Articles | Volume 15, issue 3
Nat. Hazards Earth Syst. Sci., 15, 671–685, 2015
https://doi.org/10.5194/nhess-15-671-2015
Nat. Hazards Earth Syst. Sci., 15, 671–685, 2015
https://doi.org/10.5194/nhess-15-671-2015

Research article 30 Mar 2015

Research article | 30 Mar 2015

Modelling rapid mass movements using the shallow water equations in Cartesian coordinates

S. Hergarten and J. Robl

Related authors

Modeling glacial and fluvial landform evolution at large scales using a stream-power approach
Stefan Hergarten
Earth Surf. Dynam., 9, 937–952, https://doi.org/10.5194/esurf-9-937-2021,https://doi.org/10.5194/esurf-9-937-2021, 2021
Short summary
A simple and efficient model for orographic precipitation
Stefan Hergarten and Jörg Robl
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-179,https://doi.org/10.5194/gmd-2021-179, 2021
Revised manuscript under review for GMD
Short summary
Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021,https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Transport-limited fluvial erosion – simple formulation and efficient numerical treatment
Stefan Hergarten
Earth Surf. Dynam., 8, 841–854, https://doi.org/10.5194/esurf-8-841-2020,https://doi.org/10.5194/esurf-8-841-2020, 2020
Short summary
Rivers as linear elements in landform evolution models
Stefan Hergarten
Earth Surf. Dynam., 8, 367–377, https://doi.org/10.5194/esurf-8-367-2020,https://doi.org/10.5194/esurf-8-367-2020, 2020
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021,https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary
Formation, evolution, and drainage of short-lived glacial lakes in permafrost environments of the northern Teskey Range, Central Asia
Mirlan Daiyrov and Chiyuki Narama
Nat. Hazards Earth Syst. Sci., 21, 2245–2256, https://doi.org/10.5194/nhess-21-2245-2021,https://doi.org/10.5194/nhess-21-2245-2021, 2021
Short summary
ABWiSE v1.0: Toward and Agent-Based Approach to Simulating Wildfire Spread
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-179,https://doi.org/10.5194/nhess-2021-179, 2021
Revised manuscript accepted for NHESS
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021,https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary

Cited articles

An, H. and Yu, S.: Well-balanced shallow water flow simulation on quadtree cut cell grids, Adv. Water Resour., 39, 60–70, https://doi.org/10.1016/j.advwatres.2012.01.003, 2012.
Berger, M. J., George, D. L., LeVeque, R. J., and Mandli, K. T.: The GeoClaw software for depth-averaged flows with adaptive refinement, Adv. Water Resour., 34, 1195–1206, https://doi.org/10.1016/j.advwatres.2011.02.016, 2011.
Bouchut, F. and Westdickenberg, M.: Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2, 359–389, 2004.
Bühler, Y., Christen, M., Kowalski, J., and Bartelt, P.: Sensitivity of snow avalanche simulations to digital elevation model quality and resolution, Ann. Glaciol., 52, 72–80, https://doi.org/10.3189/172756411797252121, 2011.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Download
Short summary
Snow avalanches and debris flows are abundant natural hazards in mountainous regions. Numerical models describing rapid mass movements are essential for hazard studies and mitigation strategies, but only a few software tools are available for this purpose. This paper presents a new method using the shallow water equations widely applied to lakes and oceans. It introduces appropriate correction terms for steep terrain and can be implemented in a variety of fluid-dynamics software packages.
Altmetrics
Final-revised paper
Preprint