Research article 10 Oct 2019
Research article | 10 Oct 2019
InSAR technique applied to the monitoring of the Qinghai–Tibet Railway
Qingyun Zhang et al.
Related authors
Bingquan Li, Wenliang Jiang, Yongsheng Li, Yi Luo, Haitao Qian, Yanchao Wang, Qisong Jiao, Qingyun Zhang, Zihan Zhou, and Jingfa Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-101, https://doi.org/10.5194/nhess-2021-101, 2021
Manuscript not accepted for further review
Short summary
Short summary
To identify the boundaries and deformation distributions of the unstable areas, the results of space-borne SAR and field surveys were combined, and the spatial deformation characteristics and time evolution of the landslide were analysed. The factor inducing landslide deformation is concentrated heavy rainfall. The research results show that SAR/InSAR technology can reveal the surface deformation of a landslide body and characterize the active stage and development trend.
Qingyun Zhang, Jingfa Zhang, Yongsheng Li, Bingqun Li, Quancai Xie, Sanming Luo, and Qingzun Ma
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-408, https://doi.org/10.5194/nhess-2020-408, 2021
Preprint withdrawn
Bingquan Li, Wenliang Jiang, Yongsheng Li, Yi Luo, Haitao Qian, Yanchao Wang, Qisong Jiao, Qingyun Zhang, Zihan Zhou, and Jingfa Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-101, https://doi.org/10.5194/nhess-2021-101, 2021
Manuscript not accepted for further review
Short summary
Short summary
To identify the boundaries and deformation distributions of the unstable areas, the results of space-borne SAR and field surveys were combined, and the spatial deformation characteristics and time evolution of the landslide were analysed. The factor inducing landslide deformation is concentrated heavy rainfall. The research results show that SAR/InSAR technology can reveal the surface deformation of a landslide body and characterize the active stage and development trend.
Qingyun Zhang, Jingfa Zhang, Yongsheng Li, Bingqun Li, Quancai Xie, Sanming Luo, and Qingzun Ma
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-408, https://doi.org/10.5194/nhess-2020-408, 2021
Preprint withdrawn
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
Qiang Li, Jingfa Zhang, and Hongbo Jiang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-20, https://doi.org/10.5194/nhess-2019-20, 2019
Revised manuscript not accepted
Short summary
Short summary
The work represents one of the first attempt to extract damaged buildings through the fusion of three types of data with different features at the scale of object. It addresses multivariate regression methodologies, and discusses the potentials of different features for application in this field of damage detection.
Jianfei Wang, Jingfa Zhang, Lixia Gong, Qiang Li, and Dan Zhou
Nat. Hazards Earth Syst. Sci., 18, 3253–3266, https://doi.org/10.5194/nhess-18-3253-2018, https://doi.org/10.5194/nhess-18-3253-2018, 2018
Short summary
Short summary
This paper focused on the indirect economic losses caused by the Wenchuan earthquake in 2008 and evaluated the progress of restoration and reconstruction based on nighttime light images. Results show that the GDP has a quadratic function relationship with the total nighttime lights under normal conditions, and the economy of the disaster area after the earthquake showed unstable and turbulent development. This research provides a basis for macro-control of earthquake recovery and reconstruction.
L. An, J. Zhang, and L. Gong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 39–43, https://doi.org/10.5194/isprs-archives-XLII-3-39-2018, https://doi.org/10.5194/isprs-archives-XLII-3-39-2018, 2018
L. Hu, C. Xing, K. Dai, Y. Li, Z. Li, J. Zhang, R. Yan, B. Xu, and Z. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 559–564, https://doi.org/10.5194/isprs-archives-XLII-3-559-2018, https://doi.org/10.5194/isprs-archives-XLII-3-559-2018, 2018
W. H. Shen, Y. Luo, and Q. S. Jiao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1533–1537, https://doi.org/10.5194/isprs-archives-XLII-3-1533-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1533-2018, 2018
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Opportunities and risks of disaster data from social media: a systematic review of incident information
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Challenging the timely prediction of landside early warning systems with multispectral remote sensing: a novel conceptual approach tested in the Sattelkar, Austria
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
UAV survey method to Monitoring and analysing geological hazards: The Case study of mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Why keep alert sirens in France?
