Articles | Volume 19, issue 8
https://doi.org/10.5194/nhess-19-1601-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-1601-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effects of changing climate on estuarine water levels: a United States Pacific Northwest case study
Kai Parker
CORRESPONDING AUTHOR
School of Civil and Construction Engineering, Oregon State University,
Corvallis, Oregon 97330, USA
David Hill
School of Civil and Construction Engineering, Oregon State University,
Corvallis, Oregon 97330, USA
Gabriel García-Medina
Marine Sciences Laboratory, Pacific Northwest National Laboratory,
Seattle, Washington 98109, USA
Jordan Beamer
Oregon Water Resources Department, Salem, Oregon 97301, USA
Related authors
Katherine A. Serafin, Peter Ruggiero, Kai Parker, and David F. Hill
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019, https://doi.org/10.5194/nhess-19-1415-2019, 2019
Short summary
Short summary
In coastal environments, extreme water levels driving flooding are often generated by many individual processes like storm surge, streamflow, and tides. To estimate flood drivers along a coastal river, we merge statistical simulations of ocean and river forcing with a hydraulic model to produce water levels. We find both ocean and river forcing are necessary for producing extreme flood levels like the 100-yr event, highlighting the need for considering compound events in flood risk assessments.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Lindsay M. Sheridan, Raghu Krishnamurthy, Gabriel García Medina, Brian J. Gaudet, William I. Gustafson Jr., Alicia M. Mahon, William J. Shaw, Rob K. Newsom, Mikhail Pekour, and Zhaoqing Yang
Wind Energ. Sci., 7, 2059–2084, https://doi.org/10.5194/wes-7-2059-2022, https://doi.org/10.5194/wes-7-2059-2022, 2022
Short summary
Short summary
Using observations from lidar buoys, five reanalysis and analysis models that support the wind energy community are validated offshore and at rotor-level heights along the California Pacific coast. The models are found to underestimate the observed wind resource. Occasions of large model error occur in conjunction with stable atmospheric conditions, wind speeds associated with peak turbine power production, and mischaracterization of the diurnal wind speed cycle in summer months.
Katherine A. Serafin, Peter Ruggiero, Kai Parker, and David F. Hill
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019, https://doi.org/10.5194/nhess-19-1415-2019, 2019
Short summary
Short summary
In coastal environments, extreme water levels driving flooding are often generated by many individual processes like storm surge, streamflow, and tides. To estimate flood drivers along a coastal river, we merge statistical simulations of ocean and river forcing with a hydraulic model to produce water levels. We find both ocean and river forcing are necessary for producing extreme flood levels like the 100-yr event, highlighting the need for considering compound events in flood risk assessments.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Thomas M. Mosier, David F. Hill, and Kendra V. Sharp
The Cryosphere, 10, 2147–2171, https://doi.org/10.5194/tc-10-2147-2016, https://doi.org/10.5194/tc-10-2147-2016, 2016
Short summary
Short summary
Our paper presents the Conceptual Cryosphere Hydrology Framework (CCHF), a tool to enable more rapid development and intercomparison of cryosphere process representations. Using the CCHF, we demonstrate that some common existing degree index cryosphere models are not well suited for assessing impacts across climates, even though these models appear to perform well under a common evaluation strategy. We show that more robust models can be formulated without increasing data input requirements.
