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Abstract. The increasing number and severity of floods,
driven by phenomena such as urbanization, deforestation,
subsidence and climate change, create a growing need for
accurate and timely flood maps. In this paper we present and
evaluate a method to create deterministic and probabilistic
flood maps from Twitter messages that mention locations of
flooding. A deterministic flood map created for the Decem-
ber 2015 flood in the city of York (UK) showed good per-
formance (F @) =0.69; a statistic ranging from O to 1, with
1 expressing a perfect fit with validation data). The proba-
bilistic flood maps we created showed that, in the York case
study, the uncertainty in flood extent was mainly induced by
errors in the precise locations of flood observations as de-
rived from Twitter data. Errors in the terrain elevation data or
in the parameters of the applied algorithm contributed less to
flood extent uncertainty. Although these maps tended to over-
estimate the actual probability of flooding, they gave a rea-
sonable representation of flood extent uncertainty in the area.
This study illustrates that inherently uncertain data from so-
cial media can be used to derive information about flooding.

1 Introduction

Between 1995 and 2015 2.3 billion people were affected by
floods (UN, 2015), which is about one third of the world’s
population. Worldwide developments such as urbanization,
deforestation, subsidence and climate change are expected
to increase the occurrence of floods and number of people

affected by them. This creates a growing need for timely
and accurate information about the locations and severity of
flooding. In multiple phases of the disaster management cy-
cle (Carter, 2008), this information is useful. In the mitiga-
tion phase, data about previous flood events can be used to
evaluate the probability of flooding and prevent urban expan-
sion into flood-prone areas. If flood-prone areas are already
inhabited, information about flood risk can also be used to
improve disaster preparedness. In the response phase, infor-
mation about the current flood situation is useful, for exam-
ple for rescue workers who want to identify affected areas
and assess the accessibility of roads. Finally, in the recov-
ery phase, flood information can help insurance companies
in evaluating flood damages and aid organizations in target-
ing rebuilding efforts.

Traditionally, flood information in the form of flood maps
has been produced using either hydraulic models or remote
sensing. Applying these in real time, however, may be prob-
lematic. Hydraulic models require a detailed schematization
of the study area, knowledge about the cause of a flood and
possibly considerable computational time. Also forecasts of
input data, such as discharge or precipitation, may not be
readily available. Remotely sensed data may take several
hours to become available (Mason et al., 2012) and their tem-
poral resolution is often limited (Schumann et al., 2009).

Data created by users of online platforms such as blogs,
wikis and social media, often referred to as “user-generated
content”, offer an additional source of information about nat-
ural disasters. Recent studies focused specifically on using
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social media content, since platforms such as Twitter, Face-
book and Flickr produce large amounts of real-time data. In
coarse-scale applications for example, these data can be used
to detect the occurrence of a natural disaster (Earle et al.,
2011). On a more detailed level these data have also been
used to assess the geographic extent of a disaster. In the con-
text of flood mapping, some investigations used these data
as auxiliary data. Examples include the assessment of the
accuracy of remote-sensing-derived flood maps using Flickr
data (Sun et al., 2015) and the selection of the most realis-
tic result of a series of hydraulic model runs based on Twit-
ter data (Smith et al., 2015). Others actually created flood
maps directly from the data. Schnebele et al. (2014) used
the density of flood-related Twitter messages (tweets) to get
an indication of flood extent; in the PetaJakarta project, the
number of tweets in an area is used to indicate flood sever-
ity (Holderness and Turpin, 2015). Fohringer et al. (2015)
created flood maps by interpolating water levels which were
manually derived from photographs on Flickr and Twitter.
Eilander et al. (2016), in contrast, used an automatic method
to derive water depths and locations from tweets and created
flood maps using a flood fill algorithm. To our knowledge,
no flood-related studies have used data from Facebook until
now, which is likely due to Facebook being a more closed
network. Flickr and Twitter allow for all public data to be
found and extracted using their “application programming
interfaces” (APIs; interfaces to extract data from online plat-
forms). The Facebook API, however, is much more restric-
tive and cannot be used to retrieve large amounts of public
data.

The aforementioned studies all focused on obtaining flood
extents from social media content. These flood extents, how-
ever, did not contain information about uncertainty, even
though uncertainty is an inherent characteristic of informa-
tion derived from social media content. Locational informa-
tion of tweets, for example, can be uncertain because geotags
are available for only a very small number of tweets and may
deviate from the actual location of the observation (Hahmann
et al., 2014). McClanahan and Gokhale (2015), who derived
locations from the text in tweets, indicate that the locations
they derived from messages in New York City had an average
error of 1.72 km. Eilander et al. (2016) were the first to give
an estimate of the likelihood of areas being flooded by har-
vesting tweets. This likelihood was based on the number of
tweets found for individual administrative areas rather than
knowledge about the actual errors in the data used.

