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Abstract. Climate change impacts on extreme water levels
(WLs) at two United States Pacific Northwest estuaries are
investigated using a multicomponent process-based model-
ing framework. The integrated impact of climate change on
estuarine forcing is considered using a series of sub-models
that track changes to oceanic, atmospheric, and hydrologic
controls on hydrodynamics. This modeling framework is
run at decadal scales for historic (1979-1999) and future
(2041-2070) periods with changes to extreme WLs quanti-
fied across the two study sites. It is found that there is spatial
variability in extreme WLs at both study sites with all recur-
rence interval events increasing with further distance into the
estuary. This spatial variability is found to increase for the
100-year event moving into the future. It is found that the
full effect of sea level rise is mitigated by a decrease in forc-
ing. Short-recurrence-interval events are less buffered and
therefore more impacted by sea level rise than higher-return-
interval events. Finally, results show that annual extremes at
the study sites are defined by compound events with a variety
of forcing contributing to high WLs.

1 Introduction

Estuaries are important intersections of human and natu-
ral systems, serving as some of both the most resource-rich
ecosystems on Earth and the most densely populated. Asked
to meet many, at times conflicting, needs, estuaries require
careful management. Unfortunately, coastal planning is lim-
ited by an insufficient understanding of how estuaries will
respond to future conditions. In particular, extreme water lev-

els (WLs) are of first-order importance, with flooding putting
both lives and physical infrastructure at risk.

In the United States (US) Pacific Northwest (PNW), con-
siderable progress has been made towards an understanding
of hazard risk at open beaches as controlled by a combination
of forcing drivers, including waves, tides, winds, and others
(Barnard et al., 2014; Ruggiero, 2013; Serafin and Ruggiero,
2014). Flooding risk in PNW estuaries is less well under-
stood, primarily due to the greater complexity of the estu-
arine environment. Research efforts have mostly focused on
the Columbia River, which is societally important, but not
necessarily characteristic of other PNW estuaries due to its
large size and heavy damming and flow regulation (Jay et
al., 2015, 2016; Lee et al., 2009). Estuarine hydrodynam-
ics remain more complicated than open coastlines due to the
additional driver of streamflow and a much more compli-
cated topographical context (e.g., embayment and complex
bathymetry) (Odigie and Warrick, 2018; Wahl et al., 2015).
This makes estuaries difficult to simplify as they exhibit non-
linear water column response (Ding et al., 2013) with forcing
contributions being difficult to uncouple (Wolf, 2009).

Consideration of future risk adds an additional challenge
through a mismatch in timescales. Climate change signals
are significant at scales of decades while individual extreme
events occur at timescales of hours to days. This requires
both high model temporal resolution and long model simula-
tions. Long time series are additionally necessary for extreme
value analysis and constraining event recurrence intervals
(RIs). Balancing these needs with computational cost has re-
mained a major obstacle and has led to a variety of model-
ing strategies. One approach takes advantage of the fact that
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extreme value analysis only requires information of the max-
ima events. Lin et al. (2012) use a unique approach based
on multiple model complexities; an efficient model to deter-
mine which events will cause flooding and a more complex
model to accurately quantify the dynamics of those events.
As a second example, Orton et al. (2016) simply model the
coastal responses to a large set of hurricane events. Both of
these studies focus on the eastern US coastline where tropi-
cal cyclones are the principal driver of flooding events. Loca-
tions less dominated by tropical cyclones have a more diverse
and balanced set of contributions to flooding (Parker, 2019).
In these locations, extreme events can occur due to combina-
tions of forcings which are not individually extreme, a phe-
nomenon discussed in the literature as “compound events”
(Gallien, et al., 2018; Leonard et al., 2014; Moftakhari et al.,
2017b, 2019; Wahl et al., 2015). This makes it difficult to
know a priori which events will result in maximum WLs.

Recent advances in computing power and parallel process-
ing have opened up an alternative possibility of running con-
tinuous time series hydrodynamic models at climate change
scales (decades to centuries). This allows examination of ex-
tremes without assuming which events will cause extremes.
Additionally, a continuous time series analysis has other de-
sirable properties. For example, an event-based approach
limits analysis to only large RI events, eliminating infor-
mation on higher-probability, lower-magnitude events. This
is undesirable since so-called “nuisance flooding” can, over
time, lead to a higher aggregate cost than extreme events, es-
pecially when considering sea level rise (SLR) (Moftakhari
et al., 2015, 2017a). Additionally, a continuous time series
approach also allows an integrated consideration of the cou-
pled effect of the various changing controls on estuarine hy-
drodynamics. Many studies have focused on individual com-
ponents of climate change (e.g., just SLR) but few have ad-
dressed their combined effects on estuarine flooding. This is
problematic since there can be interactions among processes.
As one example, SLR has been shown to nonlinearly modu-
late storm surge (Smith et al., 2010).

Studies that have attempted to holistically model estuarine
flooding along the US west coast include Cloern et al. (2011),
who studied century-scale change in San Francisco Bay.
Their study used a hybrid approach, coupling process-based
and statistical sub-models to evolve water column proper-
ties over time. The Coastal Storm Modeling System (CoS-
MoS) of Barnard et al. (2014) also used an interlinked model
framework but with less focus on estuary WLs (although
CoSMoS 2.0 improves upon this). Cheng et al. (2015a) per-
formed a preliminary study of a single PNW estuary using
a fully process-based model framework. The current study
builds upon this effort by including additional physical pro-
cesses, conducting a comparative study, and applying the re-
sults to the production of flood mapping products.

The objective of the present study is to further develop
this research direction through applying a comprehensive
process-based modeling framework to the problem of estuar-
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Table 1. Coos and Tillamook estuarine characteristics (after Engle
et al., 2007). Wind characteristics are at tide gauge locations. Wave
characteristics are offshore at buoys 46002 and 46005. Streamflow
values are from this study’s hydrological analysis.

Coos Till.
Estuary area 43.8 37.9 km?
Estuary drainage area 1520 1430 km?
Estuary volume 0207 0071 m3x10°
Ave. daily flow 61 85 m3 5!
Tidal prism 0.066 0.061 m3x10°
Mean tidal range 1.7 1.9 m
Ave summer salinity 25.8 24.5 psu
Ave. depth 35 1.4 m
Ave. offshore wave height 2.7 2.8 m
Ave. wind speed 24 4.6 ms!
Ave. wind direction 164 190 °

ine flooding under current and future conditions. A process-
based approach allows direct modeling of climate-induced
changes to all drivers (streamflow, wave forcing, etc.) of es-
tuarine WLs. This study hypothesizes that considering inte-
grated forcing on estuaries results in significant spatial vari-
ability in extreme WLs. This hypothesis is in contrast to the
static “bathtub” approximation (i.e., the assumption of a hor-
izontal water surface), which is commonly used despite hav-
ing been shown to potentially result in significant errors (Gal-
lien et al., 2014). Results from this study quantify this error
as well as provide information on how it may be evolving as a
result of climate change. Additionally, flood surface informa-
tion will be combined with a high-resolution digital elevation
model (DEM) to determine the extent of flooding and how it
may be changing over time.

This paper is organized with the initial section providing
a description of the two study sites (Sect. 2). The overall
modeling framework is then introduced (Sect. 3) with a de-
scription of the individual sub-model components. This is
followed by information on nonstationary Rls (Sect. 4). The
paper then moves on to the results (Sect. 5) and closes with a
discussion of findings (Sect. 6).

2 Study sites

This study focuses on two US PNW estuaries, Coos and
Tillamook bays (Fig. 1). These estuaries were selected for
two reasons. First, each has an active watershed—estuary
organization (Coos Watershed Association and Tillamook
Estuaries Partnership), which allowed for data sharing and
project collaboration. Secondly, the estuaries have similar
forcing profiles (Table 1), which maintains some degree of
comparability between the two locations. However, the estu-
aries have very different physical characteristics, which al-
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Figure 1. Overview map (left) and detailed views (inset boxes) of
Tillamook and Coos bays on the US Pacific Northwest coastline.
Both insets are at the same scale (shown on Tillamook Bay inset).
The tide gauge locations are shown as red stars and the mesh bound-
ary is shown as a dark line in both the overview and detailed view
boxes.

lows some exploration into the importance of local bay con-
figuration.

In terms of physical layout, Coos has a unique hook shape
while Tillamook has a more classical bay form with an en-
closing sand spit defining the western edge (Fig. 1). Both
estuaries have a jettied inlet and a channel maintained by
the U.S. Army Corps of Engineers. Tillamook’s entrance is
maintained at 5.5m deep and 60 m wide while Coos has
a significantly larger deep-draft channel at 18 m deep and
210m wide. Coos has a larger average depth and surface
area, resulting in a greater estuary volume than Tillamook
by around 130 million m?. Coos is also narrower with a deep
channel along the majority of its length. Tillamook, however,
has a channel only near the entrance with the bulk of its area
being defined by broad shallow tidal flats.
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In terms of forcing, the estuaries are quite similar, although
Tillamook experiences slightly higher environmental forc-
ing. Tillamook’s tidal range is approximately 20 cm larger
than Coos and mean wave, wind, and streamflow forcing are
all modestly more intensive.

3 Methods

This study utilizes a suite of models and data sources to de-
termine the hydrodynamic response of the study sites to cli-
matic forcing. The overall workflow is that an atmosphere—
ocean global climate model (AOGCM) serves as the “par-
ent” model providing forcing to a suite of “child” models.
These in turn provide the forcing to a hydrodynamic model
focused on the estuaries themselves. This modeling frame-
work is conceptually illustrated in Fig. 2. In terms of final-
stage output, this modeling chain produces continuous time
series of WLs (and other variables) at chosen output points.
Provided that a sufficiently long-term simulation is carried
out, this spatially explicit information allows for the devel-
opment of flooding inundation maps at a variety of Rls. The
following sections describe each component of the model
framework identified in Fig. 2.

As is common in climate change impact studies, this study
uses paired simulations with hindcast and forecast boundary
conditions. Two simulations were carried out; one for the pe-
riod 1979-1999 (historic) and the other for the period 2041-
2070 (future). The historic period is forced with model out-
put rather than direct observations to control for biases in the
AOGCM and modeling framework.

