Articles | Volume 17, issue 5
Nat. Hazards Earth Syst. Sci., 17, 735–747, 2017
https://doi.org/10.5194/nhess-17-735-2017
Nat. Hazards Earth Syst. Sci., 17, 735–747, 2017
https://doi.org/10.5194/nhess-17-735-2017

Research article 19 May 2017

Research article | 19 May 2017

Probabilistic flood extent estimates from social media flood observations

Tom Brouwer et al.

Related authors

A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021,https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-329,https://doi.org/10.5194/hess-2021-329, 2021
Preprint under review for HESS
Short summary
Review article: Towards resilient vital infrastructure systems – challenges, opportunities, and future research agenda
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021,https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020,https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability
Chao Gao, Martijn J. Booij, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 24, 3251–3269, https://doi.org/10.5194/hess-24-3251-2020,https://doi.org/10.5194/hess-24-3251-2020, 2020
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021,https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
CHILDA – Czech Historical Landslide Database
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021,https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Review article: Detection of actionable tweets in crisis events
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021,https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021,https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021,https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary

Cited articles

Aronica, G., Bates, P. D., and Horrit, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Brouwer, T.: Twitter Flood Mapping Scripts: First Release [Data set], https://doi.org/10.5281/zenodo.165818, 2016.
Carter, W. N.: Disaster Management: A Disaster Manager's Handbook, Asian Development Bank, Mandaluyong City, Philippines, 2008.
Dullof, J. and Doucette, P.: The Sequential Generation of Gaussian Random Fields for Applications in the Geospatial Sciences, Int. J. Geo-Inf., 3, 817–852, https://doi.org/10.3390/ijgi3020817, 2014.
EA (Environment Agency): LIDAR Composite DTM – 2 m, available at: https://data.gov.uk/dataset/lidar-composite-dtm-2m1 (last access: 3 May 2016), 2014.
Download
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
Altmetrics
Final-revised paper
Preprint