Information about uncertainties can help in assessing the
quality of generated flood maps. In addition, it can also serve
as an information source of its own. This was, for example,
the case in the search for Air France flight 447, which disap-
peared over the Atlantic Ocean in 2009. Probabilistic maps of
the location of the wreckage were successfully used to find
the wreckage in 2011, while previous attempts, spanning a
2-year period, all failed (Stone et al., 2014). More specific to
flood mapping, information about uncertainties can be used
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to direct surveys to areas in which the flood extent is highly
uncertain. The information can also be used by rescue work-
ers navigating an affected area to choose the most optimal
route by weighing the length of a route against the probabil-
ity of it being flooded.

In the present paper we investigate the applicability of us-
ing social media content from Twitter to generate probabilis-
tic flood maps. We explicitly address uncertainties in the data
and assess the added value of probabilistic maps over de-
terministic maps. The analyses presented in this paper give
insight into the magnitude of errors in flood observations de-
rived from tweets and improve understanding of how these
errors affect the flood extent estimates. Furthermore, we in-
vestigate how the uncertainty caused by errors in the Twitter
data relates to the uncertainty caused by other sources of er-
TOr.

This paper starts with a description of the case study
(Sect. 2). This is followed by an overview of the methods
and data used (Sect. 3). Section 4 subsequently presents the
research results and Sect. 5 includes an in-depth discussion
thereof. Finally, the conclusions of the research are given in
Sect. 6.

2 Case study

On 27 December 2015 peak water levels on the River Ouse,
caused by large amounts of rainfall, led to the flooding of a
considerable area within the city of York in the north of Eng-
land. Up to 120 mm of rain fell in Yorkshire over a 48 h pe-
riod between 25 and 27 December (Met Office, 2016). These
large rainfall amounts resulted in the flooding of York and
other places in the north of England. Within York, 453 resi-
dences as well as 174 businesses were flooded (Pidd, 2016).
Detailed information about damages within York is yet to be
published, since 1 year after the floods a report by the York
City Council is still being written.

The flooding of the city of York in December 2015 was
selected as a case study because both high-resolution terrain
elevation data and recorded flood extents were available for
this event. In Fig. 1 an Environment Agency (EA) digital ter-
rain model (DTM) of the city of York is given (EA, 2014).
This paper focusses on central York, delineated by the cen-
tral administrative areas of York. In most of the study area
terrain slopes are moderate, although some higher ridges are
found in the south and south-west of the area. The inner-city
of York is located to the north of these ridges. At this loca-
tion there is a confluence of several rivers, of which the River
Ouse is the largest.

3 Data and method

Data from Twitter were used to derive flood information be-
cause these data are openly and freely available. The research
was comprised of several phases. First we extracted locations
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Figure 1. Digital terrain model of the York study area.

where flooding was observed from flood-related tweets. This
information was subsequently used to create a deterministic
flood extent estimate. After this, based on information about
the magnitude of errors in the data, probabilistic flood ex-
tent estimates were derived. This section starts with a dis-
cussion of the datasets used in this study. In the subsequent
paragraphs, each of the three phases of the research is dis-
cussed separately. We conclude this section by explaining the
methods we used to evaluate both the deterministic and prob-
abilistic flood extent estimates.

3.1 Data

An overview of the data we used in this study is provided in
Table 1. Elevation data were used throughout all phases of
the research. We used a 2 m DTM, which is disseminated by
the EA and has a vertical accuracy of +15cm (EA, 2016).
To reduce the computational time required to create the flood
maps, but preserve sufficient detail, we resampled these data
to 20 m resolution using the average of the underlying data.
Tweets from between 25 and 30 December 2015 were
collected using the Twitter streaming API. From these data
flood observations were extracted. Google Maps and Google
StreetView were used to find locations mentioned by the
tweets and the locations of photographs attached to the
tweets respectively (Sect. 3.2). From OpenStreetMap we
downloaded the line data belonging to the street names that
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tweets mentioned, which were used to simulate locational er-
rors along the streets (Sect. 3.4).