3.1 Climate model

This study uses model data from the North American Re-
gional Climate Change Assessment Program (NARCCAP)
(Mearns et al., 2009). NARCCAP provides an ensemble
of AOGCMs paired with higher-resolution regional climate
models (RCMs) focused on the North American continent.
The project’s future runs are forced by the Special Report on
Emissions Scenarios (SRES) A2 emissions scenario, which
represents one of the higher-emissions, anthropologically
controlled climate scenarios for the [IPCC Fourth Assessment
Report (Nakicenovic et al., 2000). This scenario was cho-
sen (by NARCCAP) as a conservative but plausible climate
trajectory that is in line with current emissions and popula-
tion patterns. There are other downscaled climate products
available (e.g., MACA; Abatzoglou, 2013) that are based
on more current IPCC Fifth Assessment scenarios; however,
NARCCAP was the only climate product, at the start of
this project, that provided the necessary offshore coverage
with the higher-resolution RCM. Most other products were
masked (and still are) so that data were only available on
land surfaces while this project required information across
the ocean as well. Spatial resolution for models within NAR-
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Figure 2. Overview of the general modeling framework. The dark gray triangle labeled AOGCM in the top left corner is the “parent” model.
Dark gray rectangles represent sub-models. Light gray ovals represent variables that are passed between modeling components.

CCAP is 50km for RCM variables and ranges from 1 to 4°
latitude—longitude for the AOGCM models.

While the usage of NARCCAP data forces this project’s
reliance on an older climate scenario, this does not mean
that results are out of alignment with current climate projec-
tions. Rather, the A2 SRES scenario is well within the vari-
ability of the new scenarios’ framework of the IPCC Fifth
Assessment. A direct comparison of IPCC Fourth and Fifth
Assessment climate scenarios is impossible due to a concep-
tual change in how scenarios are handled (Nakicenovic et al.,
2014; O’Neill et al., 2014). However, work by Van Vuuren
and Carter (2014) has shown that the A2 SRES scenario ap-
proximately maps to the Representative Concentration Path-
way (RCP) 8.5 and shared socio-economic pathway (SSP) 3
scenario. Since the publication of the IPCC Fourth Assess-
ment, baseline emissions have been within the range pre-
sented within the SRES scenarios (IPCC, 2007) with emis-
sions tracking closer to the higher range of scenarios (Allison
et al., 2009). This supports the usage of the A2 scenario for
near-term projections.

From the model pairings available in NARCCAP, the
Community Climate System Model-Canadian Regional Cli-
mate Model (CCSM—-CRCM) combination was chosen as
providing the best agreement with local in situ meteoro-
logical data. The AOGCM component of this pairing was
used for datasets requiring larger spatial coverage while the
more finely resolved (both temporally and spatially) RCM
was used for nearshore or terrestrial sub-models. When using
RCM data, it was found that atmospheric parameters were bi-
ased so a univariate statistical bias correction (quantile map-
ping; Déqué, 2007) was performed. The “target” dataset used
for the bias correction was the North American Regional Re-
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analysis (NARR) (Mesinger et al., 2006) dataset interpolated
to the location of the CRCM grid nodes. AOGCM data were
also found to be biased but were not bias corrected as there
is no target dataset that spans the full global climate model
extent. Instead this bias correction was handled within the
relevant sub-model.

3.2 Wave model

A basin-scale WAVEWATCH 1II v3.14 (WW3) (Tolman,
2009) simulation was performed in order to characterize
wave climate and provide offshore wave boundary condi-
tions for the two hydrodynamic model domains. WW3 has
seen significant success in the US PNW for reproducing
wave conditions (e.g., Garcia-Medina et al., 2013) and is well
suited to application at large scales (Hanson et al., 2009). The
model was run with two nested grids based on the operational
global and northeast Pacific models of the National Centers
for Environmental Prediction (NCEP) with a resolution of
1° by 1.25° and 0.25° by 0.25°, respectively. The model was
configured with default options and the Tolman and Chalikov
(1996) source term package.

Wind forcing for the WW3 model was provided by the
CCSM global model. Wave model predictions were found
to exhibit a significant bias in comparison to observed wave
parameters in the study areas. This bias is likely a result of
the low-resolution wind fields (Holthuijsen et al., 1996) or
the AOGCM’s inability to reproduce marine winds (Hemer
et al., 2011). The transfer of bias from wind fields to wave
model output has been similarly reproduced and discussed in
other studies (Feng et al., 2006; Hemer et al., 2011). Sensi-
tivity analysis showed that running the hydrodynamic model
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with overpredicted wave heights produced unrealistic flood-
ing values and overwhelmed the influence of other signals
contributing to extreme WLs. Therefore, a bivariate statisti-
cal bias correction technique (Piani and Haerter, 2012) was
used that corrects both the marginal distribution of significant
wave height (Hs) and peak wave period as well as maintains
the correlation structure (Parker and Hill, 2017).

3.3 Hydrological model

Streamflow inputs were developed using a series of weather,
snowmelt, and hydrological routing models. Specifically, the
MicroMet—-SnowModel-HydroFlow suite of spatially dis-
tributed models were used (Liston and Elder, 2006a, b; Lis-
ton and Mernild, 2012). Readers are directed to the source
citations for full details of the models. In summary, this suite
distributes relevant meteorological forcing variables, com-
putes the surface energy balance to simulate snowpack evolu-
tion and melt, and then uses a simple linear reservoir-routing
procedure to route the runoff from rainfall and snowmelt
across the landscape to the coastline. This modeling suite
allows for both high temporal and spatial resolution of hy-
drologic processes (for this study, 100 m grid cell size and a
3-hourly time step). Cheng et al. (2015a) successfully applied
this modeling suite to the PNW and Beamer et al. (2017) to
the US Gulf of Alaska watershed under climate change sce-
narios.

The models were calibrated and validated using the NARR
dataset for meteorological forcing. Only the Tillamook Bay
watershed contains active stream gauges. Therefore, the
model was calibrated to observed streamflow at the available
gauge locations, the Wilson, Trask, and Miami rivers. After
calibration, validation against observed streamflow yielded
high Nash—Sutcliffe efficiencies (NSEs; Nash and Sutcliffe,
1970) as well as coefficients of determination (R?), indicat-
ing that the hydrological model adequately captures the hy-
drology of the Tillamook watershed. Model calibration pa-
rameters derived at the Tillamook basin were then used for
the Coos Bay basin. Both watersheds are similar hydrologi-
cally, defined by high winter flows driven by rainfall events
and low summer baseflows during the dry season. Therefore,
it is expected that similar calibration coefficients should ap-
ply to both study sites.

After calibration and validation of the hydrologic mod-
els with observed data, simulations were then performed us-
ing CRCM input. For consistency with other aspects of the
model framework, CRCM variables were all bias corrected
using quantile mapping (Déqué, 2007), with the NARR
dataset as the target. A full description of the utilized bias
correction procedure, both the bivariate method utilized for
wave modeling and the univariate method used for other vari-
ables, is beyond the scope of this paper. Instead, the reader
is directed to Parker and Hill (2017) for a more detailed de-
scription.
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Figure 3. Station output locations at the Tillamook and Coos bay
study sites, (a) and (b), respectively. Gray arrows show hydrologic
inputs into the model domain. Red points and numbers represent
transect station locations (see Sect. 6.1). Both figures are at the same
scale (a).

The gridded hydrologic model produces a daily time se-
ries of streamflow at every coastal pour point along the coast-
line. However, the majority of these locations have small con-
tributing areas and thus produce very low flow values. Only
the pour points with large contributing areas (watersheds)
and streamflow rates were selected for inclusion in the hy-
drodynamic model. For Tillamook, data from the mouths of
four rivers were included (the Kilchis, Wilson, Miami, and
Trask), which were found to capture 95 % of the basin annual
streamflow. For Coos, seven points were chosen for inclu-
sion representing 90 % of the basin annual streamflow. The
streamflow from these points was aggregated into three in-
puts into the hydrodynamic model at the location of the Coos
River, Palouse Slough, and Noble Creek (Fig. 3).
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Figure 4. MMSLA regression for the Tillamook study site in the style of Thompson et al. (2014). Fitted contributions to MMSLA from
predictor variables Teq, Tjs, and Tyy are shown as thin black lines (full, dotted, and dashed, respectively). The bold black line is the observed

MMSLA signal while the bold red line is the total fitted MMSLA signal.

3.4 Monthly anomaly model

An important component of measured WLs along the west
coast of the US comes from monthly mean sea level anoma-
lies (MMSLASs). These low-frequency variations in WLs are
caused by a wide variety of forcings ranging from local wind
stress to large-scale climate patterns (such as El Nifio) (Allan
et al., 2002; Chelton and Davis, 1982). A comprehensive un-
derstanding of MMSLAs remains complex, as they integrate
a large number of simultaneous processes operating over a
wide range of spatial and temporal scales. However, there
have been many attempts to model the leading-order terms
found in MMSLA signals. This study follows the work of
Thompson et al. (2014), who used statistical regression and
a subset of wind stress metrics to successfully reproduce the
bulk of MMSLA variability across the west coast. The uti-
lized regression is given by

N ="n0+ateq+brs+CcTyy +¢, (1

where 71 is monthly mean sea level, ng is the regression y-
intercept term, Teq is the equatorial wind stress, 7js is the lo-
cal alongshore wind stress, T,y is the wind stress curl, € is the
residual error, and (a, b, c¢) are regression coefficients. The
reader is directed to the original source publication for addi-
tional information regarding the specifics of the wind stress
coefficients as well as their scientific basis.

Figure 4 shows the result of this regression for the Tillam-
ook study site (Coos is not shown). While this formulation
does not capture all variability in MMSLA (R? ~ 0.6), it
does qualitatively capture the MMSLA signal and is based
entirely on variables that are readily available from the NAR-
CCAP dataset. Furthermore, a statistical approach is attrac-
tive since directly modeling coastal MMSLAs would be
very computationally expensive. The regression approach is
found to somewhat underestimate extreme values of MM-
SLA, which may introduce a low bias in calculated extreme
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total water levels. This bias should be similar for both the
historic and future periods, so its effect on changes between
those periods should be minimal. MMSLAs are added to the
hydrodynamic model time series as a post-processing step
(see Fig. 2). Not including MMSLA within the hydrody-
namic model may exclude some potential nonlinear interac-
tions between MMSLAs, WLs, and other forcings.

3.5 Sealevel rise

SLR was included in the modeling framework as a change
to mean sea level (MSL) within the hydrodynamic model.
Projections were taken from the National Resource Coun-
cil (NRC) report (NRC, 2012), which developed local esti-
mates for SLR along the US Pacific coast. These estimates
include contributions from steric/dynamic ocean modifica-
tions, glaciers and ice caps, sea level fingerprint effects, and
vertical land motion (e.g., isostatic adjustments). In calcu-
lating local SLR estimates, the NRC used a combination
of IPCC Fourth Assessment projections (midrange scenario)
and an extrapolation methodology for the cryosphere com-
ponents. This produced values larger than either the IPCC
Fourth or Fifth Assessments but still below some estimates
for mean 2100 global SLR (Vermeer and Rahmstorf, 2009).