Related subject area
Sea, Ocean and Coastal Hazards
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Untangling the Waves: Decomposing Extreme Sea Levels in a non-tidal basin, the Baltic Sea
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Using Random Forests to Predict Extreme Sea-Levels at the Baltic Coast at Weekly Timescales
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Tsunami detection methods for Ocean-Bottom Pressure Gauges
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Probabilistic Tsunami Hazard Analysis of Batukaras Village as a Tourism Village in Indonesia
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025, https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System (ECFAS) project, presents an approach used to estimate direct impacts of coastal flood on population, buildings, and roads along European coasts. The findings demonstrate that the ECFAS impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-198, https://doi.org/10.5194/nhess-2024-198, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-196, https://doi.org/10.5194/nhess-2024-196, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantifications compared to the state-of-the-art. This win-win allows for increasing the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2222, https://doi.org/10.5194/egusphere-2024-2222, 2024
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with a satisfactorily predictability (70 % correct predictions) using lead times of a few days. The proportion of false warnings is typically as low as 10 to 20 %. We could identify the relevant predictor regions and their patterns – such as low pressure systems and strong winds. Due to its short computing time the method can be used as a pre-warning system triggering the application of more sophisticated algorithms.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-113, https://doi.org/10.5194/nhess-2024-113, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
To issue precise and timely tsunami alerts, detecting the propagating tsunami is fundamental. The most used instruments are pressure sensors positioned at the ocean bottom, called Ocean-Bottom Pressure Gauges (OBPGs). In this work, we study four different techniques that allow to recognize a tsunami as soon as it is recorded by an OBPG and a methodology to calibrate them. The techniques are compared in terms of their ability to detect and characterize the tsunami wave in real time.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario Martina
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-72, https://doi.org/10.5194/nhess-2024-72, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
By combining limited tsunami simulations with a machine learning, we developed a fast and efficient framework to predict tsunami impacts such as wave heights and inundation depths along different coastal regions. Testing our model with historical tsunami source scenarios helped assess its reliability and broad applicability. This work enables more efficient and comprehensive tsunami hazard modelling workflow, essential for tsunami risk evaluations and enhancing coastal disaster preparedness.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2860, https://doi.org/10.5194/egusphere-2023-2860, 2024
Short summary
Short summary
Batukaras Village is a village on the southern coast of Java Island which is prone to tsunami hazards. To assess the potential tsunami hazard in the area, PTHA method was employed. It resulted in tsunami heights of 0.84 m, 1.63 m, 2.97 m, and 5.7 m for each earthquake return period of 250 years, 500 years, 1000 years, and 2500 years, respectively. The largest contribution of earthquake sources comes from the West Java-Central Java megathrust segment.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol., 33, 121–131,
https://doi.org/10.1002/joc.3413, 2013.
Allan, J. C. and Komar, P. D.: Extreme Storms on the Pacific Northwest Coast
during the 1997–98 El Niño and 1998–99 La Niña, J. Coast. Res., 18,
175–193, https://doi.org/10.2307/4299063, 2002.
Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M., de Noblet, N., England, M. H., Francis, J. E., Gruber, N., Haywood, A. M., Karoly, D. J., Kaser, G., Le
Quéré, C., Lenton, T. M., Mann, M. E., McNeil, B. I., Pitman, A. J., Rahmstorf, S., Rignot, E., Schellnhuber, H. J., Schneider, S. H., Sherwood, S. C., Somerville, R. C. J., Steffen, K., Steig, E. J., Visbeck, M., Weaver, A. J.: The Copenhagen Diagnosis (2009): Updating the world on the Latest Climate Science, The
University of New South Wales Climate Change Research Centre (CCRC), Sydney,
Australia, 60 pp., 2009.
Barnard, P. L., van Ormondt, M., Erikson, L. H., Eshleman, J., Hapke, C.,
Ruggiero, P., Adams, P. N., and Foxgrover, A. C.: Development of the Coastal
Storm Modeling System (CoSMoS) for predicting the impact of storms on
high-energy, active-margin coasts, Nat. Hazards, 74, 1095–1125,
https://doi.org/10.1007/s11069-014-1236-y, 2014.
Beamer, J. P., Hill, D. F., McGrath, D., Arendt, A., and Kienholz, C.:
Hydrologic impacts of changes in climate and glacier extent in the Gulf of
Alaska watershed, Water Resour. Res., 53, 7502–7520,
https://doi.org/10.1002/2016WR020033, 2017.
Bilskie, M. V., Hagen, S. C., Medeiros, S. C., and Passeri, D. L.: Dynamics
of sea level rise and coastal flooding on a changing landscape, Geophys.
Res. Lett., 41, 927–934, https://doi.org/10.1002/2013GL058759, 2014.
Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Amplification of
flood frequencies with local sea level rise and emerging flood regimes,
Environ. Res. Lett., 12, 64009, https://doi.org/10.1088/1748-9326/aa6cb3, 2017.
Chelton, D. B. and Davis, R. E.: Monthly Mean Sea-Level Variability Along
the West Coast of North America, J. Phys. Oceanogr., 12, 757–784,
https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2,
1982.
Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary
extreme value analysis in a changing climate, Clim. Change, 127,
353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014.
Cheng, T. K., Hill, D. F., Beamer, J., and García-Medina, G.: Climate
change impacts on wave and surge processes in a Pacific Northwest (USA)
estuary, J. Geophys. Res.-Ocean., 120, 182–200,
https://doi.org/10.1002/2014JC010268, 2015a.
Cheng, T. K., Hill, D. F., and Read, W.: The Contributions to Storm Tides in
Pacific Northwest Estuaries: Tillamook Bay, Oregon, and the December 2007
Storm, J. Coast. Res., 313, 723–734, https://doi.org/10.2112/JCOASTRES-D-14-00120.1,
2015b.
Cloern, J. E., Knowles, N., Brown, L. R., Cayan, D., Dettinger, M. D.,
Morgan, T. L., Schoellhamer, D. H., Stacey, M. T., van der Wegen, M.,
Wagner, R. W., and Jassby, A. D.: Projected Evolution of California's San
Francisco Bay-Delta-River System in a Century of Climate Change, edited by:
Finkel, Z., PLoS One, 6, e24465, https://doi.org/10.1371/journal.pone.0024465, 2011.
Corbella, S. and Stretch, D. D.: Predicting coastal erosion trends using
non-stationary statistics and process-based models, Coast. Eng., 70, 40–49,
https://doi.org/10.1016/j.coastaleng.2012.06.004, 2012.
Crout, R. L., Sears, I. T., and Locke, L. K.: The Great Coastal Gale of 2007
from Coastal Storms Program Buoy 46089, in OCEANS 2008, Quebec City, QC, 1–7, https://doi.org/10.1109/OCEANS.2008.5152026, 2008.
Déqué, M.: Frequency of precipitation and temperature extremes over
France in an anthropogenic scenario: Model results and statistical
correction according to observed values, Glob. Planet. Change, 57,
16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.
Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J., and Lin, H.:
Coupling of sea level and tidal range changes, with implications for future
water levels, Sci. Rep., 7, 1–12, https://doi.org/10.1038/s41598-017-17056-z, 2017.
Dietrich, J. C., Westerink, J. J., Kennedy, A. B., Smith, J. M., Jensen, R.
E., Zijlema, M., Holthuijsen, L. H., Dawson, C., Luettich, R. A., Powell, M.
D., Cardone, V. J., Cox, A. T., Stone, G. W., Pourtaheri, H., Hope, M. E.,
Tanaka, S., Westerink, L. G., Westerink, H. J., and Cobell, Z.: Hurricane Gustav
(2008) Waves and Storm Surge: Hindcast, Synoptic Analysis, and Validation in
Southern Louisiana, Mon. Weather Rev., 139, 2488–2522,
https://doi.org/10.1175/2011MWR3611.1, 2011a.
Dietrich, J. C., Zijlema, M., Westerink, J. J., Holthuijsen, L. H., Dawson,
C., Luettich, R. A., Jensen, R. E., Smith, J. M., Stelling, G. S., and Stone,
G. W.: Modeling hurricane waves and storm surge using integrally-coupled,
scalable computations, Coast. Eng., 58, 45–65,
https://doi.org/10.1016/J.COASTALENG.2010.08.001, 2011b.
Ding, Y., Nath Kuiry, S., Elgohry, M., Jia, Y., Altinakar, M. S., and Yeh,
K.-C.: Impact assessment of sea-level rise and hazardous storms on coasts
and estuaries using integrated processes model, Ocean Eng., 71, 74–95,
https://doi.org/10.1016/J.OCEANENG.2013.01.015, 2013.
DOGAMI: Lidar Remote Sensing Data Collection: Coast of Oregon, available at: https://www.oregongeology.org/lidar/ (last access: 14 July 2014), 2009.
Engle, V. D., Kurtz, J. C., Smith, L. M., Chancy, C., and Bourgeois, P.: A
Classification of U.S. Estuaries Based on Physical and Hydrologic
Attributes, Environ. Monit. Assess., 129, 397–412,
https://doi.org/10.1007/s10661-006-9372-9, 2007.