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Three-dimensional rockfall shape back analysis: methods and implications
Effects of high-resolution geostationary satellite imagery on the predictability of tropical thunderstorms over Southeast Asia
Understanding the spatiotemporal development of human settlement in hurricane-prone areas on the US Atlantic and Gulf coasts using nighttime remote sensing
Pre-disaster mapping with drones: an urban case study in Victoria, British Columbia, Canada
New approaches to modelling of local seismic amplification susceptibility using direct characteristics of influencing criteria: case study of Bam City, Iran
SMC-Flood database: a high-resolution press database on flood cases for the Spanish Mediterranean coast (1960–2015)
Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds
Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data
Towards early warning of gravitational slope failure with co-detection of microseismic activity: the case of an active rock glacier
Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan–Guizhou Plateau (China) using the Revised Universal Soil Loss Equation
Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths
Response time to flood events using a social vulnerability index (ReTSVI)
Delimitation of flood areas based on a calibrated a DEM and geoprocessing: case study on the Uruguay River, Itaqui, southern Brazil
Identification and classification of urban micro-vulnerabilities in tsunami evacuation routes for the city of Iquique, Chile
Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment
Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia
A new approach for land degradation and desertification assessment using geospatial techniques
Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)
Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data
Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling
Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy)
A method for using unmanned aerial vehicles for emergency investigation of single geo-hazards and sample applications of this method
Brief communication: Vehicle routing problem and UAV application in the post-earthquake scenario
Multiple remote-sensing assessment of the catastrophic collapse in Langtang Valley induced by the 2015 Gorkha earthquake
GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events
Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application
Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan
Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021, https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-18, https://doi.org/10.5194/nhess-2021-18, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Multispectral remote sensing images enable landslide detection and monitoring, but its applicability for time–critical early–warning is rarely studied. Here we present a concept to operationalise the use for landslide early–warning aiming to extend lead time. We tested PlanetScope and UAS images on a complex mass movement and compared processing times to historic benchmarks. We show that acquired data is within the forecasting window approving the feasibility for landslide early–warning.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-378, https://doi.org/10.5194/nhess-2020-378, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanised context. The deformation of the ground is precursor of paroxysm in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will became both a naturalistic heritage and a source of development for the community of the area.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
Johnny Douvinet, Anna Serra-Llobet, Mathias Kondolf, Esteban Bopp, and Mathieu Péroche
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-390, https://doi.org/10.5194/nhess-2019-390, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This study aims at underlying reasons and factors explaining why sirens are the primary alerting tools available in France, and why successive governments have maintained their trust in these tools since the end of World War II, despite their well-known limitations (32 % of the residents covered in a radius of 1 km, no-sense for people, slowness in the validation process). Analysing the changes observed in Belgium and USA stresses the need for a multi-channel platform and a common protocol (CAP).
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
David A. Bonneau, D. Jean Hutchinson, Paul-Mark DiFrancesco, Melanie Coombs, and Zac Sala
Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019, https://doi.org/10.5194/nhess-19-2745-2019, 2019
Short summary
Short summary
In mountainous regions around the world rockfalls pose a hazard to infrastructure and society. To aid in our understanding and management of these complex hazards, an inventory can be compiled. Three-dimensional remote sensing data can be used to locate the source zones of these events and generate models of areas which detached. We address the way in which the shape of a rockfall object can be measured. The shape of a rockfall has implications for forward modelling of potential runout zones.
Kwonmin Lee, Hye-Sil Kim, and Yong-Sang Choi
Nat. Hazards Earth Syst. Sci., 19, 2241–2248, https://doi.org/10.5194/nhess-19-2241-2019, https://doi.org/10.5194/nhess-19-2241-2019, 2019
Short summary
Short summary
This study examined the advances in the predictability of thunderstorms using geostationary satellite imageries. Our present results show that by using the latest geostationary satellite data (with a resolution of 2 km and 10 min), thunderstorms can be predicted 90–180 min ahead of their mature state. These data can capture the rapidly growing cloud tops before the cloud moisture falls as precipitation and enable prompt preparation and the mitigation of hazards.
Xiao Huang, Cuizhen Wang, and Junyu Lu
Nat. Hazards Earth Syst. Sci., 19, 2141–2155, https://doi.org/10.5194/nhess-19-2141-2019, https://doi.org/10.5194/nhess-19-2141-2019, 2019
Short summary
Short summary
This study examined the spatiotemporal dynamics of nighttime satellite-derived human settlement in response to different levels of hurricane proneness in a period from 1992 to 2013. It confirms the
Snow Belt-to-Sun BeltUS population shift trend. The results also suggest that hurricane-exposed human settlement has grown in extent and area, as more hurricane exposure has experienced a larger increase rate in settlement intensity.
Maja Kucharczyk and Chris H. Hugenholtz
Nat. Hazards Earth Syst. Sci., 19, 2039–2051, https://doi.org/10.5194/nhess-19-2039-2019, https://doi.org/10.5194/nhess-19-2039-2019, 2019
Short summary
Short summary
We performed pre-disaster 3-D mapping with a drone in downtown Victoria, BC, Canada. This was the first drone mapping mission over a Canadian city approved by Canada’s aviation authority. We were legally constrained to using a specific drone. The goal was to assess the quality of the 3-D map. Results indicate that the spatial accuracies achieved with this drone would allow for sub-meter building collapse detection, but the non-tilting camera was insufficient for mapping buildings in 3-D.