SLR data were taken from the nearest reported location
to Coos and Tillamook Bay, Newport, Oregon, which is situ-
ated approximately between the two study sites. The NRC re-
port provides projection values (and ranges) for 2030, 2050,
and 2100. A cubic spline was fitted to these values to allow
a smooth interpolation to intermediate years. Multi-decade
model runs of the hydrodynamic model were broken into
smaller 3-month periods and MSL was updated accordingly
for each of these simulation blocks. This allowed for changes
in MSL in a step-wise but nearly continuous fashion.

www.nat-hazards-earth-syst-sci.net/19/1601/2019/
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3.6 Local hydrodynamic/wave model

The coupled ADCIRC-SWAN (ADCSWAN) model (Diet-
rich et al., 2011b) was used for this study. ADCSWAN is
highly configurable in terms of implemented physics and
readers are directed to the source publication and model
manuals for a full description of options and parameters.
ADCIRC (Luettich and Westerink, 1992) solves the hydro-
dynamic portion of this pairing through the shallow-water
equations. ADCIRC uses an unstructured horizontal grid,
which allows for finer spatial resolution in regions of com-
plex bathymetry. Bathymetry for the model grid was devel-
oped through blending Oregon Department of Geology and
Mineral Industries (DOGAMI) lidar (DOGAMI, 2009) and a
variety of National Oceanic and Atmospheric Administration
DEMs (NOAA, 2018). Wetting and drying were enabled due
to the significant intertidal areas present in both bays. Nonlin-
ear bottom friction was used with a spatially variable friction
factor set based on general land use classes (Dietrich et al.,
2011a; Homer et al., 2015).

ADCIRC was run, for this study, in the 2-D depth-
integrated (2DDI) mode. Previous research has shown that
storm surge and tidal signals can be accurately resolved
by 2-D barotropic models. Specifically, Resio and West-
erink (2008) point out that 3-D effects are readily absorbed
by model calibration coefficients. Additionally, a sensitivity
study by Weaver and Luettich (2010) found that differences
in predicted WLs between 3-D and 2-D models were on the
order of 5 % over most of the domain. These modest differ-
ences suggest that a 2-D model can be an effective and effi-
cient choice for studies of this type.

SWAN is a third-generation spectral model that solves the
spectral action balance equation to compute the spectral evo-
Iution of wind waves. The unstructured format of SWAN (Zi-
jlema, 2010) was utilized to allow tight coupling (on the same
grid) with ADCIRC. SWAN was run in a nonstationary mode
with offshore forcing provided by a temporally varying JON-
SWAP spectrum fitted to bulk wave parameters.

ADCSWAN was run with atmospheric forcing provided
as gridded horizontal wind components and surface pressure,
wave forcing using SWAN’s nonstationary TPAR parametric
spectrum file, hydrologic input as a normal flux into the do-
main, and tidal forcing at the ocean boundaries. Tidal forcing
was defined as the eight locally dominant constituents (K1,
Ol, P1, Q1, M2, S2, N2, and K2) with location-dependent
amplitudes and phases defined by the ENPAC tidal database
(Mark et al., 2004) and the simulation time-dependent nodal
factor and equilibrium argument defined by the T_tide har-
monic analysis package (Pawlowicz et al., 2002). The AD-
CSWAN model was first validated at each study site using a
tidal simulation compared against NOAA tide gauge predic-
tions. Using a 1-month simulation, both the Tillamook and
Coos grids were found to have R? values greater than 0.97.
The Tillamook model was additionally validated against the
largest storm of record (the Great Coastal Gale of 2007;
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Crout et al. 2008) with good agreements to extreme WLs
(Cheng et al., 2015Db).

4 Nonstationary recurrence intervals

This study primarily considers extremes, which will be quan-
tified in terms of RI events, since engineering design and
community planning often rely on this concept. The tradi-
tional definition of an RI is built on an assumption of sta-
tionarity, or time invariance. This assumption makes the def-
inition of a RI simultaneously the inverse of the probabil-
ity that an event of a given magnitude will be exceeded in a
given year and the expected recurrence period of that event.
This definition breaks down under nonstationary conditions,
which can be experienced due to climate change and/or SLR.
Reconciling a nonstationary environment with traditional de-
sign methods based on stationary assumptions is an ongo-
ing challenge. Proposed alternatives include effective design
value (Katz et al., 2002), expected waiting time (Olsen et
al., 1998; Salas and Obeysekera, 2014), expected number of
events (Parey et al., 2007, 2010), design exceedance proba-
bility, and design life level (Rootzén, 2013). Each of these
definitions represents a unique projection of the stationary
case for nonstationary conditions. Problematically, the cho-
sen metric can result in significantly different calculated RIs
while most users simply interpret the result as comparable to
the stationary case. This highlights the importance of rigor-
ously defining utilized nonstationary RI formulation as well
as considering if the utilized metric fits design conceptions.

Nonstationary extreme value analysis has recently seen
a wide range of applications to coastal problems (Corbella
and Stretch, 2012; Katz, 2013; Wahl and Chambers, 2016;
Wabhl et al., 2015). Nonstationarity is generally incorporated
within the statistical model by using time-dependent param-
eters as either a linear or exponential function (Cheng et al.,
2014; Ruggiero et al., 2010), a cyclical trigonometric func-
tion (Méndez et al., 2008; Minguez et al., 2010), or a more
complicated function of covariates (Méndez et al., 2007;
Weisse et al., 2014). Even for stationary extreme value analy-
sis there is a range of commonly used statistical models with
a corresponding uncertainty as a result of the chosen method-
ology (Wahl et al., 2017). Across the wide variety of applica-
tions of nonstationary extreme value analysis, no consensus
definition of nonstationary Rls or a best-practice methodol-
ogy has emerged.

This study approaches nonstationary RIs using the effec-
tive design value interpretation (Katz et al., 2002). This de-
fines a temporally varying RI (termed an effective RI, or de-
sign value, by Katz et al., 2002) which holds the probability
of occurrence for an event constant through time. This pre-
serves an intuitive definition of Rls as well as how nonsta-
tionarity impacts extremes. Effective RIs add an additional
dimension of time (in comparison to standard Rls) so are
commonly presented as a family of curves with time on the
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X axis, event magnitude on the y axis, and each curve rep-
resenting a recurrence interval (e.g., 2-year event). Addition-
ally, this means that the specification of an effective RI re-
quires both a recurrence interval and a time of interest (e.g., a
100-year event for 2050).

The effective RI definition of nonstationarity is chosen for
this study due to the unique format of the results. WL data are
output from the modeling framework in reference to MSL.
Therefore, the WL time series does not show any discontinu-
ity or trend from changing sea level, a signal that would only
be visible if viewing WLs relative to a nontidal datum. This
results in an approximate stationarity, as a function of da-
tum, and makes it possible to separate the calculation of RIs
from the nonstationarity of the time series. In this context,
calculating effective RIs reduces to calculating the stationary
RIs and then adding SLR (the assumed nonstationary com-
ponent) to these estimates.

The benefit to this approach is that it avoids the compli-
cations of fitting a nonstationary generalized extreme value
(GEV) distribution and the corresponding loss of degrees
of freedom from estimating the nonstationary trend from
the data. Furthermore, most nonstationary GEV analyses are
forced to use a priori simplistic functions due to limited
degrees of freedom. This approach allows a more compli-
cated trend that follows experienced SLR (approximately cu-
bic for this study). The negative of the approach is the as-
sumption/simplification that the resulting MSL time series is
stationary. While this is a common statistical assumption, it
does have consequences for the results and is discussed fur-
ther in Sect. 6.4.3.

5 Results

Model output was saved at a subset of model nodes (stations)
in order to keep output files manageable in size. Output sta-
tions were spaced evenly across the bay in order to capture
spatial variability (Fig. 3). While ADCSWAN has the abil-
ity to write out numerous variables (including wave heights,
periods, etc.), the focus of this study is on WLs so discus-
sion here will be limited to that variable. The model was run
in 3-month-long segments with a 2-week overlap to avoid
discontinuities in dynamic processes. Smaller segments were
necessary for integrating SLR as well as for model stability
reasons. Output data from these segments were then recom-
bined into continuous time series at each station.

Analysis was performed for both the historic and future
periods. With an identical configuration (for all modeling
components) to the historic period simulation, the only free
variable is the AOGCM forcing under climate change. There-
fore, a comparison shows how extreme events can be ex-
pected to change (in a relative manner) over time.
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Figure 5. RIs for the Tillamook and Coos bay tide gauges, (a) and
(b), respectively. WLs are in the NAVD88 datum. Confidence in-
tervals are only for statistical uncertainty in the GEV model and are
calculated using a likelihood-based method (plotted as dotted lines).
SLR has not been included for future RI curves.

5.1 Recurrence intervals (tide gauge locations)

RIs were calculated using a GEV distribution fitted to annual
block maxima events. Figure 5 shows this analysis for ob-
served, modeled historic, and modeled future (without SLR
included) time series at the Coos and Tillamook bay tide
gauge locations (Fig. 1). The calculated historic period RI
curve for Tillamook (Fig. 5a) exhibits good agreement with
observations with a maximum offset of around 4 cm. The
agreement is less favorable for Coos Bay (Fig. 5b), with
a maximum offset of around 9 cm. For both locations, the
largest difference between observed and modeled RlIs is for
medium (approximately 10 years) RI events. This is because
both modeled RI curves exhibit a different curvature than the
observed RI curves. A possible source in the low bias for
modeled RIs may be the low bias observed in the MMSLA
regression model.

It is important to note that Fig. 5 includes future RI values
plotted with SLR not included. This plot shows a compar-
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ison of the future return intervals (assumed stationary with
SLR removed) to the stationary historic period return inter-
vals. Since nonstationary and stationary return intervals are
not generally equivalent, this provides a manner of compari-
son. Using the effective design value interpretation, this can
be thought of as future RIs but with the chosen design year
being 2000. Practically this shows future Rls as a function
of only changing forcing (no SLR). Both plots show the fu-
ture RI curve as exhibiting smaller WLs than the historic RI
curve, hinting at a reduction in extreme WL forcing into the
future.

Figure 5 presents results in a classic RI curve format but
they can additionally be viewed as effective Rls (as described
in Sect. 4). Effective RlIs were developed by calculating sta-
tionary RIs from the WL time series (relative to MSL) and
then adding SLR (Fig. 6). Figure 6 contains both the future
and historic effective RIs on the same plot to visualize how
RIs change upon entering a nonstationary climate regime.
Based off model assumptions, historic effective RIs are flat
lines through time (as they include no nonstationary compo-
nent). Figure 6 reiterates the same RI behavior as above with
historic RIs being higher than future Rls for the current pe-
riod (year 2000). Moving forward in time, this plot shows
that SLR eventually overtakes this effect to result in a higher
future flood. The point of overtake (where nonstationary RIs
begin to predict a larger flood) is plotted in Fig. 6 as colored
dots on the x axis. This intersection is significantly earlier for
short RIs (within 20 years for a 2-year event) than for longer-
RI events (over 60 years for a 100-year event). This result is
shown for both estuaries but with Tillamook Bay having less
spread in overtake time than Coos Bay.

