Articles | Volume 19, issue 12
https://doi.org/10.5194/nhess-19-2811-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-2811-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Infrasound and seismoacoustic signatures of the 28 September 2018 Sulawesi super-shear earthquake
BGR, B4.3 (Federal Institute for Geosciences and Natural Resources),
Hanover, Germany
Peter Gaebler
BGR, B4.3 (Federal Institute for Geosciences and Natural Resources),
Hanover, Germany
Lars Ceranna
BGR, B4.3 (Federal Institute for Geosciences and Natural Resources),
Hanover, Germany
Alexis Le Pichon
CEA, DAM, DIF, 91297 Arpajon, France
Julien Vergoz
CEA, DAM, DIF, 91297 Arpajon, France
Anna Perttu
EOS (Earth Observatory of Singapore), NTU (Nanyang Technological
University), Singapore
Dorianne Tailpied
EOS (Earth Observatory of Singapore), NTU (Nanyang Technological
University), Singapore
Benoit Taisne
EOS (Earth Observatory of Singapore), NTU (Nanyang Technological
University), Singapore
Related authors
No articles found.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
Berkan Özkan, Tuna Eken, Peter Gaebler, and Tuncay Taymaz
Solid Earth, 15, 1303–1317, https://doi.org/10.5194/se-15-1303-2024, https://doi.org/10.5194/se-15-1303-2024, 2024
Short summary
Short summary
This study estimates source properties by analyzing seismic data of 303 earthquakes (2018–2020) in the Marmara Region, Turkey, and finds a strong correlation between moment-derived coda magnitude (Mw-coda) and moment magnitude (ML). Moreover, the scaled energy increases with seismic moment estimates and shows non-self-similar scaling in earthquake sources.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Santiago Arellano, Bo Galle, Fredy Apaza, Geoffroy Avard, Charlotte Barrington, Nicole Bobrowski, Claudia Bucarey, Viviana Burbano, Mike Burton, Zoraida Chacón, Gustavo Chigna, Christian Joseph Clarito, Vladimir Conde, Fidel Costa, Maarten De Moor, Hugo Delgado-Granados, Andrea Di Muro, Deborah Fernandez, Gustavo Garzón, Hendra Gunawan, Nia Haerani, Thor H. Hansteen, Silvana Hidalgo, Salvatore Inguaggiato, Mattias Johansson, Christoph Kern, Manne Kihlman, Philippe Kowalski, Pablo Masias, Francisco Montalvo, Joakim Möller, Ulrich Platt, Claudia Rivera, Armando Saballos, Giuseppe Salerno, Benoit Taisne, Freddy Vásconez, Gabriela Velásquez, Fabio Vita, and Mathieu Yalire
Earth Syst. Sci. Data, 13, 1167–1188, https://doi.org/10.5194/essd-13-1167-2021, https://doi.org/10.5194/essd-13-1167-2021, 2021
Short summary
Short summary
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017. Measurements were obtained by Network for Observation of Volcanic and Atmospheric Change (NOVAC) scanning differential optical absorption spectrometer (ScanDOAS) instruments at 32 volcanoes and processed using a standardized procedure. We show statistics of volcanic gas emissions under a variety of conditions and compare them with averages derived from measurements from space and historical inventories.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Cited articles
Ardhuin, F. and Herbers, T. H. C.: Noise generation in the solid Earth, oceans
and atmosphere, from nonlinear interacting surface gravity waves in finite
depth, J. Fluid Mech., 716, 316–348, https://doi.org/10.1017/jfm.2012.548, 2013.
Arrowsmith, S. J., Johnson, J. B., Drob, D. P., and Hedlin, M. A. H.: The
seismoacoustic wavefield: A new paradigm in studying geophysical phenomena,
Rev. Geophys., 48, RG4003, https://doi.org/10.1029/2010RG000335, 2010.
Assink, J. D., Averbuch, G., Smets, P. S. M., and Evers, L. G.: On the
infrasound detected from the 2013 and 2016 dprk's underground nuclear tests,
Geophys. Res. Lett., 43, 3526–3533, https://doi.org/10.1002/2016GL068497, 2016.
Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng,
T., and Huang, H.: Early and persistent supershear rupture of the 2018
magnitude 7.5 Palu earthquake, Nat. Geosci., 12, 200–205, https://doi.org/10.1038/s41561-018-0297-z, 2019.
Bernard, P. and Baumont, D.: Shear Mach wave characterization for kinematic
fault rupture models with constant supershear rupture velocity, Geophys.
J. Int., 162, 431–447, https://doi.org/10.1111/j.1365-246X.2005.02611.x, 2005.
Bouchon, M. and Vallée, M.: Observation of Long Supershear Rupture
during the Magnitude 8.1 Kunlunshan Earthquake, Science, 301, 824–826, https://doi.org/10.1126/science.1086832, 2003.
