Articles | Volume 18, issue 6
Nat. Hazards Earth Syst. Sci., 18, 1583–1598, 2018
https://doi.org/10.5194/nhess-18-1583-2018
Nat. Hazards Earth Syst. Sci., 18, 1583–1598, 2018
https://doi.org/10.5194/nhess-18-1583-2018
Research article
08 Jun 2018
Research article | 08 Jun 2018

Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment

Johnny Cusicanqui et al.

Related authors

UNSUPERVISED HARMONIOUS IMAGE COMPOSITION FOR DISASTER VICTIM DETECTION
N. Zhang, F. Nex, G. Vosselman, and N. Kerle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1189–1196, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1189-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1189-2022, 2022
EXPLORING THE POTENTIALS OF UAV PHOTOGRAMMETRIC POINT CLOUDS IN FAÇADE DETECTION AND 3D RECONSTRUCTION OF BUILDINGS
K. K. Mwangangi, P. O. Mc’Okeyo, S. J. Oude Elberink, and F. Nex
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 433–440, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-433-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-433-2022, 2022
MICRO AND MACRO QUADCOPTER DRONES FOR INDOOR MAPPING TO SUPPORT DISASTER MANAGEMENT
S. Karam, F. Nex, O. Karlsson, J. Rydell, E. Bilock, M. Tulldahl, M. Holmberg, and N. Kerle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 203–210, https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022,https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022, 2022
TOWARDS LEARNING LOW-LIGHT INDOOR SEMANTIC SEGMENTATION WITH ILLUMINATION-INVARIANT FEATURES
N. Zhang, F. Nex, N. Kerle, and G. Vosselman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 427–432, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021,https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-427-2021, 2021
Review article: Towards resilient vital infrastructure systems – challenges, opportunities, and future research agenda
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021,https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022,https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022,https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Gridded flood depth estimates from satellite-derived inundations
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022,https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
ProbFire: a probabilistic fire early warning system for Indonesia
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022,https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022,https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary

Cited articles

Ahmed, M. T., Dailey, M. N., Landabaso, J. L., and Herrero, N.: Robust Key Frame Extraction for 3D Reconstruction from Video Streams, in: VISAPP (1), edited by: Richard, P. and Braz, J., 231–236, INSTICC Press, http://dblp.uni-trier.de/db/conf/visapp/visapp2010-1.html#AhmedDLH10, 2010. a
Alsadik, B., Gerke, M., and Vosselman, G.: Efficient use of video for 3D modelling of cultural heritage objects, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W4, 1–8, https://doi.org/10.5194/isprsannals-II-3-W4-1-2015, 2015. a, b, c, d, e
Clift, L. G. and Clark, A. F.: Video frame extraction for 3D reconstruction, in: 2016 8th Computer Science and Electronic Engineering (CEEC), 152–157, https://doi.org/10.1109/CEEC.2016.7835905, 2016. a, b
CloudCompare: CloudCompare 3D point cloud and mesh processing software Open Source Project, http://www.cloudcompare.org/, 2017. (last access: 29 May 2018) a
Download
Short summary
Aerial multi-perspective images can be used for the effective assessment of post-disaster structural damage. Alternatively, rapidly available video data can be processed for the same purpose. However, video quality characteristics are different than those of images taken with still cameras. The use of video data in post-disaster damage assessment has not been demonstrated. Based on a comparative assessment, our findings support the application of video data in post-disaster damage assessment.
Altmetrics
Final-revised paper
Preprint