Reza Hassanzadeh, Mehdi Honarmand, Mahdieh Hossienjani Zadeh, and Farzin Naseri
Nat. Hazards Earth Syst. Sci., 19, 1989–2009, https://doi.org/10.5194/nhess-19-1989-2019, https://doi.org/10.5194/nhess-19-1989-2019, 2019
Short summary
Short summary
This paper proposes a new model for evaluating local seismic amplification susceptibility by considering direct characteristics of influencing criteria and dealing with uncertainty of modelling through production of fuzzy membership functions and GIS. This model helps planners and decision makers easily produce local seismic amplification susceptibility to be incorporated in designing development plans of urban areas and to evaluate safety measures of existing infrastructure.
Salvador Gil-Guirado, Alfredo Pérez-Morales, and Francisco Lopez-Martinez
Nat. Hazards Earth Syst. Sci., 19, 1955–1971, https://doi.org/10.5194/nhess-19-1955-2019, https://doi.org/10.5194/nhess-19-1955-2019, 2019
Short summary
Short summary
In this study the SMC-Flood database for the municipalities of the Mediterranean coast of mainland Spain is presented. This database has enabled the reconstruction of 3008 cases of flooding on a municipal scale between 1960 and 2015. The data analysis reveals a growing trend in the frequency and area affected by flood cases. The main novelty lies in the fact that we have detected a clear latitudinal gradient of growing intensity and severity of flood cases with a north–south direction.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Hongyan Chen, Gengxing Zhao, Yuhuan Li, Danyang Wang, and Ying Ma
Nat. Hazards Earth Syst. Sci., 19, 1499–1508, https://doi.org/10.5194/nhess-19-1499-2019, https://doi.org/10.5194/nhess-19-1499-2019, 2019
Short summary
Short summary
Using Landsat data, the inversion model of soil salt content (SSC) for different seasons was determined in the Kenli District in the Yellow River Delta region of China. The SSC exhibited a gradual increasing trend from the southwest to northeast. The SSC accumulated in spring, decreased in summer, increased in autumn and reached its peak at the the end of winter. The results can provide data for the control of soil salt hazards and utilization of saline–alkali soil.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Yue Li, Shi Qi, Bin Liang, Junming Ma, Baihan Cheng, Cong Ma, Yidan Qiu, and Qinyan Chen
Nat. Hazards Earth Syst. Sci., 19, 757–774, https://doi.org/10.5194/nhess-19-757-2019, https://doi.org/10.5194/nhess-19-757-2019, 2019
Short summary
Short summary
This study fully considers the characteristics of expressways in mountain areas. The catchment area is considered a prediction unit. The method of slope division is improved, and a method of improving the parameters in the model is proposed. Comparison and analysis with actual observation data show that the method of soil and water loss prediction adopted in this paper has less error and higher prediction accuracy than other models and can satisfy prediction requirements.
Huseyin Duman and Dogan Ugur Sanli
Nat. Hazards Earth Syst. Sci., 19, 571–582, https://doi.org/10.5194/nhess-19-571-2019, https://doi.org/10.5194/nhess-19-571-2019, 2019
Short summary
Short summary
Research has been done to assess the performance of relative positioning over long baseline lengths in determining the accuracy of site velocities from GPS campaign measurements. GPS campaign measurements were generated from the IGS data, and the results were compared with PPP-derived findings. A major outcome of this study is that relative positioning over long baseline lengths produces similar accuracies to PPP. A newly proposed refinement method also improves the available PPP accuracy.
Alvaro Hofflinger, Marcelo A. Somos-Valenzuela, and Arturo Vallejos-Romero
Nat. Hazards Earth Syst. Sci., 19, 251–267, https://doi.org/10.5194/nhess-19-251-2019, https://doi.org/10.5194/nhess-19-251-2019, 2019
Short summary
Short summary
In this work, we propose a novel methodology (ReTSVI) to integrate a social vulnerability index into flood hazard methodologies. ReTSVI combines a series of modules that are pieces of information that interact during an evacuation, such as evacuation rate curves, mobilization, inundation models, and social vulnerability indexes, to create an integrated map of the evacuation rate in a given location.
Paulo Victor N. Araújo, Venerando E. Amaro, Robert M. Silva, and Alexandre B. Lopes
Nat. Hazards Earth Syst. Sci., 19, 237–250, https://doi.org/10.5194/nhess-19-237-2019, https://doi.org/10.5194/nhess-19-237-2019, 2019
Short summary
Short summary
This paper aims to map flood hazard areas under the influence of the Uruguay River, Itaqui (southern Brazil), using a calibrated digital elevation model (DEM), historic river level data and geoprocessing techniques. Assessment of the areas that can potentially be flooded can help to reduce the negative impact of flood events by supporting the process of land-use planning in areas exposed to flood hazards.