Bouchon, M., Toksöz, N., Karabulut, H., Bouin, M.-P., Dietrich, M.,
Aktar, M., and Edie, M.: Seismic imaging of the 1999 Izmit (Turkey) Rupture
inferred from the near-fault recordings, Geophys. Res. Lett., 27, 3013–3016,
https://doi.org/10.1029/2000GL011761, 2000.
Bowman, D. C.: Yield and emplacement depth effects on acoustic signals from
buried explosions in hard rock, B. Seismol. Soc.
Am., 109, 944–958, https://doi.org/10.1785/0120180285, 2019.
Cansi, Y.: An automatic seismic event processing for detection and location:
the PMCC method, Geophys. Res. Lett., 22, 1021–1024, https://doi.org/10.1029/95GL00468,
1995.
Doan, M.-L. and Gary, G.: Rock pulverization at high strain rate near the
San Andreas fault, Nat. Geosci., 2, 709–712, https://doi.org/10.1038/NGEO640, 2009.
Donn, W. L. and Naini, B.: Sea wave origin of microbaroms and microseisms,
J. Geophys. Res., 78, 4482–4488, https://doi.org/10.1029/JC078i021p04482, 1973.
Drob, D. P., Picone, J. M., and Garcés, M. A.: Global morphology of
infrasound propagation, J. Geophys. Res., 108, 4680, https://doi.org/10.1029/2002JD003307, 2003.
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C.
A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S., Reid,
I. M., and Vincent R. A.: An Empirical Model of the Earth's Horizontal Wind
Fields: HWM07, J. Geophys. Res., 113, A12304, https://doi.org/10.1029/2008JA013668, 2008.
Dunham, E. M. and Archuleta, R. J.: Evidence for a Supershear Transient
during the 2002 Denali Fault Earthquake, B. Seismol.
Soc. Am., 94, S256, https://doi.org/10.1785/0120040616, 2004.
ECMWF: European Centre for Medium-Range Weather Forecasts, Integrated Forecast System analysis data, available at: https://www.ecmwf.int (last access: 2 September 2019), 2018.
Gaebler, P., Ceranna, L., Nooshiri, N., Barth, A., Cesca, S., Frei, M., Grünberg, I., Hartmann, G., Koch, K., Pilger, C., Ross, J. O., and Dahm, T.: A multi-technology analysis of the 2017 North Korean nuclear test, Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, 2019.
Garcés, M. A.: On Infrasound Standards, Part 1: Time, Frequency, and
Energy Scaling, InfraMatics, 2, 13–35, https://doi.org/10.4236/inframatics.2013.22002, 2013.
Gibbons, S. J., Asming, V., Eliasson, L., Fedorov, A., Fyen, J., Kero, J.,
Kozlovskaya, E., Kvaerna, T., Liszka, L., Näsholm, S. P., Raita, T.,
Roth, M., Tiira, T., and Vinogradov, Y.: The European Arctic: A Laboratory
for Seismoacoustic Studies, Seismol. Res. Lett., 86, 917–928, https://doi.org/10.1785/0220140230, 2015a.
Gibbons, S. J., Kværna, T., and Mykkeltveit, S.: Could the IMS
Infrasound Stations Support a Global Network of Small Aperture Seismic
Arrays?, Seismol. Res. Lett., 86, 1148–1159, https://doi.org/10.1785/0220150068, 2015b.
Green, D. N., Vergoz, J., Gibson, R., Le Pichon A., and Ceranna, L.:
Infrasound radiated by the Gerdec and Chelopechene explosions: propagation
along unexpected paths, Geophys. J. Int., 185, 890–910, https://doi.org/10.1111/j.1365-246X.2011.04975.x, 2011.
Hedlin, M. A. H., Walker, K. T., Drob, D. P., and de Groot-Hedlin, C. D.:
Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere, Annu. Rev. Earth Pl. Sc., 40, 327–354, https://doi.org/10.1146/annurev-earth-042711-105508, 2012.
Heidarzadeh, M., Muhari, A., and Wijanarto, A. B.: Insights on the Source of
the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses
and Numerical Simulations, Pure Appl. Geophys., 176, 25–43, https://doi.org/10.1007/s00024-018-2065-9, 2019.
Hernandez, B., Le Pichon, A., Vergoz, J., Herry, P., Ceranna, L., Pilger,
C., Marchetti, E., Ripepe, M., and Bossu, R.: Estimating the Ground-Motion
Distribution of the 2016 Mw 6.2 Amatrice, Italy, Earthquake Using Remote
Infrasound Observations, Seismol. Res. Lett., 89, 2227–2236, https://doi.org/10.1785/0220180103, 2018.