Recorded flood extents were used to validate the flood
maps (Sect. 3.5). A draft version of the fluvial flood ex-
tents of the city of York was supplied by the EA. These
flood extents only identified areas that were directly affected
by flooding from the rivers. However, areas separated from
the river around Knavemire Road, Water Lane and Shipton
Road were also known to be flooded based on news arti-
cles. The flood extents around these locations were approxi-
mated by using the EA dataset of recorded flood extents (EA,
2015) from the years 1991-2012. These were merged with
the recorded fluvial flood extent from 2016 into one valida-
tion dataset.

3.2 Twitter data extraction

The process used to create a database of Twitter-based flood
observations consisted of several steps (Fig. 2). First of all,
we collected all tweets that contained a number of common
flood-related keywords such as “flood” or “inundation”. To
ensure only tweets regarding York were found, only tweets
that mentioned “York” or “#YorkFloods” were included and
messages referring to “New York™ or “York County” (both
in the USA) were excluded. As a last selection step, we only
kept tweets that contained explicit references to locations,
such as streets or points of interest (POIs), by looking for
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Table 1. Datasets used in this study.

Data Source Purpose
2m lidar DTM EA (2014) To group observations (Sect. 3.3)
To calculate water levels (Sect. 3.3)
To estimate flood depth and extent (Sect. 3.3)
To pinpoint tweets referring to streets (Sect. 3.2)
Twitter Twitter streaming API To extract flood observations (Sect. 3.2)

Google Maps Used online
Google StreetView Used online
OpenStreetMap Exported from https://www.osm.org

Recorded historic flood outlines  EA (2015)

Recorded 2015 fluvial flood
outline York (draft)

EA (D. Greaves,

personal communication, 2016)

To find locations of tweets (Sect. 3.2)

To find exact locations of photographs (Sect. 3.2)

To simulate locational errors along streets (Sect. 3.4)
To evaluate flood extent in areas affected by non-fluvial
flooding (Sect. 3.5)

To evaluate flood extent in areas affected by fluvial
flooding (Sect. 3.5)

All English tweets
(25 to 30-12-2015)

e /

Select flood-related tweets

v

Select tweets referring to York

v

Select tweets with detailed locations
1

v v

Derive locations Derive photo

from text locations (validation)
L ]

/

Figure 2. Process of constructing the dataset of tweets.

v

Twitter dataset
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common keywords such as “street”, “lane”, “museum” or
“school”. Some other minor filters were applied to ensure
only relevant tweets were found, for example by excluding
tweets related to flood barriers and flood warnings.

We derived locations from tweets in the remaining dataset
by manually identifying the section of the tweet that con-
tained a locational reference. Based on this reference, x and
y coordinates were assigned to tweets. To illustrate this pro-
cess, the following tweet is used as an example:

Cumberland Street in York - say they’re used to
flooding here but only 2000 was worse (source:
@jimtaylor1984)

The locational reference in this tweet is “Cumberland
Street”. These locational references were used directly to
search Google Maps. The message above, however, did not
refer to a point location, which would be the case for a POI,
but rather to a line element. We derived exact spatial coor-
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dinates from such tweets by using the location of the street
from Google Maps in combination with the DTM of the EA
(EA, 2014). If topographical depressions were found along
the street, the deepest depression, identified by filling the
sinks in the DTM, was used as the location of the observa-
tion. In case no depressions were found, the point of lowest
elevation was used, which was the case for the tweet in Fig. 3.

To review the accuracy of the spatial coordinates derived
from tweets, we looked at the photographs attached to some
of the tweets and compared them to Google StreetView. If
we found the specific location of a photograph, we compared
it to the spatial coordinates derived from the tweets text to
determine the locational error (example: Fig. 3).

3.3 Flood extent mapping

Flood extents were derived using the locations derived from
the Twitter messages and the DTM. We applied an interpola-
tion method to derive flood maps from the observations, simi-
larly to Fohringer et al. (2015). Before interpolation, two pro-
cessing steps were applied to guarantee more realistic flood
extent maps. Firstly, we derived water levels relative to the
nearest drainage channel from each observation. Since none
of the tweets about York mentioned water depths, water lev-
els were derived by assuming the same default water depth
(DWD) for all observations. We calculated these water levels
relative to the nearest drainage channel by using a height-
above-nearest-drainage (HAND) elevation model (Rennd et
al., 2008; Norbre et al., 2011). Secondly, observations were
grouped based on the local drainage directions (LDDs) to in-
terpolate only hydrologically “connected” observations. We
used inverse-distance-weighting (IDW) interpolation to de-
termine the flood extent. Figure 4 gives an overview of this
process. These steps are further explained in this section.
Norbre et al. (2016) applied the HAND concept to derive
inundation extents for fluvial floods. In contrast to a DTM,
which contains elevation values relative to one single ref-
erence level, such as mean sea level, elevation values in a
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grey dot is the location derived from the text of the tweet, and the black dot is the location derived from the attached photograph.
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Figure 4. Process of creating flood extent maps.