Gonzalo Álvarez, Marco Quiroz, Jorge León, and Rodrigo Cienfuegos
Nat. Hazards Earth Syst. Sci., 18, 2027–2039, https://doi.org/10.5194/nhess-18-2027-2018, https://doi.org/10.5194/nhess-18-2027-2018, 2018
Short summary
Short summary
Evacuation planning has been recognized as one of the best tools for safeguarding the population against tsunami hazards. In this work we develop a novel methodology to identify and classify urban micro-vulnerabilities that may difficult pedestrian evacuation processes resulting from problems in urban design or informal uses of the public space. The correct identification and correction of these issues could make the difference in saving lives when the available time for evacuation is short.
Johnny Cusicanqui, Norman Kerle, and Francesco Nex
Nat. Hazards Earth Syst. Sci., 18, 1583–1598, https://doi.org/10.5194/nhess-18-1583-2018, https://doi.org/10.5194/nhess-18-1583-2018, 2018
Short summary
Short summary
Aerial multi-perspective images can be used for the effective assessment of post-disaster structural damage. Alternatively, rapidly available video data can be processed for the same purpose. However, video quality characteristics are different than those of images taken with still cameras. The use of video data in post-disaster damage assessment has not been demonstrated. Based on a comparative assessment, our findings support the application of video data in post-disaster damage assessment.
Denis Feurer, Olivier Planchon, Mohamed Amine El Maaoui, Abir Ben Slimane, Mohamed Rached Boussema, Marc Pierrot-Deseilligny, and Damien Raclot
Nat. Hazards Earth Syst. Sci., 18, 1567–1582, https://doi.org/10.5194/nhess-18-1567-2018, https://doi.org/10.5194/nhess-18-1567-2018, 2018
Short summary
Short summary
We present a method for acquiring very-high-resolution images for 3-D mapping of gullies over kilometre-square areas using kites. Kites used in appropriate conditions can be an advantageous alternative to light unmanned aircraft when local regulations or weather conditions hamper their use. We proved that kites can acquire images, allowing for high-quality 3-D coverage of large areas. We automatically detected and mapped gullies from a decimetre kite DEM with 74 % accuracy of the length.
Masoud Masoudi, Parviz Jokar, and Biswajeet Pradhan
Nat. Hazards Earth Syst. Sci., 18, 1133–1140, https://doi.org/10.5194/nhess-18-1133-2018, https://doi.org/10.5194/nhess-18-1133-2018, 2018
Short summary
Short summary
The paper attempts to create a new technique for assessing the current state of land degradation. Assessment of land degradation is difficult, because it includes a complex process. This assessment, using RS and GIS seems to be more realistic in finding the degree of degradation, because it is more related to its impact on land productivity. It is hoped that this attempt, which is the first attempt of its kind in the world, will be found applicable for other regions.
Benoit Deffontaines, Kuo-Jen Chang, Johann Champenois, Kuan-Chuan Lin, Chyi-Tyi Lee, Rou-Fei Chen, Jyr-Ching Hu, and Samuel Magalhaes
Nat. Hazards Earth Syst. Sci., 18, 829–845, https://doi.org/10.5194/nhess-18-829-2018, https://doi.org/10.5194/nhess-18-829-2018, 2018
Short summary
Short summary
To better settle the location and quantify the activity of the Hengchun Fault, we integrate UAS for geomorphologic data acquisitions, photograph and morphotectonic interpretation. Then PS-InSAR results, validated with GPS and leveling data, allow characterizing and quantifying the surface displacements. We confirm the geometry, characterization and quantification of the active sinistral transpressive Hengchun fault. The potential hazards are worthy of further investigation.
Kuo-Jen Chang, Yu-Chang Chan, Rou-Fei Chen, and Yu-Chung Hsieh
Nat. Hazards Earth Syst. Sci., 18, 709–727, https://doi.org/10.5194/nhess-18-709-2018, https://doi.org/10.5194/nhess-18-709-2018, 2018
Short summary
Short summary
Several remote sensing techniques, i.e., aerial photographs, drone images, and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence, subsequent geomorphological evolution, and potential hazards. Two large-scale landslides were characterized and quantified in this study.
Ákos Török, Árpád Barsi, Gyula Bögöly, Tamás Lovas, Árpád Somogyi, and Péter Görög
Nat. Hazards Earth Syst. Sci., 18, 583–597, https://doi.org/10.5194/nhess-18-583-2018, https://doi.org/10.5194/nhess-18-583-2018, 2018
Short summary
Short summary
The present study demonstrates the application of drones and terrestrial laser scanner in stability assessment of steep, hardly accessible rock slopes that can endanger human lives. These technologies can be deployed very quickly, but data processing requires time. For reliable hazard evaluation, besides these techniques, engineering geological field work, laboratory tests of the mechanical properties of rocks and computer simulations are also necessary.