ESRI: ArcGIS: Spline with Barriers, available at: http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/spline-with-barriers.htm (last access: 4 September 2018), 2016.
FEMA: Flood Insurance Study: Coos County and Incorporated Areas, (Flood
Insurance Study Number: 41011CV000B), 110 pp., 2014.
Feng, H., Vandemark, D., Quilfen, Y., Chapron, B., and Beckley, B.:
Assessment of wind-forcing impact on a global wind-wave model using the
TOPEX altimeter, Ocean Eng., 33, 1431–1461,
https://doi.org/10.1016/J.OCEANENG.2005.10.015, 2006.
Gallien, T. W., Schubert, J. E., and Sanders, B. F.: Predicting tidal
flooding of urbanized embayments: A modeling framework and data
requirements, Coast. Eng., 58, 567–577,
https://doi.org/10.1016/J.COASTALENG.2011.01.011, 2011.
Gallien, T. W., Sanders, B. F., and Flick, R. E.: Urban coastal flood
prediction: Integrating wave overtopping, flood defenses and drainage,
Coast. Eng., 91, 18–28, https://doi.org/10.1016/J.COASTALENG.2014.04.007, 2014.
Gallien, T. W., Kalligeris, N., Delisle, M.-P., Tang, B.-X., Lucey, J., and
Winters, M.: Coastal Flood Modeling Challenges in Defended Urban Backshores,
Geosciences, 8, 450, https://doi.org/10.3390/geosciences8120450, 2018.
García-Medina, G., Özkan-Haller, H. T., Ruggiero, P., and Oskamp, J.:
An Inner-Shelf Wave Forecasting System for the U.S. Pacific Northwest,
Weather Forecast., 28, 681–703, https://doi.org/10.1175/WAF-D-12-00055.1, 2013.
Hanson, J. L.: Pacific Hindcast Performance of Three Numerical Wave Models,
J. Atmos. Ocean. Tech., 26, 1614–1633, https://doi.org/10.1175/2009JTECHO650.1,
2009.
Hemer, M. A., McInnes, K. L., and Ranasinghe, R.: Climate and variability
bias adjustment of climate model-derived winds for a southeast Australian
dynamical wave model, Ocean Dynam., 62, 87–104,
https://doi.org/10.1007/s10236-011-0486-4, 2011.
Holleman, R. C. and Stacey, M. T.: Coupling of Sea Level Rise, Tidal
Amplification, and Inundation, J. Phys. Oceanogr., 44, 1439–1455,
https://doi.org/10.1175/JPO-D-13-0214.1, 2014.
Holthuijsen, L. H., Booij, N., and Bertotti, L.: The Propagation of Wind
Errors Through Ocean Wave Hindcasts, J. Offshore Mech. Arct. Eng., 118,
184, https://doi.org/10.1115/1.2828832, 1996.
Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G.,
Coulston, J., Herold, N. D., Wickham, J. D., and Megown, K.: Completion of
the 2011 National Land Cover Database for the conterminous United
States-Representing a decade of land cover change information, Photogramm, available at: https://www.mrlc.gov/nlcd2011.php (last access: 14 November 2017), Eng. Remote Sens., 81, 345–354, 2015.
IPCC: Climate Change 2007: Synthesis Report, Contribution of Working Groups
I, II and III to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, Geneva, Switzerland, 104 pp, 2007.
Jay, D. A., Leffler, K., Diefenderfer, H. L., and Borde, A. B.: Tidal-Fluvial
and Estuarine Processes in the Lower Columbia River: I. Along-Channel Water
Level Variations, Pacific Ocean to Bonneville Dam, Estuar. Coast.,
38, 415–433, https://doi.org/10.1007/s12237-014-9819-0, 2015.
Jay, D. A., Borde, A. B., and Diefenderfer, H. L.: Tidal-Fluvial and
Estuarine Processes in the Lower Columbia River: II. Water Level Models,
Floodplain Wetland Inundation, and System Zones, Estuar. Coast.,
39, 1299–1324, https://doi.org/10.1007/s12237-016-0082-4, 2016.
Katz, R. W.: Statistical Methods for Nonstationary Extremes,
Springer, Dordrecht, 15–37, 2013.
Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in
hydrology, Adv. Water Resour., 25, 1287–1304,
https://doi.org/10.1016/S0309-1708(02)00056-8, 2002.
Lee, S.-Y., Hamlet, A. F., Fitzgerald, C. J., and Burges, S. J.: Optimized
Flood Control in the Columbia River Basin for a Global Warming Scenario, J.
Water Resour. Plan. Manag., 135, 440–450,
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(440), 2009.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, Wiley Interdiscip. Rev.
Clim. Chang., 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Lin, N., Emanuel, K. A., Oppenheimer, M., and Vanmarcke, E.: Physically-based
Assessment of Hurricane Surge Threat under Climate Change, available at: https://dspace.mit.edu/handle/1721.1/75773 (last access: 30 November 2017), Nat. Clim. Chang., 2, 462–467, 2012.
Liston, G. E. and Elder, K.: A Meteorological Distribution System for
High-Resolution Terrestrial Modeling (MicroMet), J. Hydrometeorol., 7,
217–234, https://doi.org/10.1175/JHM486.1, 2006a.
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System
(SnowModel), J. Hydrometeorol., 7, 1259–1276, https://doi.org/10.1175/JHM548.1,
2006b.
Liston, G. E. and Mernild, S. H.: Greenland Freshwater Runoff, Part I: A
Runoff Routing Model for Glaciated and Nonglaciated Landscapes (HydroFlow),
J. Climate, 25, 5997–6014, https://doi.org/10.1175/JCLI-D-11-00591.1, 2012.
Luettich, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC: An
Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and
Estuaries, Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL,
available at: http://www.dtic.mil/docs/citations/ADA261608 (last access: 13 July 2018), 1992.
Mark, D. J., Spargo, E. A., Westerink, J. J., and Luettich, R. A.: ENPAC
2003: A Tidal Constituent Database for Eastern North Pacific Ocean, available at: http://www.dtic.mil/docs/citations/ADA429079 (last access: 26
July 2018), 2004.
Mearns, L. O., Gutowski, W., Jones, R., Leung, R., McGinnis, S., Nunes, A.,
and Qian, Y.: A Regional Climate Change Assessment Program for North
America, Eos, Trans. Am. Geophys. Union, 90, 311–311,
https://doi.org/10.1029/2009EO360002, 2009.
Méndez, F. J., Menéndez, M., Luceño, A., and Losada, I. J.:
Analyzing Monthly Extreme Sea Levels with a Time-Dependent GEV Model, J.
Atmos. Ocean. Tech., 24, 894–911, https://doi.org/10.1175/JTECH2009.1, 2007.
Méndez, F. J., Menéndez, M., Luceño, A., Medina, R., and Graham,
N. E.: Seasonality and duration in extreme value distributions of
significant wave height, Ocean Eng., 35, 131–138,
https://doi.org/10.1016/J.OCEANENG.2007.07.012, 2008.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Miller, I., Morgan, H., Mauger, G., Weldon, R., Schmidt, D., Welch, M.,
and Grossman, E.: Projected Sea Level Rise for Washington State, Washington
Coastal Resilience Project, 2018.
Mínguez, R., Menéndez, M., Méndez, F. J., and Losada, I. J.:
Sensitivity analysis of time-dependent generalized extreme value models for
ocean climate variables, Adv. Water Resour., 33, 833–845,
https://doi.org/10.1016/J.ADVWATRES.2010.05.003, 2010.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet,
W., Matthew, R. A., and Luke, A.: Increased nuisance flooding along the
coasts of the United States due to sea level rise: Past and future, Geophys.
Res. Lett., 42, 9846–9852, https://doi.org/10.1002/2015GL066072, 2015.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.:
Cumulative hazard: The case of nuisance flooding, Earth's Futur., 5,
214–223, https://doi.org/10.1002/2016EF000494, 2017a.
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and
Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding,
P. Natl. Acad. Sci. USA, 114, 9785–9790, https://doi.org/10.1073/pnas.1620325114,
2017b.
Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., and
Sanders, B. F.: Linking statistical and hydrodynamic modeling for compound
flood hazard assessment in tidal channels and estuaries, Adv. Water Resour.,
128, 28–38, https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J.,
Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties
in a large ensemble of climate change simulations, Nature, 430,
768–772, https://doi.org/10.1038/nature02771, 2004.
Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R. A., Rogner, H.
H., and Victor, N.: Special Report on Emissions Scenarios (SRES), A Special
Report of Working Group III of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Geneva, Switzerland, available
at: http://pure.iiasa.ac.at/6101/2/sres-en.pdf (last access: 14 November 2017), 2000.
Nakicenovic, N., Lempert, R. J., and Janetos, A. C.: A Framework for the
Development of New Socio-economic Scenarios for Climate Change Research:
Introductory Essay, Clim. Change, 122, 351–361, https://doi.org/10.1007/s10584-013-0982-2, 2014.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models Part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
National Research Council (NRC): Sea-Level Rise for the Coasts of
California, Oregon, and Washington, National Academies Press, Washington,
DC, 201 pp., 2012.
NOAA: U.S. Digital Elevation Models, available at: https://www.ngdc.noaa.gov/mgg/coastal/coastal.html (22 July 2016), 2018.
Odigie, K. O. and Warrick, J. A.: Coherence Between Coastal and River
Flooding along the California Coast, J. Coast. Res., 342, 308–317,
https://doi.org/10.2112/JCOASTRES-D-16-00226.1, 2018.
Olabarrieta, M., Warner, J. C., and Kumar, N.: Wave-current interaction in
Willapa Bay, J. Geophys. Res., 116, C12014, https://doi.org/10.1029/2011JC007387,
2011.
Olsen, J. R., Lambert, J. H., and Haimes, Y. Y.: Risk of Extreme Events Under
Nonstationary Conditions, Risk Anal., 18, 497–510,
https://doi.org/10.1111/j.1539-6924.1998.tb00364.x, 1998.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: the concept of shared socioeconomic pathways, Clim.
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
Orton, P. M., Hall, T. M., Talke, S. A., Blumberg, A. F., Georgas, N. and
Vinogradov, S.: A validated tropical-extratropical flood hazard assessment
for New York Harbor, J. Geophys. Res.-Ocean., 121, 8904–8929,
https://doi.org/10.1002/2016JC011679, 2016.
Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D.: Trends and
climate evolution: Statistical approach for very high temperatures in
France, Clim. Change, 81, 331–352, https://doi.org/10.1007/s10584-006-9116-4,
2007.
Parey, S., Hoang, T. T. H., and Dacunha-Castelle, D.: Different ways to
compute temperature return levels in the climate change context,
Environmetrics, 21, 698–718, https://doi.org/10.1002/env.1060, 2010.
Parker, K. and Hill, D. F.: Evaluation of bias correction methods for wave
modeling output, Ocean Modell., 110, 52–65,
https://doi.org/10.1016/j.ocemod.2016.12.008, 2017.
Parker, K., Ruggiero, P., Serafin, K. A., and Hill, D. F.: Emulation as an
approach for rapid estuarine modeling, Coast. Eng., 150, 79–93,
https://doi.org/10.1016/j.coastaleng.2019.03.004, 2019.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE,
Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Piani, C. and Haerter, J. O.: Two dimensional bias correction of temperature
and precipitation copulas in climate models, Geophys. Res. Lett., 39,
L20401, https://doi.org/10.1029/2012GL053839, 2012.
Resio, D. T. and Westerink, J. J.: Modeling the Physics of Storm Surges,
Phys. Today, 61, 33, https://doi.org/10.1063/1.2982120, 2008.
Rootzén, H. and Katz, R. W.: Design Life Level: Quantifying risk in a
changing climate, Water Resour. Res., 49, 5964–5972,
https://doi.org/10.1002/wrcr.20425, 2013.
Ruggiero, P.: Is the Intensifying Wave Climate of the U.S. Pacific Northwest
Increasing Flooding and Erosion Risk Faster Than Sea-Level Rise?, J. Waterw.
Port, Coastal, Ocean Eng., 139, 88–97,
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000172, 2013.
Ruggiero, P., Komar, P. D., and Allan, J. C.: Increasing wave heights and
extreme value projections: The wave climate of the U.S. Pacific Northwest,
Coast. Eng., 57, 539–552, https://doi.org/10.1016/j.coastaleng.2009.12.005, 2010.