HAND map are relative to the nearest drainage channel. This
drainage-normalized representation of the topography has a
clear advantage for riverine flood extent mapping, as water
depths over land can easily be related to water levels in the
river. By using a HAND map instead of a DTM, river slopes
are filtered from the dataset. This means that HAND values in
an area are directly related to river stage and HAND contour
lines describe the flood extent at a specific river stage. Since
river slopes are filtered, upstream observations are also less
likely to cause overestimations of water levels downstream.
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We constructed a HAND map from the DTM by deriving
the LDDs and using these to determine the elevation value
of each grid cell in the study area, relative to the nearest
drainage channel. Grid cells were identified as being on a
drainage channel if they had an upstream area of 6km? or
more, which gave the best representation of drainage chan-
nels in the study area. Topographical depressions were fil-
tered to derive the LDDs used to construct the HAND map.
To also account for pluvial flooding of local topographical
depressions, these depressions were reintroduced in the final
HAND map. This map was then used to translate the DWD
assigned to each observation to a water level with respect to
the nearest drainage channel.

We assumed that the water levels of flooded areas that
are separated are independent of each other. Therefore, we
grouped observations to identify to which flooded area each
observation belonged. The water levels of each group of ob-
servations were then interpolated separately. We grouped ob-
servations by combining information about the LDDs in the
area, which were derived from the DTM, with the locations
of observations. The LDDs were used to determine which
cells are downstream of an observation. If the location of the
observation is flooded, it is assumed its downstream cells are
also flooded, since these are located lower than the obser-
vation and are directly connected to it. Therefore, all obser-
vations that have downstream cells in common are located
within the same continuously flooded area.

The water levels (relative to the nearest drainage channel)
of each group of observations were subsequently interpolated
using IDW interpolation as given by Egs. (1) and (2):

n
> Zi-W;
=
Zyy="———, )
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1
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where Z, y (m) is the interpolated water level at spatial coor-
dinates x and y, Z; (m) is the observed water level of obser-
vation i, n is the total number of observations, W; is the in-
terpolation weight of observation 7, dy y ; (m) is the distance
to observation i measured along the flow paths downstream
of observations, s (m) is the smoothing parameter and p is
the power parameter.

Previous studies applied both IDW (Werner, 2001) and bi-
linear spline interpolation (Fohringer et al., 2015) to calculate
flood extents from irregularly spaced flood observations. We
used IDW interpolation since it allows for smoothing, which
is useful in averaging the water levels of clusters of uncer-
tain flood observations from social media content. In case
of certain flood observations, which should be followed ex-
actly by the interpolated water surface, bilinear spline inter-
polation may be more appropriate. An additional advantage
of IDW interpolation is that the nominator and denomina-
tor of Eq. (1) can be updated with new observations, mean-
ing the additional computational time in real-time applica-
tions is limited. We slightly modified the method proposed
by Werner (2001) to improve the realism of the interpolated
water surface. Firstly, water levels were expressed relative to
the elevation of the nearest drain instead of mean sea level.
Secondly, observations were interpolated along their down-
stream flow paths and subsequently projected to the grid cells
upstream of these flow paths to create a grid of water levels.
From this grid we subtracted the HAND map to create an ini-
tial grid of water depths in the area. Since the water surface
might be extrapolated to areas which were separated from
the observations by small barriers, flooded areas that were
not connected to any of the observations were removed, sim-
ilarly to the method suggested by Werner (2001). This pro-
cedure produced the deterministic flood maps.

3.4 Uncertainty analysis

The uncertainties in the flood extent maps were investigated
using a Monte Carlo analysis. We evaluated the uncertainty
originating from errors in the locations derived from tweets,
errors in the elevation data, uncertainty in the parameters of
the IDW equation and uncertainty in the DWD. The char-
acteristics of the error distributions used to simulate these
errors are given in Table 2.

The analysis of the locational errors of tweets indicated
that the locations derived from tweets that refer to point lo-
cations contain less error than those derived from tweets that
refer to streets (see Sect. 4.1). The locational errors of both
types of tweets were therefore simulated differently. We sim-
ulated the locational errors of tweets that referred to point
locations by adding random errors to the spatial coordinates
of the tweets. The locational errors of tweets that referred
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to streets were simulated along these streets. We did this by
extracting the streets to which the tweets referred from Open-
StreetMap. The locational error was modelled using a normal
distribution. To generate each realization, the observations
were moved a distance along the street, which was drawn
from this distribution. As some streets are shorter than 6 stan-
dard deviations, effectively reducing the modelled error, the
standard deviation used for modelling these errors was mod-
ified so that the resulting errors matched the observed loca-
tional errors.