5.2 Recurrence intervals (spatial variability)

Section 5.1 discusses Rls at a single location (the tide gauge),
but a key feature of this study’s methodology is the ability to
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explore spatial variability in RIs across the study sites. Fig-
ure 7 demonstrates this by plotting the 100-year-RI WL cal-
culated for the historic period at each output station. Anal-
ysis was limited to stations that were wet over 75 % of the
record length. This was implemented to limit uncertainty in
GEV analysis due to insufficient record lengths at only peri-
odically wet stations.

It is apparent in Fig. 7 that there is a significant gradient in
extreme WLs across both study site estuaries. For Tillamook,
WLs differ by approximately 25 cm and for Coos by around
35 cm. The gradient in WLs is oriented such that the mini-
mum WL is located near the estuary entrance with extreme
WL height increasing with further distance into the estuary.
Of particular interest, this trend is the same for both study
sites, suggesting that this pattern may be more generally ap-
plicable. While Fig. 7 only plots the 100-year event, this ex-
treme WL differential is maintained across other RI periods.

The spatially variable WLs produced from this analysis
provide the necessary information for building flood maps.
This was accomplished by fitting a smooth surface to the
scattered stations using spatial spline interpolation (ESRI,
2016). The 100-year-RI WL surface was then intersected
with the estuary DEM with all locations below the extreme
WL surface defined as “flooded”. This methodology makes
the assumption of extrapolation at the edge of the surface
where station output was not available. The calculated flood
surface is shown in Fig. 7 as a light blue surface. Comparison
of this surface to the US Federal Emergency Management
Agency (FEMA) 100-year floodplain for Coos Bay (FEMA,
2014) (not shown) revealed that the produced flood inunda-
tion zones are different, but not greatly so. This is likely more
attributable to Coos Bay’s steep topography than to similari-
ties in produced hazard levels. Planform flood area is highly
influenced by terrain gradients and large variabilities in pre-
dicted hazards can manifest as only small changes to flood
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Figure 7. Historic period 100-year flood surface results for Tillamook (a) and Coos (b) bays. Individual stations are plotted with color scale
indicating the modeled 100-year-RI WL magnitude for the historic period. Note that the color scale is different between the two study sites.
The calculated flood inundation surface is plotted as a blue transparent region.

zone for steep shorelines. FEMA only produces flood map
products, so a more quantitative comparison of extreme wa-
ter levels was not possible.

5.3 Changes to recurrence interval spatial structure

Section 5.2 details the importance of considering spatial vari-
ability in extreme WLs but only considers the historic sce-
nario. An important question remains as to how this spatial
variability can be expected to change moving into the future.
This is especially important as, while individual flooding es-
timates might be biased (for example by the inability of the
MMSLA regression to produce extremes or by bias in the
forcing AOGCMs), these biases should cancel when calcu-
lating change from the historic to future scenarios. Figure 8
explores this analysis by plotting the difference between fu-
ture effective 100-year-RI WLs (calculated for the year 2050)
and historic 100-year-RI WLs.

As a primer, if the RI difference plot (Fig. 8) showed
no spatial variability, then the same pattern seen in Fig. 7
would be replicated in the future, with only a vertical offset.
This would be an important result signifying that the spa-
tial pattern of current extreme flooding events will remain
unchanged into the future with only an estuary-wide SLR
adjustment being required to update hazard assessments. In-
stead, Fig. 8 shows a spatial pattern that is qualitatively sim-
ilar to that seen in the historic RI plots. Specifically, results
show that the change in WLs increases with further distance
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into the estuary, a result that signals an increase in the spa-
tial gradient of Rls as the study sites move into the future.
Looking at other RI event periods (not shown), results show a
gradual decrease in changes to spatial variability from around
10 to 20 cm for the 100-year-RI event to approximately no
change for the 2-year-RI event. Note that the choice to plot
effective return intervals for the year 2050 is arbitrary and
does not affect the spatial pattern of differences (the criti-
cal information in this plot). A different design year would
only change the overall magnitude, not the inter-point vari-
ability/pattern. Also included in Fig. 8 is the 100-year recur-
rence interval flood zone for the historic period and for the
effective RI design year of 2100.

6 Discussion
6.1 Drivers of extreme water levels

The spatial variability of extreme WLs shown in Fig. 7 mo-
tivates further investigation into what physical processes are
controlling WLs in different regions of the study areas. This
was investigated by carrying out a series of 17d simula-
tions bracketing the largest observed event at each study site
and for each time period. Each simulation in the series was
performed with an individual forcing component turned off
(e.g., wind, streamflow). The WL contribution from each
forcing was then calculated by subtracting the simulation
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with the forcing of interest turned off from a simulation with
full forcing. Therefore, each component can be conceptually
thought of as quantifying the contribution of each forcing of
interest to the total maximum WL. Figure 9 summarizes the
breakdown of contributions at several locations (moving up
the estuary) at each study site, and for both historic and fu-
ture periods. Components are plotted at the time of maximum
WL occurrence.

The results show that, for the simulated events, pressure
and MMSLAs are the largest components of nontidal resid-
ual (tides are not shown in Fig. 9). As MMSLAs are a source
of uncertainty in this study’s modeling framework, this mo-
tivates a need for further improvement of MMSLA esti-
mates. This could potentially be accomplished through either
improved statistical methods or a computationally tractable
physical modeling approach. Streamflow and offshore wave
forcing were found to be an order of magnitude less impor-
tant than pressure and MMSLA. This is especially true for
the two events at the Tillamook study site (Fig. 9c, d) where
streamflow and wave forcing were found to be of negligi-
ble importance to extreme event WLs. The wind contribution
was found to be variable across stations and events. This is
expected as wind setup is highly dependent on the estuary
geometry and the wind direction of the specific event.

However, this analysis is only for the maximum annual
event and other events likely have different compositions in
terms of forcing contributions. Further investigation shows
that, for both study sites and both climatological periods,
extreme event magnitude is not correlated with any individ-
ual forcing (p value > 0.05 when calculating correlation be-
tween WL magnitude and forcing magnitude at annual max-
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imum events). This is reinforced by the fact that many an-
nual maximum events are found to occur during below aver-
age nontidal forcing conditions (e.g., below average wind or
waves). This supports the conclusion that extreme WLs in the
PNW are generally compound events, driven by the sum of
multiple forcing, that are not necessarily extreme themselves.
This result is in agreement with other studies of forcing con-
tributions to extreme events in the PNW (Parker, 2019).

The exceptions to this conclusion are tides and MMSLAs,
which are found to have a statistically significant correlation
with event magnitude. Tides were not plotted in Fig. 9 for
scale reasons but were found to be the largest fraction of WLs
(an average of 185 cm for Till and 145 cm for Coos). It fol-
lows that extreme WLs would most often occur during (or
near) a high tide. Therefore, the concurrent timing of tides
and nontidal forcing becomes a major control on WL mag-
nitude. This represents a mechanism explaining the predom-
inance of compound events in the PNW, in which extreme
WLs are not necessarily associated with extreme forcing.
This is also a potential reason for some forcing components
showing a negligible influence on extreme WLs (e.g., waves
in Fig. 9). While waves have been shown to be important
drivers of nontidal residuals in PNW estuaries (Cheng et al.,
2015b; Olabarrieta et al., 2011), tidal modulation means ex-
treme WLs do not necessarily occur during maximum wave
energy events.

The resulting evidence of complexity in compound events
for the study site confirms that a comprehensive analysis of
extreme WLs in the PNW likely requires an approach simi-
lar to that taken here. Event-based approaches would likely
be ineffective as storms or extreme forcings are not neces-
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Figure 9. WL contributions from various forcings during the largest
simulated WL event. Stations transition from the tide gauge (sta-
tion 1) to the far river outlet of the estuary (see Fig. 3 for station
locations). Panels (a) and (b) show the Coos historic and future pe-
riods. Panels (c¢) and (d) show the Tillamook historic and future
periods. All panels have the same y-axis scaling.

sarily correlated with max annual events. Additionally, the
common methodology of simply adding the largest nontidal
residual to a high tide could result in significant overestima-
tions of event magnitude.

6.2 Spatial variability in return intervals

It is common practice to calculate WLs at a convenient
location (such as a tide gauge) and then apply this value
across the entire study domain. While larger estuaries (e.g.,
Delaware Bay) may have multiple tide gauges, smaller estu-
aries typical of the PNW tend to have one or none. A spa-
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tially constant assumption represents a major simplification
as even tides can produce significant spatial WL variability
in semi-enclosed basins (Holleman and Stacey, 2014). Ad-
ditionally, spatial variability is particularly important for es-
tuaries as they are often regions of low-gradient topography
where a modest change in water elevation can correspond to
a large change in inundated area. Results (Fig. 7) show vari-
ability in WLs for both locations in excess of 25 cm. Further-
more, the smallest WLs are at the estuary mouth where, in
the PNW, the tide gauge is generally located. This means that
estimating flooding from a tide gauge will result in under-
predictions for flooding with errors increasing with upstream
distance into the estuary. This result strongly supports the
importance of considering spatial variability in WLs within
flood hazard assessments.

Between the two study sites, Coos is found to have a
larger extreme WL differential (approximately 30 cm from
the mouth to the interior bay). This is contrary to the ex-
pected result that Tillamook, with its proportionally larger
forcing, would have a larger gradient. Streamflow, in partic-
ular, was expected to have a significant impact on WLs but
was found to have a minimal effect for both study sites. This
was particularly true for Tillamook despite its larger average
streamflow input. Figure 9 shows that, while the streamflow
component does increase moving shoreward for Coos bay,
the majority of the WL differential for both sites is driven
by pressure. An additional component of the WL gradient is
from tidal forcing, which produces around a 10 cm differen-
tial between the estuary mouth and the inner bay for both
locations.

Results show that spatial variability is predicted to change
into the future. However, this result is primarily shown for
longer-RI events, with shorter-RI events not showing any
change in spatial variability for the future scenario. Shorter-
RI period events are better constrained statistically than
longer-RI period events so it is possible that some proportion
of the predicted spatial variability is a function of GEV anal-
ysis on a temporally limited record. A modeled record longer
than the period used here (20 years for historic, 30 years for
future) could help to illuminate if this conclusion is a physi-
cal result.