Salas, J. D. and Obeysekera, J.: Revisiting the Concepts of Return Period
and Risk for Nonstationary Hydrologic Extreme Events, J. Hydrol. Eng.,
19, 554–568, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.
Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using
a time-dependent, extreme value approach, J. Geophys. Res.-Ocean., 119,
6305–6329, https://doi.org/10.1002/2014JC010093, 2014.
Smith, J. M., Cialone, M. A., Wamsley, T. V., and McAlpin, T. O.: Potential
impact of sea level rise on coastal surges in southeast Louisiana, Ocean
Eng., 37, 37–47, https://doi.org/10.1016/J.OCEANENG.2009.07.008, 2010.
Thompson, P. R., Merrifield, M. A., Wells, J. R., and Chang, C. M.:
Wind-Driven Coastal Sea Level Variability in the Northeast Pacific, J.
Climate, 27, 4733–4751, https://doi.org/10.1175/JCLI-D-13-00225.1, 2014.
Tolman, H. L.: User manual and system documentation of WAVEWATCH III TM
version 3.14, 2009.
Tolman, H. L., Chalikov, D., Tolman, H. L., and Chalikov, D.: Source Terms in
a Third-Generation Wind Wave Model, J. Phys. Oceanogr., 26, 2497–2518,
https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2,
1996.
Van Vuuren, D. P. and Carter, T. R.: Climate and socio-economic scenarios
for climate change research and assessment: reconciling the new with the
old, Clim. Change, 122, 415–429, https://doi.org/10.1007/s10584-013-0974-2, 2014.
Vermeer, M. and Rahmstorf, S.: Global sea level linked to global
temperature, P. Natl. Acad. Sci. USA, 106, 21527–21532,
https://doi.org/10.1073/pnas.0907765106, 2009.
Wahl, T.: Sea-level rise and storm surges, relationship status:
Complicated!, Environ. Res. Lett., 12, 111001, https://doi.org/10.1088/1748-9326/aa8eba,
2017.
Wahl, T. and Chambers, D. P.: Climate controls multidecadal variability in
U. S. extreme sea level records, J. Geophys. Res.-Ocean., 121,
1274–1290, https://doi.org/10.1002/2015JC011057, 2016.
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel,
J., and Slangen, A. B. A.: Understanding extreme sea levels for broad-scale
coastal impact and adaptation analysis, Nat. Commun., 8, 1–12,
https://doi.org/10.1038/ncomms16075, 2017.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Chang., 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015.
Wang, R.-Q., Herdman, L. M., Erikson, L., Barnard, P., Hummel, M., and
Stacey, M. T.: Interactions of Estuarine Shoreline Infrastructure With
Multiscale Sea Level Variability, J. Geophys. Res.-Ocean., 122, 9962–9979, https://doi.org/10.1002/2017JC012730, 2017.
Weaver, R. J. and Luettich Jr., R. A.: 2-D vs. 3-D Storm Surge Sensitivity in
ADCIRC: Case Study of Hurricane Isabel, in Estuarine and Coastal Modeling
(2009), American Society of Civil Engineers, Reston, VA, 762–779, 2010.
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R.
J., Umgiesser, G., and Willems, P.: Changing extreme sea levels along
European coasts, Coast. Eng., 87, 4–14,
https://doi.org/10.1016/J.COASTALENG.2013.10.017, 2014.
Wolf, J.: Coastal flooding: impacts of coupled wave–surge–tide models,
Nat. Hazards, 49, 241–260, https://doi.org/10.1007/s11069-008-9316-5, 2009.
Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on
unstructured grids, Coast. Eng., 57, 267–277,
https://doi.org/10.1016/J.COASTALENG.2009.10.011, 2010.
Short summary
Our ability to manage estuaries is currently limited by a poor understanding of how they will evolve into the future. This study explores flooding conditions at two US Pacific estuaries as controlled by changing climate. The hazard is characterized using a variety of models that track oceanic, atmospheric, and hydrologic forcing at decadal scales. It is found that flood surface height varies significantly across estuaries and can be expected to change in complex ways moving into the future.
Our ability to manage estuaries is currently limited by a poor understanding of how they will...
Altmetrics
Final-revised paper
Preprint