- Articles & preprints
- Submission
- Policies
- Peer review
- Editorial board
- About
- EGU publications
- Manuscript tracking
06 Jan 2021
06 Jan 2021
Abstract. The Kumamoto earthquake is analyzed mainly with InSAR data combined with strong earthquake and GPS data, using a variety of joint InSAR technology methods and multisource data solution methods and comprehensively considering the normalization and weighting of multisource data. The three-dimensional (3D) deformation field is determined. The results show that the joint solution of multisource data can improve the accuracy of the 3D solution deformation results to a certain extent. From the 3D solution results, the maximum east-west deformation caused by the 2016 Kumamoto earthquake is approximately 2 m; the north-south direction mainly manifests expansion and stretching; the northwestern side subsides vertically, with a maximum subsidence of 2 m; and the southeastern side is uplifted. The horizontal deformation characteristics show that the earthquake is dominated by right-lateral strike-slip; the strike is NE-SW, the dip of the seismogenic fault is nearly vertical, and the Futagawa fault has a few normal fault properties. By analyzing the coseismic 3D deformation field, the seismogenic fault can be better understood, which provides a foundation for studying seismic mechanisms.
Qingyun Zhang et al.
Status: open (until 17 Feb 2021)
The paper "Three-dimensional deformation field analysis of the 2016 Kumamoto Mw 7.1 earthquake" by Zhang et al. provides a technical, straightforward methodology to combine either multiple InSAR data or heterogeneous InSAR and geodetic datasets to build a 3-component displacement map for earthquakes. The technique is well known, being used for almost two decades. The paper is technically correct, but its novelty is questionable.
Line 55, azimuthal InSAR is also described in
Barbot, S., Hamiel, Y. and Fialko, Y., 2008. Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw7. 2 Altai earthquake: Implications for the local lithospheric rheology. Journal of Geophysical Research: Solid Earth, 113(B3).
Line 356: I do not see a justification for the vertical fault. Modeling of the deformation indicates north-dipping faults. See
Moore, J.D., Yu, H., Tang, C.H., Wang, T., Barbot, S., Peng, D., Masuti, S., Dauwels, J., Hsu, Y.J., Lambert, V. and Nanjundiah, P., 2017. Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake. Science, 356(6334), pp.163-167.
Qingyun Zhang et al.
Qingyun Zhang et al.
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
149 | 32 | 4 | 185 | 1 | 1 |
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
An interactive open-access journal of the European Geosciences Union