Since no accurate information was available regarding the
errors in the EA DTM, these errors were simulated using typ-
ical values from literature. Since using independent normally
distributed errors does not accurately reflect errors in the el-
evation data (Heuvelink et al., 2007; Raaflaub and Collins,
2006), spatially autocorrelated errors were added using the
method described by Dullof and Doucette (2014). Based on
typical values of standard deviations and autocorrelation dis-
tances of errors in lidar elevation data found in literature
(Leon et al., 2014; Mudron et al., 2013; Li et al., 2011; Livne
and Svoray, 2011; Hodgson and Bresnahan, 2004), a stan-
dard deviation of 20cm and correlation distance of 100 m
was used. These errors were added to the original 2 m reso-
lution DTM before resampling it to 20 m resolution and cre-
ating the corresponding HAND map.

The uncertainty caused by the input parameters — the
power and smoothing parameters (Eq. 2) and the DWD — was
also evaluated. Based on photographs in news articles about
the flooding in York, the water depth in most places was es-
timated to be between 20 and 80 cm. Therefore, the DWD
was varied between 20 and 80 cm. For the smoothing and
power parameter, no clear information about the range was
available. Errors in these parameters were simulated using
the rather conservative ranges of 0-2000 m and 2-5 respec-
tively. A uniform distribution was used to simulate errors in
the DWD, range and power parameters, since there was no
specific information available regarding their error distribu-
tions.

To determine the number of Monte Carlo simulations re-
quired to produce the probabilistic flood maps, multiple maps
were created using the same input uncertainties. It was found
that using 1000 Monte Carlo simulations, two probabilistic
flood maps generated using the same input error distributions
were nearly identical.

3.5 Evaluation of results

We evaluated the accuracy of both the deterministic and
probabilistic flood maps by comparing these to the valida-
tion data discussed in Sect. 3.1. In addition, we reviewed
the relative importance of the different error sources for the
probabilistic flood maps. The accuracy of the deterministic
flood maps was evaluated by calculating the F® statistic of
Aronica et al. (2002):
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Table 2. Error distributions used to simulate sources of error.

Error source Distribution

Parameter values

Elevation data

Tweets (point location)*
Tweets (street location)™
Power parameter

Uniform

Smoothing parameter

DWD Uniform

Normal (spatially autocorrelated)

Normal (x/y coordinate)
Normal (along street)

Uniform (integers only)

w:0m

0:02m

Corr. distance: 100 m
w:0m

o:50m

u:0m

o:200m

Lower bound: 2
Upper bound: 5
Lower bound: 0 m
Upper bound: 2000 m
Lower bound: 0.2m
Upper bound: 0.8 m

* See Sect. 4.3.

Aobs N Amod

F® — i
Aobs U Amod

3

where Agps N Amod 18 the area that is both modelled and ob-
served flooded (true positive area) and Agps U Amod 1S the
area that is either modelled or observed flooded (true posi-
tive, false positive and false negative area).

We evaluated the accuracy of the probabilistic flood maps
using reliability diagrams. These diagrams offer a compari-
son between the modelled probability (on the horizontal axis)
and observed probability (vertical axis) of flooding (Wilks,
2006). To construct the reliability diagrams, we first binned
the modelled probabilities in 10 % intervals. For each prob-
ability bin, the cells on the probabilistic map that fell within
that 10 % interval were compared to the same cells in the
validation data. The observed probability was calculated by
dividing the number of selected cells that were flooded in the
validation data by the total number of cells in the bin. We
assumed that the central value of each 10 % interval was the
modelled probability, which we plotted along with the calcu-
lated observed probability. Note that the first probability bin
ranged from 0.01 to 10 %, and the 0 % probability of flood-
ing value in the diagram included all cells having less than
0.01 % probability of flooding.

We assessed the relative importance of the different
sources of error on the uncertainties in flood extent by cre-
ating three different uncertainty estimates: one by only sim-
ulating locational error, one by only simulating errors in
the DTM and one by only simulating errors in the parame-
ters. For every uncertainty estimate, the F® statistic of each
random simulation was calculated. We used these values to
derive three empirical cumulative distributions of the F®
statistic for the uncertainty estimates generated by simulat-
ing the individual sources of error. These were used to review
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the relative importance of the different types of errors for the
accuracy of the maps.

