194/nhess-20-1741-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

Probabilistic tsunami hazard analysis for Tuzla test site using Monte Carlo simulations

Hafize Basak Bayraktar and Ceren Ozer Sozdinler

Related authors

Tectonic Origin Tsunami Scenario Database for the Marmara Region
Ceren Ozer Sozdinler, Ocal Necmioglu, H. Basak Bayraktar, and Nurcan M. Ozel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-186,https://doi.org/10.5194/nhess-2019-186, 2019
Preprint withdrawn
Short summary

Related subject area

Earthquake Hazards
Tsunami scenario triggered by a submarine landslide offshore of northern Sumatra Island and its hazard assessment
Haekal A. Haridhi, Bor Shouh Huang, Kuo Liang Wen, Arif Mirza, Syamsul Rizal, Syahrul Purnawan, Ilham Fajri, Frauke Klingelhoefer, Char Shine Liu, Chao Shing Lee, Crispen R. Wilson, Tso-Ren Wu, Ichsan Setiawan, and Van Bang Phung
Nat. Hazards Earth Syst. Sci., 23, 507–523, https://doi.org/10.5194/nhess-23-507-2023,https://doi.org/10.5194/nhess-23-507-2023, 2023
Short summary
Scrutinizing and rooting the multiple anomalies of Nepal earthquake sequence in 2015 with the deviation–time–space criterion and homologous lithosphere–coversphere–atmosphere–ionosphere coupling physics
Lixin Wu, Yuan Qi, Wenfei Mao, Jingchen Lu, Yifan Ding, Boqi Peng, and Busheng Xie
Nat. Hazards Earth Syst. Sci., 23, 231–249, https://doi.org/10.5194/nhess-23-231-2023,https://doi.org/10.5194/nhess-23-231-2023, 2023
Short summary
On the calculation of smoothing kernels for seismic parameter spatial mapping: methodology and examples
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023,https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Mass flows, turbidity currents and other hydrodynamic consequences of small and moderate earthquakes in the Sea of Marmara
Pierre Henry, M. Sinan Özeren, Nurettin Yakupoğlu, Ziyadin Çakir, Emmanuel de Saint-Léger, Olivier Desprez de Gésincourt, Anders Tengberg, Cristele Chevalier, Christos Papoutsellis, Nazmi Postacıoğlu, Uğur Dogan, Hayrullah Karabulut, Gülsen Uçarkuş, and M. Namık Çağatay
Nat. Hazards Earth Syst. Sci., 22, 3939–3956, https://doi.org/10.5194/nhess-22-3939-2022,https://doi.org/10.5194/nhess-22-3939-2022, 2022
Short summary
Brief communication: The crucial assessment of possible significant vertical movements preceding the 28 December 1908, Mw = 7.1, Messina Straits earthquake
Nicola Alessandro Pino
Nat. Hazards Earth Syst. Sci., 22, 3787–3792, https://doi.org/10.5194/nhess-22-3787-2022,https://doi.org/10.5194/nhess-22-3787-2022, 2022
Short summary

Cited articles

Abrahamson, N. A. and Bommer, J. J.: Probability and uncertainty in seismic hazard analysis, Earthq. Spect., 21, 603–607, https://doi.org/10.1193/1.1899158, 2005. 
Aki, K.: Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res.-Solid, 89, 5867–5872, https://doi.org/10.1029/JB089iB07p05867, 1984. 
Aki, K.: Generation and propagation of G waves from the Niigata Earthquake of June 16 1964. Part 2. Estimation of earthquake movement, released energy, and stress-strain drop from the G wave spectrum, Bull. Earthq. Res. Inst., 44, 73–88, 1966. 
Aksu, A. E., Calon, T. J., Hiscott, R. N., and Yasar, D.: Anatomy of the North Anatolian Fault Zone in the Marmara Sea, Western Turkey: extensional basins above a continental transform, GSA Today, 10, 3–7, 2000. 
Allen, C. R.: The tectonic environments of seismically active and inactive areas along the San Andreas fault system, Stanford University Publications, Geol. Sci., 11, 70–80, 1968. 
Download
Short summary
In this study, probabilistic tsunami hazard analysis was performed for the Tuzla region in case of a Prince Island fault rupture, which is the closest fault zone to the megacity Istanbul, and it has been silent for centuries. A synthetic earthquake catalog is generated using Monte Carlo simulations, and these events are used for tsunami analysis. The results of the study show that the probability of exceedance of 0.3 m tsunami wave height is bigger than 90 % for the next 50 and 100 years.
Altmetrics
Final-revised paper
Preprint