Riccardo Salvini, Giovanni Mastrorocco, Giuseppe Esposito, Silvia Di Bartolo, John Coggan, and Claudio Vanneschi
Nat. Hazards Earth Syst. Sci., 18, 287–302, https://doi.org/10.5194/nhess-18-287-2018, https://doi.org/10.5194/nhess-18-287-2018, 2018
Short summary
Short summary
Remotely Piloted Aircraft System was used for the engineering geological investigation of a marble mine area in Italy. High resolution images were processed by using SfM techniques for obtaining an accurate and detailed three-dimensional model of the area. Geological and geometrical information was used for a preliminary stability analysis with focus on investigating the contribution of potential rock bridges of two large blocks that pose a potential hazard issue for the workforce.
Haifeng Huang, Jingjing Long, Wu Yi, Qinglin Yi, Guodong Zhang, and Bangjun Lei
Nat. Hazards Earth Syst. Sci., 17, 1961–1979, https://doi.org/10.5194/nhess-17-1961-2017, https://doi.org/10.5194/nhess-17-1961-2017, 2017
Short summary
Short summary
Unmanned aerial vehicles are widely used in the emergency investigations of major natural hazards in a large area, but less commonly for single geo-hazards. Based on a number of successful practices in the Three Gorges Reservoir area, China, a complete UAV-based emergency investigation method of single geo-hazards is concluded. It can not only greatly reduce the time, strength and risks, but can also provide high-accuracy, high-definition valuable information to support emergency responses.
Marco Cannioto, Antonino D'Alessandro, Giosuè Lo Bosco, Salvatore Scudero, and Giovanni Vitale
Nat. Hazards Earth Syst. Sci., 17, 1939–1946, https://doi.org/10.5194/nhess-17-1939-2017, https://doi.org/10.5194/nhess-17-1939-2017, 2017
Short summary
Short summary
Immediately after an earthquake it is crucial to perform the fastest recognition of the damaged area to rescue as much people is possible and to assess and map the damage scenario. We apply the vehicle routing problem (VRP) to a fleet of unmanned aerial vehicles (UAVs) to find the shortest routes and the best take-off sites. The simulation, performed with different autonomy ranges, is carried out in the town of Acireale (Italy), where a real-time accelerometric network has been installed.
Hiroto Nagai, Manabu Watanabe, Naoya Tomii, Takeo Tadono, and Shinichi Suzuki
Nat. Hazards Earth Syst. Sci., 17, 1907–1921, https://doi.org/10.5194/nhess-17-1907-2017, https://doi.org/10.5194/nhess-17-1907-2017, 2017
Short summary
Short summary
We demonstrated an assessment of the sediments caused by a catastrophic avalanche, induced by the main shock of the 2015 Gorkha Earthquake in Nepal. A Japanese space-borne sensor, PALSAR-2, have a high potential for delineating the hazardous zone. Comparison of pre- and post-high-resolution topographic data estimates the avalanche-induced sediment volume as 5.51 × 106 m3. High-resolution satellite imagery revealed that it has multiple layers of sediment with different physical properties.
William Frodella, Teresa Salvatici, Veronica Pazzi, Stefano Morelli, and Riccardo Fanti
Nat. Hazards Earth Syst. Sci., 17, 1779–1793, https://doi.org/10.5194/nhess-17-1779-2017, https://doi.org/10.5194/nhess-17-1779-2017, 2017
Short summary
Short summary
A local scale GB-InSAR system was implemented for mapping and monitoring slope landslide residual deformations and for early warning purposes in case of landslide reactivations, with the aim of assuring the safety of the valley inhabitants and the personnel involved in the post-event recovery phase. The here presented methodology could represent a useful contribution to a better understanding of landslide phenomena and decision making process during the post-emergency management activities.
Emanuele Intrieri, Federica Bardi, Riccardo Fanti, Giovanni Gigli, Francesco Fidolini, Nicola Casagli, Sandra Costanzo, Antonio Raffo, Giuseppe Di Massa, Giovanna Capparelli, and Pasquale Versace
Nat. Hazards Earth Syst. Sci., 17, 1713–1723, https://doi.org/10.5194/nhess-17-1713-2017, https://doi.org/10.5194/nhess-17-1713-2017, 2017
Short summary
Short summary
Landslides are a threat not only to people but also to important infrastructure, like highways. Nowadays there are several monitoring systems that are able to detect slope displacements in order to give prompt alarms. On the other hand, such instruments produce a huge amount of information, which is often not totally used and which can also represent an issue for data storage and transmission. In this paper we explain how we dealt with the large quantity of data provided by one of these tools.