4 Results

During the York floods, 8000 unique flood-related tweets,
posted between 25 and 30 December 2015, were harvested.
Using the process discussed in Sect. 3.1 a database of
160 tweets was constructed. Only from 87 of these could
a location be derived from the text of the message. Seven-
teen tweets mentioned a point location (an address, inter-
section or POI) and 70 tweets mentioned a street name, for
which the elevation data were used to derive a point location.
Although 56 tweets from which locations were derived had
photographs attached, we could only match 26 of them to a
location on Google StreetView. These were used to assess the
quality of the locational references derived from the text of
tweets.

4.1 Locational errors

We compared the locations that were derived from the text
in the tweets and used to create the flood maps to locations
derived from attached photographs in order to evaluate the
magnitude of locational errors. Figure 5a gives the result of
this comparison. The magnitude of locational errors depends
heavily on the type of locational references in the tweets. If
point locations such as POIs or intersections are mentioned in
the tweets, the locational error is limited (Fig. 5c). If streets
are mentioned in the tweets, however, locational errors are
considerably larger (Fig. 5b). The difference is likely caused
by the fact that the locations of point references were directly
extracted from Google Maps, whereas an additional proce-
dure was necessary to derive exact spatial coordinates from
tweets referring to streets. The large outlier in Fig. 5b is, for
example, a tweet that refers to Huntington Road, which is
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Figure 5. Locational errors in x /y coordinates of all tweets (a), only
the ones referring to streets (b) and only the ones referring to point
locations (c).

a long street that is located alongside the River Foss (see
Fig. 1). The photograph was made at the northern end of
Huntington Road, whereas the tweet was pinpointed to the
deepest depression along the road, in the south. There were,
however, photographs attached to other tweets, which in-
dicated that this southern location was also flooded. With-
out this outlier, the standard deviation in locational errors of
tweets referring to streets reduced to 118 m.

4.2 Flood extent mapping

We created deterministic flood extent estimates by interpolat-
ing the locations and water levels derived from tweets. The
parameters of the IDW interpolation were calibrated using
the F@ value based on the EA-recorded flood extents. A
power parameter of 4 in combination with a smoothing of
600m (Eq. 2) and a DWD of 50cm gave the best results.
Figure 6 gives a comparison between the flood extent gen-
erated using information harvested from the tweets and the
validation data. An F® value of 0.69 was found, indicat-
ing that the modelled area of the flood extent that is correct
makes up 69 % of the total flood extent either in the modelled
or observed data.

The flood extent estimate is correct for a large part of the
inner-city (location [1]). Even at smaller flooded areas, such
as the ones north-west and south-east of location [2], a good
estimate of flood extent is generated. The added value of
separating groups of observations that are not in the same
flooded area is seen at location [3]. Without separating ob-
servations, the underestimation of flood extent in this area
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- Correct (flooded) |:| Underestimation

I:] Overestimation
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l:] Correct (not flooded)

- = = Outline Central York

Figure 6. A comparison between the deterministic flood map (mod-
elled) and validation data (observed). The locations denoted by the
numbers [1] to [4] are referred to in text.

would be considerable, whereas separating the observations
results in a much better flood extent estimate for this area.
Although at some locations minor underestimations of flood
extent are seen, there is only one large area missing at loca-
tion [4]. However, no observations of flooding close to or in
this area were found in the Twitter dataset. This underesti-
mation is therefore a result of the lack of data rather than an
error of the interpolation method.

4.3 Uncertainty analysis

We created probabilistic flood extent estimates by varying
the input parameters as well as simulating the locational er-
rors and errors in the DTM in a Monte Carlo analysis. Based
on the results in Sect. 4.1 the error distance along streets was
modelled using a normal distribution with a standard devia-
tion of 200 m. This modelled error effectively translates into
a standard deviation in spatial coordinates of 100 m as some
streets were too short to reproduce the full error distribution.
Given the results from Fig. Sc, errors in point locations were
simulated using a normal distribution with a standard devia-
tion of 50 m. The uncertainty resulting from simulating these
locational errors along with errors in the DTM and parame-
ters is given in Fig. 7a.

