Articles | Volume 17, issue 5
https://doi.org/10.5194/nhess-17-735-2017
https://doi.org/10.5194/nhess-17-735-2017
Research article
 | 
19 May 2017
Research article |  | 19 May 2017

Probabilistic flood extent estimates from social media flood observations

Tom Brouwer, Dirk Eilander, Arnejan van Loenen, Martijn J. Booij, Kathelijne M. Wijnberg, Jan S. Verkade, and Jurjen Wagemaker

Related authors

Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-196,https://doi.org/10.5194/nhess-2024-196, 2024
Preprint under review for NHESS
Short summary
Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach
Kh Rahat Usman, Rodolfo Alvarado Montero, Tadros Ghobrial, François Anctil, and Arnejan van Loenen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-116,https://doi.org/10.5194/gmd-2024-116, 2024
Preprint under review for GMD
Short summary
Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247,https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1354,https://doi.org/10.5194/egusphere-2024-1354, 2024
Short summary
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Review article: Physical vulnerability database for critical infrastructure hazard risk assessments – a systematic review and data collection
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. Van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 4341–4368, https://doi.org/10.5194/nhess-24-4341-2024,https://doi.org/10.5194/nhess-24-4341-2024, 2024
Short summary
Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024,https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Dynamical changes in seismic properties prior to, during, and after the 2014–2015 Holuhraun eruption, Iceland
Maria R. P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
Nat. Hazards Earth Syst. Sci., 24, 4075–4089, https://doi.org/10.5194/nhess-24-4075-2024,https://doi.org/10.5194/nhess-24-4075-2024, 2024
Short summary
The World Wide Lightning Location Network (WWLLN) over Spain
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
Nat. Hazards Earth Syst. Sci., 24, 3925–3943, https://doi.org/10.5194/nhess-24-3925-2024,https://doi.org/10.5194/nhess-24-3925-2024, 2024
Short summary
AscDAMs: advanced SLAM-based channel detection and mapping system
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
Nat. Hazards Earth Syst. Sci., 24, 3075–3094, https://doi.org/10.5194/nhess-24-3075-2024,https://doi.org/10.5194/nhess-24-3075-2024, 2024
Short summary

Cited articles

Aronica, G., Bates, P. D., and Horrit, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Brouwer, T.: Twitter Flood Mapping Scripts: First Release [Data set], https://doi.org/10.5281/zenodo.165818, 2016.
Carter, W. N.: Disaster Management: A Disaster Manager's Handbook, Asian Development Bank, Mandaluyong City, Philippines, 2008.
Dullof, J. and Doucette, P.: The Sequential Generation of Gaussian Random Fields for Applications in the Geospatial Sciences, Int. J. Geo-Inf., 3, 817–852, https://doi.org/10.3390/ijgi3020817, 2014.
EA (Environment Agency): LIDAR Composite DTM – 2 m, available at: https://data.gov.uk/dataset/lidar-composite-dtm-2m1 (last access: 3 May 2016), 2014.
Download
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
Altmetrics
Final-revised paper
Preprint