6.3 Changing extreme events

With analysis suggesting RIs evolve through time, a natural
next question is how climate change is modifying the estu-
arine system. To help illustrate this, Table 2 shows a com-
parison of forcing statistics under the historic and future cli-
matological periods for Tillamook. Results show a decrease
in most forcing variables, both as an overall average and for
average forcing during extreme events. This result is simi-
larly seen for Coos Bay (not shown). This suggests that the
decrease in RI shown in Fig. 5 is caused by a broadscale re-
duction of forcing on the estuary for the AOGCM scenario
considered. Unfortunately, with all modeled forcing shown
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Table 2. Comparison of forcing for Tillamook Bay under the historic and future climatological periods. “Ave. Overall” is a full time series
average while “Ave. Annual Max” is an average of forcing during observed annual WL maximum events.

Historic period

WL  Hs Flow Windmag. Winddir. Press. MMSLA
(m) (m) (ms—1)  (mshH ©)  (Pa) (cm)
Ave. overall 0.01 2.8 85 4.5 340 98400 0
Std. overall 082 14 82 2.6 289 660 11
Ave. annual max 2.01 4.5 172 7.5 283 97800 17
Future period
Ave. overall 0.01 2.6 85 4.5 339 98400 0
Std. overall 0.83 1.4 89 2.6 287 630 11
Ave. annual max 199 3.8 111 6.2 344 98300 15

to be reduced for the future period, it is difficult to conclu-
sively differentiate which drivers are controlling changing
RIs. Similarly, as GEV analysis is based on a parametric fit
of multiple annual maximum events, it is difficult to charac-
terize the cause of changing RIs without considering the ag-
gregate behavior of all the events to which the GEV is fitted
(rather than a single event as shown in Fig. 9).

A further exploration of changing RI was shown through
effective RIs (Fig. 6). This result found that the reduction in
forcing is eventually overcome by SLR, although with the
timing being controlled by the size of the RI event. The idea
of an “overtake point” is a simplification based on the as-
sumptions within the statistical model, specifically that of
stationarity and nonstationarity (see Sect. 6.4.3). Another
way of viewing this result is that SLR represents a single
value for change across all RIs. By the year 2050, both 2-
year- and 100-year-RI events increase by 17 cm due to SLR.
Conversely, the change in RI magnitude from forcing is vari-
able across return periods. From forcing, the change in 2-year
RIis only 3 cm while for the 100-year RI it is much larger at
32 cm. This means that shorter-RI events are less buffered by
a change in forcing than longer-RI events. The conclusion
is the same from this interpretation in that short-RI events
will be comparatively more impacted by SLR than longer-RI
events.

6.4 Modeling limitations
6.4.1 Excluded processes

In this study bathymetry and topography were held constant
through time. Bathymetry is a first-order control on flooding
and so an ideal future projection would include morphologi-
cal evolution of the estuary. This said, morphological projec-
tions at climate change scales are extremely uncertain. The
combination of high uncertainty and high dependence would
leave resulting flood predications dominated by an uncertain
morphology projection with all other signals obscured. This
study therefore does not consider morphological evolution in
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order to specifically highlight how changing forcing impacts
extreme WLs.

Both estuaries have significant anthropological modifica-
tions ranging from coastal infrastructure to dredged chan-
nels. Coos in particular has an engineered coastline along
the majority of its southern boundary. A key factor in fu-
ture extreme events is the interaction between human inter-
vention and the estuarine system. For example, estuary WL
characteristics under tidal forcing show high sensitivity to
anthropological changes (Gallien et al., 2011; Wang et al.,
2017) and modifications to land use have been shown, in cer-
tain cases, to be of the same order of importance to WLs
as SLR (Bilskie et al., 2014). Dredging, for the same rea-
son as morphological evolution, can cause drastic changes to
estuarine hydrodynamics. However, similarly to morphologi-
cal predictions, anthropological controls are highly uncertain
and therefore not included in this analysis.

6.4.2 Climate model variability

The results shown in Fig. 5 provide an interesting com-
parison of modeled and observed extremes. However, the
modeled results and observed results are not based on the
same forcing time series, but rather one observational and
one modeled time series. Since both the Coos and Tillam-
ook modeled RI curves have less curvature than the observed
curves, this could be a result of the specific climate model
iteration that was used for the simulation. The common so-
lution to this problem is the usage of ensembles of climate
models rather than a single AOGCM (Murphy et al., 2004).
Unfortunately running ensembles is computationally expen-
sive given the level of complexity included in this study. Con-
ceptually this study makes the compromise of including more
physical complexity at the cost of uncertainty quantification.
Results from this project should therefore not be viewed as
a probabilistic or a “most-likely” result from climate change.
Instead, they should be thought of as a single possibility of
what could happen and an illustration of the importance of
including various processes in a study of this type.
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Not including multiple model iterations is also problem-
atic in constraining the current climate’s RIs. Results in
Sect. 6.1 show the importance of compound events and forc-
ing timing (especially tides) at these study sites. While forc-
ing was bias corrected using a methodology that has been
shown to perform well for extreme quantiles (Parker and Hill,
2017), timing of forcing occurring on a high tide or during a
high MMSLA is additionally critical. This study examines
only one possible combination of forcing timings that may
or may not be representative of the overall extreme behavior
of the system. This could once again be addressed through
usage of ensembles or multiple iterations of the current cli-
mate.

While results from this study build a strong case that in-
cluding dynamic coupling of processes is important for flood
estimation, a natural next question is the cost/benefit when
viewed under the extreme uncertainty of climate change. As
an example, this study shows a change in spatial distribu-
tion of extreme water levels of 10-20 cm moving into the
future. This is significant in terms of hazard quantification
but small in comparison to uncertainty in PNW sea level rise
by 2100 (on the scale of over 60 cm: Miller, 2018). It is ex-
pected that the need to include this uncertainty will likely of-
ten preclude the usage of the coupled dynamics employed by
this study. Rather it is hoped that these results can provide an
idea of the type of errors being induced by using more simpli-
fied modeling frameworks. Furthermore, this study provides
a strong motivation for methodologies to combine dynamic
modeling with faster simulation times. Recent research at a
similar estuary study site in the PNW has shown emulation
as a promising method to provide this linkage (Parker et al.,
2019).

6.4.3 Assumptions of stationarity

Another important assumption in this study is that of station-
arity when SLR is removed. The reality is somewhat more
complicated as climate change will result in a forcing-driven
nonstationarity in addition to that seen from SLR. Research
has additionally shown that SLR can be expected to inter-
act nonlinearly with storm surge, creating another source of
nonstationarity over time (Buchanan et al., 2017; Devlin et
al., 2017; Wahl, 2017). For our case, each time series seg-
ment is statistically stationary (Augmented Dickey—Fuller
test, p value < 0.001) but the overall time series (from 2000
to 2070) must be nonstationary. This is because the two seg-
ments (historic and future) show distinctly different calcu-
lated RI curves (Fig. 5) so WL behavior, as controlled by
forcing, must be changing. Simply put, this study analyzes
two segments that are not long enough to reveal the longer
term nonstationary behavior of the overall time series as con-
trolled by changing forcing. This is not problematic for this
study, which compares two snapshots, but a comprehensive
analysis would need to resolve the overall nonstationarity
from forcing as well as from SLR. This is also a factor in the
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calculation of the overlap timing from effective RIs (Fig. 6)
since the overall nonstationarity from forcing is not included
in the analysis. Therefore, the overlap timing results should
not be considered an exact calculation but rather a general
result.

7 Conclusions

This paper introduced a process-based modeling framework
for analyzing climate change impacts on various controls on
estuarine flooding. In particular this study focused on ex-
tremes and changes to RI events at two PNW estuaries. This
study described the difficulty of using Rls in the context of
nonstationarity and showed how “effective RIs” can be an
intuitive way of understanding changing flood hazards. Ef-
fective RIs showed that predicted changes to forcing result
in a decrease in extreme event magnitude moving into the fu-
ture. This decrease buffers the increase in WLs that comes
from SLR. This buffering effect was shown to be smaller for
short-RI events than long-RI events, suggesting that increas-
ing extremes will be felt first for low-RI events.

This study used multiple study sites and climatological
periods to explore drivers of extreme events. It was found
that extreme events for both locations were not controlled
by a single forcing but rather by compound events. Tides
were shown to be the largest contributor to extreme WLs.
The requirement for a high (or near high) tide modulates the
contribution from other forcings during extreme WLs. This
means that high nontidal residual or storms are not necessar-
ily the source of extremes at the study site. This suggests that
both event-based methodologies and the common procedure
of adding an uncoupled high tide and high nontidal residual
will both result in an incorrect assessment of flooding mag-
nitude.

An additional outcome of this study was the demonstra-
tion that extreme WLs are spatially variable in estuaries. The
results showed that WLs varied by more than 25 cm across
each estuary domain. Relying only on predictions at the tide
gauge and the assumption of a horizontal water surface will
therefore mischaracterize flood risk. Since this study found
that WL gradients for long-RI events increased in the fu-
ture, errors associated with bathtub approximations of flood-
ing surfaces will similarly increase. Overall this study high-
lighted the importance of limiting conclusions drawn from
point (tide gauge) analysis to regions spatially near observa-
tions or to rigorously define uncertainty from not sampling
the full spatial variability of flood surfaces.

Data availability. The utilized NARCCAP climate data are open
access and available through the Earth System Grid Climate Data
Gateway. The NARR climate dataset is available through NOAA’s
Earth System Research Laboratory website. Tide gauge records are
available through the National Oceanic and Atmospheric Admin-
istration (NOAA) National Ocean Service (NOS) website. River
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discharge is available from the USGS through the National Water
Information System. Wave buoy information was obtained through
NOAA’s National Data Buoy Center website.

Produced model data and data processing code can be made
available upon request.

Author contributions. KP and DH designed the modeling frame-
work. GGM performed the WAVEWATCH III simulations. JB per-
formed the hydrologic simulations. KP performed the hydrody-
namic simulations and data analysis of results. KP prepared the pa-
per with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work used the Extreme Science and En-
gineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number ACI-1548562. Re-
sources were provided by the XSEDE STAMPEDE cluster at the
Texas Advanced Computing Center through a series of allocations.
We thank the XSEDE program for providing computational re-
sources that made this project possible.

Financial support. This paper was funded in part by Oregon Sea
Grant under award (grant) number NA140OAR4170064 (CFDA no.
11.417) (project number R/CNH-25) from the National Oceanic
and Atmospheric Administration’s National Sea Grant College Pro-
gram, U.S. Department of Commerce, and by appropriations made
by the Oregon state legislature. Additional funding was from the
Oregon Sea Grant Robert E. Malouf Marine Studies Scholarship
(project number E/INT-143). The statements, findings, conclusions,
and recommendations are those of the authors and do not necessar-
ily reflect the views of these funders.