The uncertainty in flood extent is considerable (i.e. the
flood probability is around 50 %). However, near the inner-
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city, at location [1], the uncertainty is limited. This is only
partly caused by the high density of observations in this area
and is mostly a result of the fact that the inner-city of York
is situated lower than its surroundings, effectively limiting
flood extents. For the areas within York that are more flat,
the uncertainty in flood extent was generally larger. The den-
sity of observations is not well represented in the uncertainty
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estimates. Generally speaking, one would expect an area that
has a high probability of flooding to have multiple observa-
tions in it, since a single observation can be placed there due
to the tweet being misinterpreted. At location [3], however,
there is a large area with a high probability of flooding, even
though only one observation is pinpointed to it. Locations [2]
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evation data (blue), errors in the parameters (red), locational errors
(black) and the combination of these errors (dashed green).

and [3] had high probabilities of flooding, although they were
not flooded in reality.

We assessed the performance of the probabilistic flood ex-
tent map in Fig. 7a by comparing it to the validation data
and constructing a reliability diagram (Fig. 8a). Probabilities
between roughly 15 and 85 % are mostly overestimated, al-
though the most important probabilities close to 0 and 100 %
are accurately represented in the map. Comparing this map
of all uncertainties to a map created by simulating only the
errors in the elevation data and the parameters (Fig. 7b) in-
dicates that locational errors are likely responsible for a con-
siderable amount of uncertainty in the flood extent estimates.
This is further confirmed by the results in Fig. 9, which shows
the empirical cumulative distribution functions of the F®
measure of accuracy. This was calculated by using the result
of each random simulation of the Monte Carlo analyses of
different types of errors separately. It can be clearly seen that
locational errors cause most variation in the accuracy of the
maps.

However, the reliability diagram that was constructed us-
ing the map generated without simulating errors in location
(Fig. 8b) shows that by omitting the simulation of locational
error, the uncertainty calculated using the Monte Carlo anal-
ysis more accurately describes the real uncertainty in flood
extent. This indicates that either the probability distributions
used to simulate these errors or the way these errors are prop-
agated cause the flood probability to be overestimated.

5 Discussion and recommendations

This study shows the potential of using inherently uncertain
social media content to create deterministic and probabilis-
tic flood maps (Sect. 5.1), although the methods used in this
study still contain some limitations (Sect. 5.2). Therefore,
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recommendations for future research are presented in the last
paragraph of this section (Sect. 5.3).

5.1 Potential

We showed that a deterministic flood map can be created
from social media content. However, large uncertainties,
mainly related to the locations derived from the content,
still remain. Therefore, the probabilistic maps proved to be
a useful addition to the deterministic map. Firstly, they are a
source of information in itself. For example, where the deter-
ministic map contained an underestimation of flooded area
at location [4] (Fig. 5), the uncertainty estimate showed that
flooding was highly uncertain at this location. This informa-
tion can be used to send staff into the area to verify if the
area is actually flooded and thereby reduce the uncertainty
at this location. Similarly, the probabilistic map confirmed
the accuracy of the deterministic map near the inner city of
York. Furthermore, the probabilistic maps provide informa-
tion about the flood extent without the need for prior cali-
bration of the model parameters. Therefore, these maps can
potentially provide real-time flood extent information with-
out having to calibrate the method to that particular event or
location first. However, to understand how the modelled un-
certainty relates to the observed flood extent for a particular
area or event, some validation might still be required.

A comparison to the work of Giustarini et al. (2016), who
produced probabilistic flood maps from synthetic aperture
radar (SAR) data and used the same validation technique, in-
dicates that results are similar. It illustrates that probabilistic
flood maps from SAR data provide a degree of accuracy com-
parable to the ones in our study, with probability-error values
up 0.38. Although their reliability diagrams differed among
case studies, none of them had a consistent overestimation
of flood probability in all bins of the reliability diagram, like
the ones from social media content. This indicates that the
method presented in this paper still has some limitations.

5.2 Limitations

A possible reason for the overestimation of flood probabil-
ity may be the fact that photographs were used to evaluate
locational errors. A photograph can be taken at a location
different from the one in text, for example because that lo-
cation was too severely flooded, causing the locational error
to be overestimated. In addition, the method used to derive
locations from tweets that referred to streets could only iden-
tify a single location of flooding along a street, causing others
to be omitted. The outlier, mentioned in Sect. 4.1, illustrates
this. Although it was pinpointed to a location that actually
flooded, a large error was calculated, because the photograph
was of a second flooded location along the same street. Since
this is an error of omission, rather than a locational error, the
exclusion of the outlier is believed to have given a better es-
timate of the standard deviation in locational errors.
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The probability distributions used to simulate locational
errors might also have contributed to the overestimation of
flood probability. The normal distribution that was used does
not reflect the sharp peaks seen at O m in the graphs of Fig. 6.
Using a conventional error distribution also does not give a
correct representation of the actual errors in location. In re-
ality, it is more likely that an observation originates from a
lower location or a topographical depression, whereas purely
using random errors can place observations on top of hills,
which are unlikely to be flooded.