Atsuto Izumida, Shoichiro Uchiyama, and Toshihiko Sugai
Nat. Hazards Earth Syst. Sci., 17, 1505–1519, https://doi.org/10.5194/nhess-17-1505-2017, https://doi.org/10.5194/nhess-17-1505-2017, 2017
Short summary
Short summary
Geomorphic impact of the 2015 flood of the Kinu River, which created a new crevasse splay on its floodplain, was quantified by volumetric calculations using three topographic data obtained by aerial laser scanning (ALS) and UAV photogrammetry. Topographic changes on the order of 0.1 m were detected, and the erosive character of the crevasse splay was revealed. The results suggest that a combination of ALS and UAV is useful for quantification of sudden topographic changes through disasters.
Amin Beiranvand Pour and Mazlan Hashim
Nat. Hazards Earth Syst. Sci., 17, 1285–1303, https://doi.org/10.5194/nhess-17-1285-2017, https://doi.org/10.5194/nhess-17-1285-2017, 2017
Short summary
Short summary
L-band SAR remote sensing data are used for identification of high potential risk and susceptible zones for natural hazards of geological origin in tropical environments. Results of this investigation have great potential in terms of a solution to flood disaster management in tropical environments by providing important information to assess the natural hazards of geological origin.
Luisa Griesbaum, Sabrina Marx, and Bernhard Höfle
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, https://doi.org/10.5194/nhess-17-1191-2017, https://doi.org/10.5194/nhess-17-1191-2017, 2017
Short summary
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
Cited articles
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A New Algorithm
for Surface Deformation Monitoring Based on Small Baseline Differential SAR
Interferograms, IEEE T. Geosci. Remote, 40,
2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002.
Biggs, J., Wright, T., Lu Z., and Parsons, B.: Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska, Geophys. J. Roy. Astro. Soc., 170, 1165001179, https://doi.org/10.1111/j.1365-246X.2007.03415.x, 2007.
Brown, J., Hinkel, K. M., and Nelson, F. E.: The Circumpolar Activelayer
Monitoring (CALM) Program: Research Designs and Initial Results, Polar
Geogr., 24, 166–258, https://doi.org/10.1080/10889370009377698, 2000.
Chang, Z. Q., Liu, X. M., Xue, T. F., and Yang, R. R.: Investigating ground
subsidence in Beijing by using interferogram stacking InSAR, IEEE
International Conference on Spatial Data Mining & Geographical Knowledge
Services, 29 June–1 July, Fuzhou, China, https://doi.org/10.1109/ICSDM.2011.5969068, 2011.
Chen, F. L., Lin, H., Li, Z., and Zhou, J. M.: Interaction between
permafrost and infrastructure along the Qinghai-Tibet Railway detected via
jointly analysis of C- and L-band small baseline SAR interferometry, Remote
Sens. Environ., 123, 532–540, https://doi.org/10.1016/j.rse.2012.04.020,
2012.
Chen, G. D.: Constructing of the Qinghai-Tibet Railroad using the principle of cooling the roadbed, China Railway Science., 24, 1–4, 2003.
Chen, T., Ma, W., and Zhou, G.: Numerical analysis of ground motion
characteristics in permafrost regions along the Qinghai-Tibet Railway, Cold Reg. Sci. Technol., 148, 88–95,
https://doi.org/10.1016/j.coldregions.2018.01.016, 2018.
Corsetti, M., Fossati, F., Manunta, M., and Marsella, M.: Advanced
SBAS-DInSAR technique for controlling large civil infrastructures: An
Application to the Genzano di Lucania Dam, Sensors, 18, 1–30, https://doi.org/10.3390/s18072371, 2018.
Dai, K. R., Liu, G. X., Li, Z. H., Ma, D. Y., Wang, X. W., Zhang, B., Tang,
J., and Li, G. Y.: Monitoring Highway Stability in Permafrost Regions with
X-band Temporary Scatterers Stacking InSAR, Sensors, 18, 1–17, https://doi.org/10.3390/s18061876, 2018.
Daniel, C., Ken, T., Hébert, D., Glenn, H., Matthew, G., and Parwant,
G.: Satellite-Based InSAR Monitoring of Highway Bridges: Validation Case
Study on the North Channel Bridge in Ontario, Canada, Transp. Res. Record, 45,
76–86, https://doi.org/10.1177/0361198118795013, 2018.
Dong S. C., Samsonov, S., Yin, H. W., Ye, S. J., and Cao, Y. R.: Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method, Environ. Earth Science., 72, 677–691, https://doi.org/10.1007/s12665-013-2990-y, 2014.
Dong, C. H. and Zhao, X. Q.: Analysis on subgrade deformation features and
influence factors in permafrost regions on Qinghai-Tibet Railway, Railway
Standard Design, 6, 5–8, 2013.
Ferretti, A.: Nonlinear subsidence rate estimation using permanent scatters
in differential SAR interferometry, IEEE T. Geosci.
Remote, 38, 2202ßß2212, https://doi.org/10.1109/36.868878, 2000.