Jamelot, A., Gailler, A., Heinrich, P., Vallage, A., and Champenois, J.:
Tsunami Simulations of the Sulawesi Mw 7.5 Event: Comparison of Seismic
Sources Issued from a Tsunami Warning Context Versus Post-Event Finite
Source, Pure Appl. Geophys., 176, 3351–3376, https://doi.org/10.1007/s00024-019-02274-5,
2019.
Katili, J. A.: Past and Present Geotectonic Position of Sulawesi, Indonesia,
Tectonophysics, 45, 289–322, https://doi.org/10.1016/0040-1951(78)90166-X, 1978.
Kulichkov, S. N., Chunchuzov, I. P., and Popov, O. I.: Simulating the
Influence of an Atmospheric Fine Inhomogeneous Structure on Long Range
Propagation of Pulsed Acoustic Signals, Izv. Atmos. Ocean.
Phys.+, 46, 60–68, https://doi.org/10.1134/S0001433810010093, 2010.
Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G., and Campillo, M.:
Explaining global patterns of microbarom observations with wave action
models, Geophys. J. Int., 199, 1328–1337, https://doi.org/10.1093/gji/ggu324,
2014.
Le Pichon, A., Guilbert, J., Vega, A., Garcés, M. A., and Brachet, N.:
Ground-coupled air waves and diffracted infrasound from the Arequipa
earthquake of June 23, 2001, Geophys. Res. Lett., 29, 1886–1889, https://doi.org/10.1029/2002GL015052, 2002.
Le Pichon, A., Guilbert, J., Vallée, M., Dessa, J. X., and Ulziibat, M.:
Infrasonic imaging of the Kunlun Mountains for the great 2001 China
earthquake, Geophys. Res. Lett., 30, 1814–1817, https://doi.org/10.1029/2003GL017581,
2003.
Le Pichon, A., Herry, P., Mialle, P., Vergoz, J., Brachet, N., Garces, M.
A., Drob, D., and Ceranna, L.: Infrasound associated with 2004–2005 large
Sumatra earthquakes and tsunami, Geophys. Res. Lett., 32, L19802, https://doi.org/10.1029/2005GL023893, 2005.
Le Pichon, A., Mialle, P., Guilbert, J., and Vergoz, J.: Multistation
infrasonic observations of the Chilean earthquake of 2005 June 13,
Geophys. J. Int., 167, 838–844, https://doi.org/10.1111/j.1365-246X.2006.03190.x, 2006.
Le Pichon, A., Blanc, E., and Hauchecorne, A. (Eds.): Infrasound Monitoring
for Atmospheric Studies, Springer, Heidelberg, Germany, ISBN 978-1-4020-9507-8, 2010.
Le Pichon, A., Ceranna, L., and Vergoz, J.: Incorporating numerical modeling
into estimates of the detection capability of the IMS infrasound network,
J. Geophys. Res., 117, D05121, https://doi.org/10.1029/2011JD016670, 2012.
Le Pichon, A., Blanc, E., and Hauchecorne, A. (Eds.): Infrasound for
Atmospheric Studies – Challenges in Middle Atmosphere Dynamics and Societal
Benefits, Springer, Heidelberg, Germany, ISBN 978-3-319-75138-2, 2019.
Marchetti, E., Lacanna, G., Le Pichon, A., Piccinini, D., and Ripepe, M.:
Evidence of large infrasonic radiation induced by earthquake interaction
with alluvial sediments, Seismol. Res. Lett., 87, 678–684, https://doi.org/10.1785/0220150223, 2016.
Matoza, R., Green, D. N., Le Pichon, A., Shearer, P. M., Fee, D., Mialle,
P., and Ceranna, L.: Automated detection and cataloging of global explosive
volcanism using the International Monitoring System infrasound network,
J. Geophys. Res.-Sol. Ea., 122, 2946–2971, https://doi.org/10.1002/2016JB013356,
2017.
Mutschlecner, J. P. and Whitaker, R. W.: Infrasound from earthquakes,
J. Geophys. Res., 110, D01108, https://doi.org/10.1029/2004JD005067, 2005.
Negraru, P. T., Golden, P., and Herrin, E. T.: Infrasound Propagation in the
“Zone of Silence”, Seismol. Res. Lett., 81, 614–624, https://doi.org/10.1785/gssrl.81.4.614, 2010.
Olson, J. V., Wilson, C. R., and Hansen, R. A.: Infrasound associated with the
2002 Denali fault earthquake, Alaska, Geophys. Res. Lett., 30, 2195–2198, https://doi.org/10.1029/2003GL018568, 2003.
Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato,
A., Proietti, C., Probst, P., Paparo, M. A., Wronna, M., Zaytsev, A.,
Pronin, P., Giniyatullin, A., Putra, P. S., Hartanto, D., Ginanjar, G.,
Kongko, W., Pelinovsky, E., and Yalciner, A. C.: The September 28th, 2018,
Tsunami In Palu-Sulawesi, Indonesia: A Post-Event Field Survey, Pure
Appl. Geophys., 176, 1379–1395, https://doi.org/10.1007/s00024-019-02145-z, 2019.