Furthermore, the results of the analysis could have been
affected by the quality of the maps used for validation. The
data for validating the river flood extents were created from a
combination of ground observations and aerial photography.
Even though the use of historic data to validate flood extents
in places that were flooded separately from the river might
have been inaccurate, actual observed flood extents for 2015
were used for the majority of the area. Therefore, we have
no reason to believe that there are large uncertainties in the
validation data.

We expect that an overestimation of either the errors in the
DTM or the parameters is one of the main reasons for the
overestimation of flood probabilities. Both the quantification
of these errors as well as the methods used to simulate them
could have caused this. It is likely that the quantification of
parameter errors contributed most, since these were quanti-
fied conservatively in absence of accurate information about
their error distribution.

Another important reason for the overestimation may lie
in the 20 m resolution used for the maps. This resolution
was chosen as a compromise between accuracy and compu-
tational time, though the results indicate that some barriers
in the area were not accurately represented at this resolution.
This caused some areas to erroneously be assigned a high
probability of flooding.

The probabilistic maps generated in this study also did
not consider the density of observations. Although all errors
were drawn from the same error distributions in the Monte
Carlo simulation, observations that belong to large clusters
are more certain than observations that are completely iso-
lated. Because we did not consider this, the maps contained
areas with a high probability of flooding even though these
areas contained very few observations.

5.3 Recommendations

Besides resolving the issues related to the quantification and
simulation of errors discussed above, a way to include impor-
tant barriers in the coarse-resolution DTM should be inves-
tigated. Although using higher-resolution data can provide a
similar improvement, it will seriously affect computational
time and therefore affect the potential of real-time applica-
tion of the maps. Additionally, the inclusion of observation
density in the uncertainty analysis should be reviewed.
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To guide further improvements, it should be investigated
whether it is useful to invest in optimizing the simulation
of the different types of errors or whether large improve-
ments can be made by post-processing the results. Investi-
gating more case studies can show whether flood probability
is consistently underestimated or the reliability diagram dif-
fers by case. Reviewing more case studies can also show the
effect of area topography on the resulting maps. We expect
that uncertainties in flood extent are less for hilly areas than
for flatter areas. By testing the method on multiple floods at
the same location, as well as floods at different locations, the
(in)dependency of model parameters can also be further in-
vestigated.

Where current methods for flood extent mapping such as
hydraulic models and remote sensing have shortcomings in
real-time application, this is where the real value of using so-
cial media content lies. The methods used in this report can
potentially be applied in real time. Random simulations for
the York case were generated at a pace of about 100 simu-
lations per minute, and the fact that calculations for single
observations can just be added to the nominator and denom-
inator of Eq. (1) ensures that adding new observations does
not call for a complete recalculation of the results. To fur-
ther improve computational time, alternative sampling tech-
niques should be reviewed, since this can reduce the number
of Monte Carlo simulations necessary.

Besides optimizing computational time, a further look into
the gathering of observations is required. For real-time appli-
cations, it is vital to collect a high number of observations
to ensure that accurate and up-to-date maps can be produced
at any point in time. The search technique used in this pa-
per was only able to find a small number of tweets. It should
be reviewed whether using different search techniques, addi-
tional sources of data or techniques such as crowd interaction
can increase the number of observations available for creat-
ing the maps.

6 Conclusions

This study illustrates that social media content has real po-
tential in generating flood extent estimates. Although errors
in locations derived from tweets were considerable, the de-
terministic flood extent map presented in this paper showed
good agreement with validation data. The deterministic flood
maps can therefore be used to gain insight into the current
situation of flooding.

Using information about the errors in the tweets, DTM and
parameter settings, we constructed a probabilistic flood ex-
tent map. The uncertainty in flood extent mainly originated
from the locational errors of tweets, whereas DTM and pa-
rameter errors contributed less to flood extent uncertainty.
A comparison of the probabilistic map to validation data
showed that by simulating errors in the tweets, DTM and pa-
rameters, a reasonable estimate of flood extent uncertainty is
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generated, which provides users with additional information
on top of the deterministic flood map.

These results illustrate that social media content can be
used to derive information about floods, even more so when
exploiting the uncertainties in this data source. If further im-
provements are made, so that the methods used in this report
can be applied in real time, these maps have the potential to
fill in the gap where hydraulic models and remote sensing are
lacking.
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