Ferretti, A.: Permanent scatterers in SAR interferometry, IEEE T.
Geosci. Remote, 39, 8ßß20, https://doi.org/10.1109/36.898661,
2001.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A.: Mapping small elevation
changes over large areas: Differential radar interferometry, J.
Geophys. Res.-Sol. Ea., 94, 9183–9191, https://doi.org/10.1029/JB094iB07p09183, 1989.
Garthwaite, M. C., Wang, H., and Wright, T. J.: Broadscale interseismic
deformation and fault slip rates in the central Tibetan Plateau observed
using InSAR, J. Geophys. Res.-Sol. Ea., 118, 5071–5083,
https://doi.org/10.1109/TGRS.2009.2019125, 2013.
Gatti, G., Wang, T., and Perissin, D.: Railways monitoring by means of
repeated space-borne SAR images, Spatial Information Technologies for
Monitoring the Deformation of Large-Scale Man-made Linear Features, Hong
Kong, China, 11–12 January 2010.
Han, Y. F., Song, X. G., Shan, X. J., Qu, C. Y., Wang, C. S., Guo, L. M.,
Zhang, G. F., and Liu, Y. H.: Deformation monitoring of Changbaishan Tianchi
voleano using D-InSAR technique and error analysis, Chinese J.
Geophys., 53, 1571–1579, 2010.
Hoppe, E., Bruckno, B., Acton, S., and Bohane, A.: Transportation
Infrastructure Monitoring Using Satellite Remote Sensing, Materials and
Infrastructures 1, John Wiley & Sons Inc, UK, https://doi.org/10.1002/9781119318583, 2014.
Hu, M. J., Wang, R., Tan, S. L., and Shi, X. F.: Development of drill
monitoring instrument for frozen soil settlement, Rock Soil Mech.,
28, 2215–2218, 2007.
Hung, W. C., Hwang, C., Chang, C. P., Yen, J. Y., Liu, C. H., and Yang, W.
H.: Monitoring severe aquifer-system compaction and land subsidence in
taiwan using multiple sensors: yunlin, the southern choushui river alluvial
fan, Environ. Earth Sci., 59, 1535–1548, 2010.
Jiang, Y., Gao, Y., Dong, Z. B., Liu, B. L., and Zhao, L.: Simulations of
wind erosion along the Qinghai-Tibet Railway in north-central Tibet, Aeolian
Res., 32, 192–201, https://doi.org/10.1016/j.aeolia.2018.03.006, 2018.
Jin, H. J., Yu, Q. H., Wang, S. L., and Lv, L. Z.: Changes in Permafrost
Environments along the Qinghai-Tibet Engineering Corridor Induced by
Anthropogenic Activities and Climate Warming, Cold Reg. Sci.
Technol., 53, 317–333, https://doi.org/10.1016/j.coldregions.2007.07.005, 2008.
Li, S. S.: The study of using SBAS to monitor the Motion of the frozen soil
along Qinghai-Tibet railway, Central south University, 2012.
Li, Y. S.: Surface Deformation Co-seismic and Post-seismic Activity
Constrained by Advanced InSAR Time Series Analysis, Institute of Engineering
Mechanics,China EarthquakeAdministration, Harbin, 2014.
Li, Z. H., Fielding, E. J., and Cross, P.: Integration of In SAR time-series
analysis and water-vapor correction for mapping postseismic motion after the
2003 Bam (Iran) earthquake, Geosci. Remote Sens., 47, 3220–3230,
2009.
Liu, J. K., Bao, W. M., Han, X. G., and Bao, L. M.: Observation and analysis
of a new type embankment-bridge transition section in permafrost regions,
J. Glaciol. Geocryol., 26, 800–805, https://doi.org/10.1007/BF02911033, 2004.
Liu, Y. Z., Wu, Q. B., and Zhang, J. M.: Study on ground temperature field
in permafrost regions of Qinghai-Tibet Plateau, Highway, 2, 4–8, 2000.
Lundgren, P., Usai, S., Sansoti, E., Lanari, R., Tesauro, M., Fornaro G.,
and Berardino, P.: Modelling surface deformation observed with synthetic
aperture radar interferometry at Campi Flegrei caldera, J.
Geophys. Res., 106, 19355–19366, https://doi.org/10.1029/2001jb000194,
2001.
Ma, W., Mu, Y. H., and Wu, Q. B.: Characteristics and mechanisms of
embankment deformation along the Qinghai-Tibet Railway in permafrost
regions, Cold Reg. Sci. Technol., 67, 178–186, 2011.
Qin, X., Yang, M., Wang, H., Yang, T., and Liao, M.: Application of
high-resolution ps-insar in deformation characteristics probe of urban rail
transit, Acta Geodaetica et Cartographica Sinica, 45, 713–721, https://doi.org/10.11947/j.AGCS.2016.20150440, 2016.