Review statement. This paper was edited by Bruno Merz and re-
viewed by Hamed Moftakhari and Bruno Merz.

References

Abatzoglou, J. T.: Development of gridded surface meteorological
data for ecological applications and modelling, Int. J. Climatol.,
33, 121-131, https://doi.org/10.1002/joc.3413, 2013.

Allan, J. C. and Komar, P. D.: Extreme Storms on the Pacific North-
west Coast during the 1997-98 El Nifio and 1998-99 La Nifia,
J. Coast. Res., 18, 175-193, https://doi.org/10.2307/4299063,
2002.

Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M., de
Noblet, N., England, M. H., Francis, J. E., Gruber, N., Hay-
wood, A. M., Karoly, D. J., Kaser, G., Le Quéré, C., Lenton,
T. M., Mann, M. E., McNeil, B. 1., Pitman, A. J., Rahmstorf,
S., Rignot, E., Schellnhuber, H. J., Schneider, S. H., Sherwood,
S. C., Somerville, R. C. J., Steffen, K., Steig, E. J., Visbeck,

www.nat-hazards-earth-syst-sci.net/19/1601/2019/

1615

M., Weaver, A. J.: The Copenhagen Diagnosis (2009): Updating
the world on the Latest Climate Science, The University of New
South Wales Climate Change Research Centre (CCRC), Sydney,
Australia, 60 pp., 2009.

Barnard, P. L., van Ormondt, M., Erikson, L. H., Eshleman,
J., Hapke, C., Ruggiero, P., Adams, P. N., and Foxgrover,
A. C.: Development of the Coastal Storm Modeling Sys-
tem (CoSMoS) for predicting the impact of storms on high-
energy, active-margin coasts, Nat. Hazards, 74, 1095-1125,
https://doi.org/10.1007/s11069-014-1236-y, 2014.

Beamer, J. P, Hill, D. E., McGrath, D., Arendt, A., and Kienholz,
C.: Hydrologic impacts of changes in climate and glacier extent
in the Gulf of Alaska watershed, Water Resour. Res., 53, 7502—
7520, https://doi.org/10.1002/2016WR020033, 2017.

Bilskie, M. V., Hagen, S. C., Medeiros, S. C., and Passeri,
D. L.: Dynamics of sea level rise and coastal flooding on
a changing landscape, Geophys. Res. Lett., 41, 927-934,
https://doi.org/10.1002/2013GL058759, 2014.

Buchanan, M. K., Oppenheimer, M., and Kopp, R. E.: Am-
plification of flood frequencies with local sea level rise
and emerging flood regimes, Environ. Res. Lett., 12, 64009,
https://doi.org/10.1088/1748-9326/aabcb3, 2017.

Chelton, D. B. and Davis, R. E.: Monthly Mean Sea-Level
Variability Along the West Coast of North America, J.
Phys. Oceanogr., 12, 757-784, https://doi.org/10.1175/1520-
0485(1982)012<0757:MMSLVA>2.0.CO;2, 1982.

Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.:
Non-stationary extreme value analysis in a changing climate,
Clim. Change, 127, 353-369, https://doi.org/10.1007/s10584-
014-1254-5, 2014.

Cheng, T. K., Hill, D. F,, Beamer, J., and Garcia-Medina, G.: Cli-
mate change impacts on wave and surge processes in a Pacific
Northwest (USA) estuary, J. Geophys. Res.-Ocean., 120, 182—
200, https://doi.org/10.1002/2014JC010268, 2015a.

Cheng, T. K., Hill, D. F,, and Read, W.: The Contributions to Storm
Tides in Pacific Northwest Estuaries: Tillamook Bay, Oregon,
and the December 2007 Storm, J. Coast. Res., 313, 723-734,
https://doi.org/10.2112/JCOASTRES-D-14-00120.1, 2015b.

Cloern, J. E., Knowles, N., Brown, L. R., Cayan, D., Dettinger, M.
D., Morgan, T. L., Schoellhamer, D. H., Stacey, M. T., van der
Wegen, M., Wagner, R. W., and Jassby, A. D.: Projected Evolu-
tion of California’s San Francisco Bay-Delta-River System in a
Century of Climate Change, edited by: Finkel, Z., PLoS One, 6,
€24465, https://doi.org/10.1371/journal.pone.0024465, 2011.

Corbella, S. and Stretch, D. D.: Predicting coastal
erosion trends using non-stationary  statistics  and
process-based models, Coast. Eng., 70, 40-49,

https://doi.org/10.1016/j.coastaleng.2012.06.004, 2012.

Crout, R. L., Sears, I. T., and Locke, L. K.: The Great
Coastal Gale of 2007 from Coastal Storms Program
Buoy 46089, in OCEANS 2008, Quebec City, QC, 1-7,
https://doi.org/10.1109/0CEANS.2008.5152026, 2008.

Déqué, M.: Frequency of precipitation and tempera-
ture extremes over France in an anthropogenic sce-
nario: Model results and statistical correction accord-
ing to observed values, Glob. Planet. Change, 57, 16-26,
https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007.

Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J.,
and Lin, H.: Coupling of sea level and tidal range changes,

Nat. Hazards Earth Syst. Sci., 19, 1601-1618, 2019


https://doi.org/10.1002/joc.3413
https://doi.org/10.2307/4299063
https://doi.org/10.1007/s11069-014-1236-y
https://doi.org/10.1002/2016WR020033
https://doi.org/10.1002/2013GL058759
https://doi.org/10.1088/1748-9326/aa6cb3
https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2
https://doi.org/10.1007/s10584-014-1254-5
https://doi.org/10.1007/s10584-014-1254-5
https://doi.org/10.1002/2014JC010268
https://doi.org/10.2112/JCOASTRES-D-14-00120.1
https://doi.org/10.1371/journal.pone.0024465
https://doi.org/10.1016/j.coastaleng.2012.06.004
https://doi.org/10.1109/OCEANS.2008.5152026
https://doi.org/10.1016/j.gloplacha.2006.11.030

1616

with implications for future water levels, Sci. Rep., 7, 1-12,
https://doi.org/10.1038/s41598-017-17056-z, 2017.

Dietrich, J. C., Westerink, J. J., Kennedy, A. B., Smith, J. M.,
Jensen, R. E., Zijlema, M., Holthuijsen, L. H., Dawson, C., Luet-
tich, R. A., Powell, M. D., Cardone, V. J., Cox, A. T., Stone,
G. W., Pourtaheri, H., Hope, M. E., Tanaka, S., Westerink, L.
G., Westerink, H. J., and Cobell, Z.: Hurricane Gustav (2008)
Waves and Storm Surge: Hindcast, Synoptic Analysis, and Val-
idation in Southern Louisiana, Mon. Weather Rev., 139, 2488—
2522, https://doi.org/10.1175/201 1IMWR3611.1, 201 1a.

Dietrich, J. C., Zijlema, M., Westerink, J. J., Holthui-
jsen, L. H., Dawson, C., Luettich, R. A., Jensen, R. E.,
Smith, J. M., Stelling, G. S., and Stone, G. W.: Mod-
eling hurricane waves and storm surge using integrally-
coupled, scalable computations, Coast. Eng., 58, 45-65,
https://doi.org/10.1016/J.COASTALENG.2010.08.001, 2011b.

Ding, Y., Nath Kuiry, S., Elgohry, M., Jia, Y., Altinakar,
M. S., and Yeh, K.-C.: Impact assessment of sea-level
rise and hazardous storms on coasts and estuaries us-
ing integrated processes model, Ocean Eng., 71, 74-95,
https://doi.org/10.1016/J.OCEANENG.2013.01.015, 2013.

DOGAMI: Lidar Remote Sensing Data Collection: Coast of Ore-
gon, available at: https://www.oregongeology.org/lidar/ (last ac-
cess: 14 July 2014), 2009.

Engle, V. D., Kurtz, J. C., Smith, L. M., Chancy, C., and Bour-
geois, P.: A Classification of U.S. Estuaries Based on Physical
and Hydrologic Attributes, Environ. Monit. Assess., 129, 397—
412, https://doi.org/10.1007/s10661-006-9372-9, 2007.

ESRI: ArcGIS: Spline with Barriers, available at: http:
/ldesktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/
spline-with-barriers.htm (last access: 4 September 2018), 2016.

FEMA: Flood Insurance Study: Coos County and Incorporated Ar-
eas, (Flood Insurance Study Number: 41011CV000B), 110 pp.,
2014.

Feng, H., Vandemark, D., Quilfen, Y., Chapron, B., and Beckley,
B.: Assessment of wind-forcing impact on a global wind-wave
model using the TOPEX altimeter, Ocean Eng., 33, 1431-1461,
https://doi.org/10.1016/J.OCEANENG.2005.10.015, 2006.

Gallien, T. W., Schubert, J. E., and Sanders, B. F.: Predict-
ing tidal flooding of urbanized embayments: A modeling
framework and data requirements, Coast. Eng., 58, 567-577,
https://doi.org/10.1016/J.COASTALENG.2011.01.011, 2011.

Gallien, T. W.,, Sanders, B. F, and Flick, R. E.: Urban
coastal flood prediction: Integrating wave overtopping,
flood defenses and drainage, Coast. Eng., 91, 18-28,
https://doi.org/10.1016/J.COASTALENG.2014.04.007, 2014.

Gallien, T. W., Kalligeris, N., Delisle, M.-P., Tang, B.-X.,
Lucey, J., and Winters, M.: Coastal Flood Modeling Chal-
lenges in Defended Urban Backshores, Geosciences, 8, 450,
https://doi.org/10.3390/geosciences8120450, 2018.

Garcia-Medina, G., Ozkan-Haller, H. T, Ruggiero, P., and
Oskamp, J.: An Inner-Shelf Wave Forecasting System for
the U.S. Pacific Northwest, Weather Forecast., 28, 681-703,
https://doi.org/10.1175/WAF-D-12-00055.1, 2013.

Hanson, J. L.: Pacific Hindcast Performance of Three Numer-
ical Wave Models, J. Atmos. Ocean. Tech., 26, 1614-1633,
https://doi.org/10.1175/2009JTECH0O650.1, 2009.

Hemer, M. A., Mclnnes, K. L., and Ranasinghe, R.: Climate and
variability bias adjustment of climate model-derived winds for a

Nat. Hazards Earth Syst. Sci., 19, 1601-1618, 2019

K. Parker et al.: The effects of changing climate

southeast Australian dynamical wave model, Ocean Dynam., 62,
87-104, https://doi.org/10.1007/s10236-011-0486-4, 2011.

