Articles | Volume 18, issue 6
https://doi.org/10.5194/nhess-18-1583-2018
https://doi.org/10.5194/nhess-18-1583-2018
Research article
 | 
08 Jun 2018
Research article |  | 08 Jun 2018

Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment

Johnny Cusicanqui, Norman Kerle, and Francesco Nex

Related authors

EDU-UAV Photogrammetry Current Online Educational Landscape
Yolla Al Asmar, Bashar Alsadik, Francesco Nex, and Farzaneh Dadrass Javan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 101–108, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-101-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-101-2025, 2025
3D City Digital Twin Simulation to Mitigate Heat Risk of Urban Heat Islands
Aulia Imania Sukma, Mila N. Koeva, Diana Reckien, Marija Bockarjova, Andre da Silva Mano, Giulia Canili, Giovanni Vicentini, and Norman Kerle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 129–136, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-129-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-129-2024, 2024
HYBRID ADJUSTMENT OF UAS-BASED LiDAR AND IMAGE DATA
Y. Yadav, B. Alsadik, F. Nex, F. Remondino, and P. Glira
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 633–640, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-633-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-633-2023, 2023
ICEPY4D: A PYTHON TOOLKIT FOR ADVANCED MULTI-EPOCH GLACIER MONITORING WITH DEEP-LEARNING PHOTOGRAMMETRY
F. Ioli, F. Barbieri, F. Gaspari, F. Nex, and L. Pinto
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1037–1044, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1037-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1037-2023, 2023
VEHICLE TRACKING AND SPEED ESTIMATION FROM UNMANNED AERIAL VEHICLES USING SEGMENTATION-INITIALISED TRACKERS
S. M. Tilon and F. Nex
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 431–437, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-431-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-431-2023, 2023

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Automated rapid estimation of flood depth using a digital elevation model and Earth Observation Satellite (EOS-04)-derived flood inundation
Lakshmi Amani Chimata, Suresh Babu Anuvala Setty Venkata, Shashi Vardhan Reddy Patlolla, Durga Rao Korada Hari Venkata, Sreenivas Kandrika, and Prakash Chauhan
Nat. Hazards Earth Syst. Sci., 25, 2455–2472, https://doi.org/10.5194/nhess-25-2455-2025,https://doi.org/10.5194/nhess-25-2455-2025, 2025
Short summary
An automated approach for developing geohazard inventories using news: integrating natural language processing (NLP), machine learning, and mapping
Aydoğan Avcıoğlu, Ogün Demir, and Tolga Görüm
Nat. Hazards Earth Syst. Sci., 25, 2421–2435, https://doi.org/10.5194/nhess-25-2421-2025,https://doi.org/10.5194/nhess-25-2421-2025, 2025
Short summary
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
Nat. Hazards Earth Syst. Sci., 25, 913–927, https://doi.org/10.5194/nhess-25-913-2025,https://doi.org/10.5194/nhess-25-913-2025, 2025
Short summary

Cited articles

Ahmed, M. T., Dailey, M. N., Landabaso, J. L., and Herrero, N.: Robust Key Frame Extraction for 3D Reconstruction from Video Streams, in: VISAPP (1), edited by: Richard, P. and Braz, J., 231–236, INSTICC Press, http://dblp.uni-trier.de/db/conf/visapp/visapp2010-1.html#AhmedDLH10, 2010. a
Alsadik, B., Gerke, M., and Vosselman, G.: Efficient use of video for 3D modelling of cultural heritage objects, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W4, 1–8, https://doi.org/10.5194/isprsannals-II-3-W4-1-2015, 2015. a, b, c, d, e
Clift, L. G. and Clark, A. F.: Video frame extraction for 3D reconstruction, in: 2016 8th Computer Science and Electronic Engineering (CEEC), 152–157, https://doi.org/10.1109/CEEC.2016.7835905, 2016. a, b
CloudCompare: CloudCompare 3D point cloud and mesh processing software Open Source Project, http://www.cloudcompare.org/, 2017. (last access: 29 May 2018) a
Download
Short summary
Aerial multi-perspective images can be used for the effective assessment of post-disaster structural damage. Alternatively, rapidly available video data can be processed for the same purpose. However, video quality characteristics are different than those of images taken with still cameras. The use of video data in post-disaster damage assessment has not been demonstrated. Based on a comparative assessment, our findings support the application of video data in post-disaster damage assessment.
Share
Altmetrics
Final-revised paper
Preprint