Rosi, A., Tofani, V., Tanteri, L., Tacconi, S. C., Agostini, A., Catani, F.,
and Casagli, N.: The new landslide inventory of Tuscany (Italy) updated with
PS-InSAR: geomorphological features and landslide distribution, Landslides,
15, 5–19, https://doi.org/10.1007/s10346-017-0861-4, 2017.
Ryder, I., Wang, H., Bie, L., and Rietbrock, A.: Geodetic imaging of late
postseismic lower crustal flow in Tibet, Earth Planet. Sc.
Lett., 404, 136–143, https://doi.org/10.1016/j.epsl.2014.07.026, 2014.
Shan, W., Wang, C. J., and Hu, Q.: Expressway and Road Area Deformation
Monitoring Research Based on InSAR Technology in Isolated Permafrost Area,
IEEE International Conference on Remote Sensing, 1–3 June, 1–5, https://doi.org/10.1109/RSETE.2012.6260574, 2012.
Taylor, M. and Peltzer, G.: Current slip rates on conjugate strike-slip
faults in central Tibet using synthetic aperture radar interferometry,
J. Geophys. Res.-Sol. Ea., 111, B12402,
https://doi.org/10.1029/2005JB004014, 2006.
Wang, C., Liu, Z., Zhang, H., and Shan, X. J.: Differential interferometry
for the same seismic deformation field of Shangyi – Zhangbei earthquake,
Chinese Sci. Bull., 45, 2550–2554, 2000.
Welk, J. E.: Railway Crossing Collision Avoidance System, U.S. Patent, 5,
699-986, 23, 1997.
Wu, Q. B. and Zhang, T. J.: Recent permafrost warming on the
Qinghai-Tibetan Plateau, J. Geophys. Res., 113, 1–22, https://doi.org/10.1029/2007JD009539, 2008.
Wu, Q. B., Cheng, G. D., and Ma, W.: The impact of climate warming on
Qinghai-Tibetan Railroad, Sci. China, 47, 122–130, https://doi.org/10.3969/j.issn.1673-1719.2008.z1.012, 2004.
Wu, Z., Chen, T., Zhao, T., and Wang, L. L.: Dynamic response analysis of
railway embankments under train loads in permafrost regions of the
Qinghai-Tibet Plateau, Soil Dyn. Earthq. Eng., 112, 1–7,
https://doi.org/10.1016/j.soildyn.2018.04.047, 2018.
Wu, Z. J., Ma, W., Chen, T., and Wang, L.: Dynamic Stability Analysis of
Embankment along the Qinghai-Tibet Railroad in Permafrost Regions,
Environmental Vibrations and Transportation Geodynamics, 28–30 October, Hanzhou, China, 757–766, https://doi.org/10.1007/978-981-10-4508-0_70, 2016.
Xing, X., Wen, D., Chang, H. C., Chen, L. F., and Yuan, Z. H.: Highway
Deformation Monitoring Based on an Integrated CRInSAR Algorithm-Simulation
and Real Data Validation, Int. J. Pattern Recogn., 32, 1–19, https://doi.org/10.1142/S0218001418500362, 2018.
Yang, Z. Y.: Monitoring and predicting railway subsidence using InSAR and time series prediction techniques, University of Birmingham, 2015.
Yu, B., Liu, G., Zhang, R., Jia, H., Li, T., and Wang, X.: Monitoring
subsidence rates along road network by persistent scatterer sar
interferometry with high-resolution terrasar-x imagery, J. Modern
Transport., 21, 236–246, https://doi.org/10.1007/s40534-013-0030-y, 2013.
Zhang, X. Z. and Wang, X. H.: Deformation characteristics of culverts in permafrost regions of Qinghai-Tibet Railway, Hydrogeol. Eng. Geol., 2, 55–58, 2006.
Zhang, Z. J.: Research on Qinghai-Tibet Permafrost Environment and
Engineering using High Resolution SAR Images, Institute of Remote Sensing
and Digital Earth, Chinese Academy of Science, 2017.
Zhao, L., Wu, Q. B., Marchenko, S. S., and Sharkhuu, N.: Thermal State of
Permafrost and Active Layer Incentral Asia during the International Polar
Year, Permafrost Periglac., 21, 198–207, https://doi.org/10.1002/ppp.688, 2010.
Short summary
Before the opening of the railway, the deformation of the Qinghai–Tibet Railway was very small and considered stable. After opening, the overall stability of the railway section was good. The main deformation areas are concentrated in the areas where railway lines turn and geological disasters are concentrated. In order to ensure the safety of railway operation, it is necessary to carry out long-term time series observation along the Qinghai–Tibet Railway.
Before the opening of the railway, the deformation of the Qinghai–Tibet Railway was very small...
Altmetrics
Final-revised paper
Preprint