Holleman, R. C. and Stacey, M. T.: Coupling of Sea Level Rise,
Tidal Amplification, and Inundation, J. Phys. Oceanogr., 44,
1439-1455, https://doi.org/10.1175/JPO-D-13-0214.1, 2014.

Holthuijsen, L. H., Booij, N., and Bertotti, L.: The Propagation of
Wind Errors Through Ocean Wave Hindcasts, J. Offshore Mech.
Arct. Eng., 118, 184, https://doi.org/10.1115/1.2828832, 1996.

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian,
G., Coulston, J., Herold, N. D., Wickham, J. D., and Megown,
K.: Completion of the 2011 National Land Cover Database
for the conterminous United States-Representing a decade of
land cover change information, Photogramm, available at: https:
/flwww.mrlc.gov/nlcd2011.php (last access: 14 November 2017),
Eng. Remote Sens., 81, 345-354, 2015.

IPCC: Climate Change 2007: Synthesis Report, Contribution of
Working Groups I, II and III to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC,
Geneva, Switzerland, 104 pp, 2007.

Jay, D. A., Leffler, K., Diefenderfer, H. L., and Borde, A.
B.: Tidal-Fluvial and Estuarine Processes in the Lower
Columbia River: I. Along-Channel Water Level Variations, Pa-
cific Ocean to Bonneville Dam, Estuar. Coast., 38, 415-433,
https://doi.org/10.1007/s12237-014-9819-0, 2015.

Jay, D. A., Borde, A. B., and Diefenderfer, H. L.: Tidal-
Fluvial and Estuarine Processes in the Lower Columbia
River: II. Water Level Models, Floodplain Wetland Inun-
dation, and System Zones, Estuar. Coast., 39, 1299-1324,
https://doi.org/10.1007/s12237-016-0082-4, 2016.

Katz, R. W.: Statistical Methods for Nonstationary Extremes,
Springer, Dordrecht, 15-37, 2013.

Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of
extremes in hydrology, Adv. Water Resour., 25, 1287-1304,
https://doi.org/10.1016/S0309-1708(02)00056-8, 2002.

Lee, S.-Y., Hamlet, A. F., Fitzgerald, C. J., and Burges, S.
J.: Optimized Flood Control in the Columbia River Basin
for a Global Warming Scenario, J. Water Resour. Plan.
Manag., 135, 440-450, https://doi.org/10.1061/(ASCE)0733-
9496(2009)135:6(440), 2009.

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk,
B., Mclnnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-
Smith, M.: A compound event framework for understanding ex-
treme impacts, Wiley Interdiscip. Rev. Clim. Chang., 5, 113-128,
https://doi.org/10.1002/wce.252, 2014.

Lin, N., Emanuel, K. A., Oppenheimer, M., and Vanmarcke, E.:
Physically-based Assessment of Hurricane Surge Threat un-
der Climate Change, available at: https://dspace.mit.edu/handle/
1721.1/75773 (last access: 30 November 2017), Nat. Clim.
Chang., 2, 462-467, 2012.

Liston, G. E. and Elder, K.: A Meteorological Distribution Sys-
tem for High-Resolution Terrestrial Modeling (MicroMet), J.
Hydrometeorol., 7, 217-234, https://doi.org/10.1175/JHM486.1,
2006a.

Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Mod-
eling System (SnowModel), J. Hydrometeorol., 7, 1259-1276,
https://doi.org/10.1175/JHM548.1, 2006b.

Liston, G. E. and Mernild, S. H.: Greenland Freshwater
Runoff, Part I: A Runoff Routing Model for Glaciated and

www.nat-hazards-earth-syst-sci.net/19/1601/2019/


https://doi.org/10.1038/s41598-017-17056-z
https://doi.org/10.1175/2011MWR3611.1
https://doi.org/10.1016/J.COASTALENG.2010.08.001
https://doi.org/10.1016/J.OCEANENG.2013.01.015
https://www.oregongeology.org/lidar/
https://doi.org/10.1007/s10661-006-9372-9
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/spline-with-barriers.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/spline-with-barriers.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/spline-with-barriers.htm
https://doi.org/10.1016/J.OCEANENG.2005.10.015
https://doi.org/10.1016/J.COASTALENG.2011.01.011
https://doi.org/10.1016/J.COASTALENG.2014.04.007
https://doi.org/10.3390/geosciences8120450
https://doi.org/10.1175/WAF-D-12-00055.1
https://doi.org/10.1175/2009JTECHO650.1
https://doi.org/10.1007/s10236-011-0486-4
https://doi.org/10.1175/JPO-D-13-0214.1
https://doi.org/10.1115/1.2828832
https://www.mrlc.gov/nlcd2011.php
https://www.mrlc.gov/nlcd2011.php
https://doi.org/10.1007/s12237-014-9819-0
https://doi.org/10.1007/s12237-016-0082-4
https://doi.org/10.1016/S0309-1708(02)00056-8
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(440)
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(440)
https://doi.org/10.1002/wcc.252
https://dspace.mit.edu/handle/1721.1/75773
https://dspace.mit.edu/handle/1721.1/75773
https://doi.org/10.1175/JHM486.1
https://doi.org/10.1175/JHM548.1

K. Parker et al.: The effects of changing climate

Nonglaciated Landscapes (HydroFlow), J. Climate, 25, 5997—
6014, https://doi.org/10.1175/JCLI-D-11-00591.1, 2012.

Luettich, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC: An
Advanced Three-Dimensional Circulation Model for Shelves,
Coasts, and Estuaries, Report 1. Theory and Methodology of
ADCIRC-2DDI and ADCIRC-3DL, available at: http:/www.
dtic.mil/docs/citations/ADA261608 (last access: 13 July 2018),
1992.

Mark, D. J., Spargo, E. A., Westerink, J. J., and Luettich, R. A.:
ENPAC 2003: A Tidal Constituent Database for Eastern North
Pacific Ocean, available at: http://www.dtic.mil/docs/citations/
ADA429079 (last access: 26 July 2018), 2004.

Mearns, L. O., Gutowski, W., Jones, R., Leung, R., McGinnis, S.,
Nunes, A., and Qian, Y.: A Regional Climate Change Assessment
Program for North America, Eos, Trans. Am. Geophys. Union,
90, 311-311, https://doi.org/10.1029/2009E0360002, 2009.

Meéndez, F. J., Menéndez, M., Lucefio, A., and Losada, I
J.: Analyzing Monthly Extreme Sea Levels with a Time-
Dependent GEV Model, J. Atmos. Ocean. Tech., 24, §894-911,
https://doi.org/10.1175/ITECH2009.1, 2007.

Méndez, F. J., Menéndez, M., Lucefio, A., Medina, R., and Gra-
ham, N. E.: Seasonality and duration in extreme value distri-
butions of significant wave height, Ocean Eng., 35, 131-138,
https://doi.org/10.1016/J.OCEANENG.2007.07.012, 2008.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.
C., Ebisuzaki, W., Jovi¢, D., Woollen, J., Rogers, E., Berbery,
E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H.,
Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North Ameri-
can Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343-360,
https://doi.org/10.1175/BAMS-87-3-343, 2006.

Miller, I., Morgan, H., Mauger, G., Weldon, R., Schmidt, D., Welch,
M., and Grossman, E.: Projected Sea Level Rise for Washington
State, Washington Coastal Resilience Project, 2018.

Minguez, R., Menéndez, M., Méndez, F. J., and Losada, I. J.: Sensi-
tivity analysis of time-dependent generalized extreme value mod-
els for ocean climate variables, Adv. Water Resour., 33, 833-845,
https://doi.org/10.1016/J. ADVWATRES.2010.05.003, 2010.

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D.
L., Sweet, W., Matthew, R. A., and Luke, A.: Increased nui-
sance flooding along the coasts of the United States due to sea
level rise: Past and future, Geophys. Res. Lett., 42, 98469852,
https://doi.org/10.1002/2015GL066072, 2015.

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew,
R. A.: Cumulative hazard: The case of nuisance flooding, Earth’s
Futur., 5, 214-223, https://doi.org/10.1002/2016EF000494,
2017a.

Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B.
F., and Matthew, R. A.: Compounding effects of sea level rise
and fluvial flooding, P. Natl. Acad. Sci. USA, 114, 9785-9790,
https://doi.org/10.1073/pnas.1620325114, 2017b.

Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew,
R. A., and Sanders, B. F.: Linking statistical and hydrody-
namic modeling for compound flood hazard assessment in
tidal channels and estuaries, Adv. Water Resour., 128, 28-38,
https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones,
G. S., Webb, M. J., Collins, M., and Stainforth, D. A.:
Quantification of modelling uncertainties in a large ensem-

www.nat-hazards-earth-syst-sci.net/19/1601/2019/

1617

ble of climate change simulations, Nature, 430, 768-772,
https://doi.org/10.1038/nature02771, 2004.

Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R. A.,
Rogner, H. H., and Victor, N.: Special Report on Emissions Sce-
narios (SRES), A Special Report of Working Group III of the
Intergovernmental Panel on Climate Change, Cambridge Univer-
sity Press, Geneva, Switzerland, available at: http://pure.iiasa.ac.
at/6101/2/sres-en.pdf (last access: 14 November 2017), 2000.

Nakicenovic, N., Lempert, R. J., and Janetos, A. C.: A Framework
for the Development of New Socio-economic Scenarios for Cli-
mate Change Research: Introductory Essay, Clim. Change, 122,
351-361, https://doi.org/10.1007/s10584-013-0982-2, 2014.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models Part I — A discussion of principles, J. Hydrol., 10,
282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

National Research Council (NRC): Sea-Level Rise for the Coasts of
California, Oregon, and Washington, National Academies Press,
Washington, DC, 201 pp., 2012.

NOAA: U.S. Digital Elevation Models, available at: https:/www.
ngdc.noaa.gov/mgg/coastal/coastal.html (22 July 2016), 2018.
Odigie, K. O. and Warrick, J. A.: Coherence Between Coastal
and River Flooding along the California Coast, J. Coast.
Res., 342, 308-317, https://doi.org/10.2112/JCOASTRES-D-16-

00226.1, 2018.

Olabarrieta, M., Warner, J. C., and Kumar, N.: Wave-current
interaction in Willapa Bay, J. Geophys. Res., 116, C12014,
https://doi.org/10.1029/2011JC007387, 2011.

Olsen, J. R., Lambert, J. H., and Haimes, Y. Y.: Risk of Extreme
Events Under Nonstationary Conditions, Risk Anal., 18, 497—
510, https://doi.org/10.1111/j.1539-6924.1998.tb00364.x, 1998.