Pailoplee, S.: Probabilities of Earthquake Occurrences along the
Sumatra-Andaman Subduction Zone, Open Geosci., 9, 53–60, https://doi.org/10.1515/geo-2017-0004, 2017.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
Empirical Model of the Atmosphere: Statistical Comparisons and Scientific
Issues, J. Geophys. Res., 107, 1468–1483, https://doi.org/10.1029/2002JA009430,
2002.
Pilger, C., Ceranna, L., Ross, J. O., Vergoz, J., Le Pichon, A., Brachet, N.,
Blanc, E., Kero, J., Liszka, L., Gibbons, S., Kvaerna, T., Näsholm,
S. P., Marchetti, E., Ripepe, M., Smets, P., Evers, L., Ghica, D., Ionescu,
C., Sindelarova, T., Ben Horin, Y., and Mialle, P.: The European Infrasound
Bulletin, Pure Appl. Geophys., 175, 3619–3638, https://doi.org/10.1007/s00024-018-1900-3,
2018.
Shani-Kadmiel, S., Assink, J. D., Smets, P. S. M., and Evers, L. G.:
Seismoacoustic coupled signals from earthquakes in Central Italy: epicentral
and secondary sources of infrasound, Geophys. Res. Lett., 45, 427–435, https://doi.org/10.1002/2017GL076125, 2017.
Socquet, A., Hollingsworth, J., Pathier, E., and Bouchon, M.: Evidence of
supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy,
Nat. Geosci., 12, 192–199, https://doi.org/10.1038/s41561-018-0296-0, 2019.
Sutherland, L. C. and Bass, H. E.: Atmospheric absorption in the atmosphere
up to 160 km, J. Acoust. Soc. Am., 115, 1012–1032, https://doi.org/10.1121/1.1631937, 2004.
Tailpied, D., Le Pichon, A., Marchetti, E., Assink, J., and Vergniolle, S.:
Assessing and optimizing the performance of infrasound networks infrasound
networks to monitor volcanic eruptions, Geophys. J. Int.,
208, 437–448, https://doi.org/10.1093/gji/ggw400, 2017.
USGS: U.S. Geological Survey, Sulawesi 2018 earthquake event page, available
at: https://earthquake.usgs.gov/earthquakes/eventpage/us1000h3p4/ (last
access: 2 September 2019), 2018.
Walker, K. T., Le Pichon, A., Kim, T. S., de Groot-Hedlin, C., Che, I.-Y.,
and Garcés, M.: An analysis of ground shaking and transmission loss from
infrasound generated by the 2011 Tohoku earthquake, J. Geophys.
Res., 118, 12831–12851, https://doi.org/10.1002/2013JD020187, 2013.
Wang, D. and Mori, J.: The 2010 Qinghai, China, Earthquake: A Moderate
Earthquake with Supershear Rupture, B. Seismol. Soc.
Am., 102, 301–308, https://doi.org/10.1785/0120110034, 2012.
Waxler, R., Assink, J., Hetzer, C., and Velea, D.: NCPAprop – A software
package for infrasound propagation modeling, J. Acoust.
Soc. Am., 141, 3627–3627, https://doi.org/10.1121/1.4987797, 2017.
Wilson, D. K.: The sound-speed gradient and refraction in the near-ground
atmosphere, J. Acoust. Soc. Am., 113, 750–757, https://doi.org/10.1121/1.1532028, 2003.
Young, J. M. and Greene, G. E.: Anomalous infrasound generated by the
Alaskan earthquake of 28 march 1964, J. Acoust. Soc. Am., 71, 334–339, https://doi.org/10.1121/1.387457, 1982.
Yue, H., Lay, T., Freymueller, J. T., Ding, K., Rivera, L., Ruppert, N. A.,
and Koper, K. D.: Supershear rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake, J. Geophys. Res., 118, 5903–5919, https://doi.org/10.1002/2013JB010594,
2013.
Short summary
This paper provides infrasound data analysis, modeling, and interpretation of the source characteristics of the 28 September 2018 magnitude 7.5 Sulawesi earthquake. Epicentral ground movement by the earthquake rupture as well as the secondary shaking of nearby mountainous topography is responsible for the strong infrasound generated. Findings allow one to improve knowledge of infrasonic and seismoacoustic source processes and the monitoring capabilities of the infrasound arrays used.
This paper provides infrasound data analysis, modeling, and interpretation of the source...
Altmetrics
Final-revised paper
Preprint