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S.,
Carter, T. R., Mathur, R., and van Vuuren, D. P.: A new sce-
nario framework for climate change research: the concept of
shared socioeconomic pathways, Clim. Change, 122, 387—400,
https://doi.org/10.1007/s10584-013-0905-2, 2014.

Orton, P. M., Hall, T. M., Talke, S. A., Blumberg, A. F., Georgas, N.
and Vinogradov, S.: A validated tropical-extratropical flood haz-
ard assessment for New York Harbor, J. Geophys. Res.-Ocean.,
121, 8904-8929, https://doi.org/10.1002/2016JC011679, 2016.

Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D.:
Trends and climate evolution: Statistical approach for very
high temperatures in France, Clim. Change, 81, 331-352,
https://doi.org/10.1007/s10584-006-9116-4, 2007.

Parey, S., Hoang, T. T. H., and Dacunha-Castelle, D.: Dif-
ferent ways to compute temperature return levels in the
climate change context, Environmetrics, 21, 698-718,
https://doi.org/10.1002/env.1060, 2010.

Parker, K. and Hill, D. F.: Evaluation of bias correction meth-
ods for wave modeling output, Ocean Modell., 110, 52-65,
https://doi.org/10.1016/j.ocemod.2016.12.008, 2017.

Parker, K., Ruggiero, P., Serafin, K. A., and Hill, D. F.: Emulation
as an approach for rapid estuarine modeling, Coast. Eng., 150,
79-93, https://doi.org/10.1016/j.coastaleng.2019.03.004, 2019.

Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal
harmonic analysis including error estimates in MAT-
LAB wusing T_TIDE, Comput. Geosci., 28, 929-937,
https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.

Piani, C. and Haerter, J. O.: Two dimensional bias correction of tem-
perature and precipitation copulas in climate models, Geophys.

Nat. Hazards Earth Syst. Sci., 19, 1601-1618, 2019


https://doi.org/10.1175/JCLI-D-11-00591.1
http://www.dtic.mil/docs/citations/ADA261608
http://www.dtic.mil/docs/citations/ADA261608
http://www.dtic.mil/docs/citations/ADA429079
http://www.dtic.mil/docs/citations/ADA429079
https://doi.org/10.1029/2009EO360002
https://doi.org/10.1175/JTECH2009.1
https://doi.org/10.1016/J.OCEANENG.2007.07.012
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1016/J.ADVWATRES.2010.05.003
https://doi.org/10.1002/2015GL066072
https://doi.org/10.1002/2016EF000494
https://doi.org/10.1073/pnas.1620325114
https://doi.org/10.1016/j.advwatres.2019.04.009
https://doi.org/10.1038/nature02771
http://pure.iiasa.ac.at/6101/2/sres-en.pdf
http://pure.iiasa.ac.at/6101/2/sres-en.pdf
https://doi.org/10.1007/s10584-013-0982-2
https://doi.org/10.1016/0022-1694(70)90255-6
https://www.ngdc.noaa.gov/mgg/coastal/coastal.html
https://www.ngdc.noaa.gov/mgg/coastal/coastal.html
https://doi.org/10.2112/JCOASTRES-D-16-00226.1
https://doi.org/10.2112/JCOASTRES-D-16-00226.1
https://doi.org/10.1029/2011JC007387
https://doi.org/10.1111/j.1539-6924.1998.tb00364.x
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1002/2016JC011679
https://doi.org/10.1007/s10584-006-9116-4
https://doi.org/10.1002/env.1060
https://doi.org/10.1016/j.ocemod.2016.12.008
https://doi.org/10.1016/j.coastaleng.2019.03.004
https://doi.org/10.1016/S0098-3004(02)00013-4

1618

Res. Lett., 39, L20401, https://doi.org/10.1029/2012GL053839,
2012.

Resio, D. T. and Westerink, J. J.: Modeling the Physics of Storm
Surges, Phys. Today, 61, 33, https://doi.org/10.1063/1.2982120,
2008.

Rootzén, H. and Katz, R. W.: Design Life Level: Quantifying
risk in a changing climate, Water Resour. Res., 49, 5964-5972,
https://doi.org/10.1002/wrcr.20425, 2013.

Ruggiero, P.: Is the Intensifying Wave Climate of the U.S. Pa-
cific Northwest Increasing Flooding and Erosion Risk Faster
Than Sea-Level Rise?, J. Waterw. Port, Coastal, Ocean
Eng., 139, 88-97, https://doi.org/10.1061/(ASCE)WW.1943-
5460.0000172, 2013.

Ruggiero, P., Komar, P. D., and Allan, J. C.: Increasing wave
heights and extreme value projections: The wave climate
of the U.S. Pacific Northwest, Coast. Eng., 57, 539-552,
https://doi.org/10.1016/j.coastaleng.2009.12.005, 2010.

Salas, J. D. and Obeysekera, J.: Revisiting the Concepts
of Return Period and Risk for Nonstationary Hydro-
logic Extreme Events, J. Hydrol. Eng., 19, 554-568,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820, 2014.

Serafin, K. A. and Ruggiero, P.: Simulating extreme to-
tal water levels using a time-dependent, extreme value
approach, J. Geophys. Res.-Ocean., 119, 6305-6329,
https://doi.org/10.1002/2014JC010093, 2014.

Smith, J. M., Cialone, M. A., Wamsley, T. V., and McAlpin,
T. O.: Potential impact of sea level rise on coastal
surges in southeast Louisiana, Ocean Eng., 37, 37-47,
https://doi.org/10.1016/J.OCEANENG.2009.07.008, 2010.

Thompson, P. R., Merrifield, M. A., Wells, J. R., and Chang, C.
M.: Wind-Driven Coastal Sea Level Variability in the Northeast
Pacific, J. Climate, 27, 47334751, https://doi.org/10.1175/JCLI-
D-13-00225.1, 2014.

Tolman, H. L.: User manual and system documentation of WAVE-
WATCH III TM version 3.14, 2009.

Tolman, H. L., Chalikov, D., Tolman, H. L., and Chalikov, D.:
Source Terms in a Third-Generation Wind Wave Model, J.
Phys. Oceanogr., 26, 2497-2518, https://doi.org/10.1175/1520-
0485(1996)026<2497:STIATG>2.0.CO;2, 1996.

Van Vuuren, D. P. and Carter, T. R.: Climate and socio-economic
scenarios for climate change research and assessment: recon-
ciling the new with the old, Clim. Change, 122, 415-429,
https://doi.org/10.1007/s10584-013-0974-2, 2014.

Nat. Hazards Earth Syst. Sci., 19, 1601-1618, 2019

K. Parker et al.: The effects of changing climate

Vermeer, M. and Rahmstorf, S.: Global sea level linked to global
temperature, P. Natl. Acad. Sci. USA, 106, 21527-21532,
https://doi.org/10.1073/pnas.0907765106, 2009.

Wahl, T.: Sea-level rise and storm surges, relationship sta-
tus: Complicated!, Environ. Res. Lett., 12, 111001,
https://doi.org/10.1088/1748-9326/aa8eba, 2017.

Wahl, T. and Chambers, D. P.. Climate controls mul-
tidecadal variability in U. S. extreme sea level
records, J. Geophys. Res.-Ocean., 121, 1274-1290,
https://doi.org/10.1002/2015JC011057, 2016.

Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S.,
Hinkel, J., and Slangen, A. B. A.: Understanding extreme sea
levels for broad-scale coastal impact and adaptation analysis,
Nat. Commun., 8, 1-12, https://doi.org/10.1038/ncomms 16075,
2017.

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.:
Increasing risk of compound flooding from storm surge and
rainfall for major US cities, Nat. Clim. Chang., 5, 1093-1097,
https://doi.org/10.1038/nclimate2736, 2015.

Wang, R.-Q., Herdman, L. M., Erikson, L., Barnard, P,
Hummel, M., and Stacey, M. T.: Interactions of Estuar-
ine Shoreline Infrastructure With Multiscale Sea Level
Variability, J. Geophys. Res.-Ocean., 122, 9962-9979,
https://doi.org/10.1002/2017JC012730, 2017.

Weaver, R. J. and Luettich Jr., R. A.: 2-D vs. 3-D Storm Surge Sen-
sitivity in ADCIRC: Case Study of Hurricane Isabel, in Estuarine
and Coastal Modeling (2009), American Society of Civil Engi-
neers, Reston, VA, 762-779, 2010.

Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls,
R. J., Umgiesser, G., and Willems, P.: Changing extreme
sea levels along European coasts, Coast. Eng., 87, 4-14,
https://doi.org/10.1016/J.COASTALENG.2013.10.017, 2014.

Wolf, J.: Coastal flooding: impacts of coupled wave—
surge-tide  models, Nat.  Hazards, 49, 241-260,
https://doi.org/10.1007/s11069-008-9316-5, 2009.

Zijlema, M.: Computation of wind-wave spectra in coastal waters
with SWAN on unstructured grids, Coast. Eng., 57, 267-277,
https://doi.org/10.1016/J.COASTALENG.2009.10.011, 2010.

www.nat-hazards-earth-syst-sci.net/19/1601/2019/


https://doi.org/10.1029/2012GL053839
https://doi.org/10.1063/1.2982120
https://doi.org/10.1002/wrcr.20425
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000172
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000172
https://doi.org/10.1016/j.coastaleng.2009.12.005
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820
https://doi.org/10.1002/2014JC010093
https://doi.org/10.1016/J.OCEANENG.2009.07.008
https://doi.org/10.1175/JCLI-D-13-00225.1
https://doi.org/10.1175/JCLI-D-13-00225.1
https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2
https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2
https://doi.org/10.1007/s10584-013-0974-2
https://doi.org/10.1073/pnas.0907765106
https://doi.org/10.1088/1748-9326/aa8eba
https://doi.org/10.1002/2015JC011057
https://doi.org/10.1038/ncomms16075
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1002/2017JC012730
https://doi.org/10.1016/J.COASTALENG.2013.10.017
https://doi.org/10.1007/s11069-008-9316-5
https://doi.org/10.1016/J.COASTALENG.2009.10.011

	Abstract
	Introduction
	Study sites
	Methods
	Climate model
	Wave model
	Hydrological model
	Monthly anomaly model
	Sea level rise
	Local hydrodynamic/wave model

	Nonstationary recurrence intervals
	Results
	Recurrence intervals (tide gauge locations)
	Recurrence intervals (spatial variability)
	Changes to recurrence interval spatial structure

	Discussion
	Drivers of extreme water levels
	Spatial variability in return intervals
	Changing extreme events
	Modeling limitations
	Excluded processes
	Climate model variability
	Assumptions of stationarity


	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

