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Abstract. We propose a new method to model rapid mass

movements on complex topography using the shallow wa-

ter equations in Cartesian coordinates. These equations are

the widely used standard approximation for the flow of wa-

ter in rivers and shallow lakes, but the main prerequisite

for their application – an almost horizontal fluid table – is

in general not satisfied for avalanches and debris flows in

steep terrain. Therefore, we have developed appropriate cor-

rection terms for large topographic gradients. In this study

we present the mathematical formulation of these correc-

tion terms and their implementation in the open-source flow

solver GERRIS. This novel approach is evaluated by sim-

ulating avalanches on synthetic and finally natural topogra-

phies and the widely used Voellmy flow resistance law. Test-

ing the results against analytical solutions and the proprietary

avalanche model RAMMS, we found a very good agree-

ment. As the GERRIS flow solver is freely available and open

source, it can be easily extended by additional fluid models or

source areas, making this model suitable for simulating sev-

eral types of rapid mass movements. It therefore provides a

valuable tool for assisting regional-scale natural hazard stud-

ies.

1 Introduction

Rapid mass movements such as avalanches, debris flows,

and lahars are globally abundant surface processes in steep

mountainous areas characterized by high process veloci-

ties and large masses of granular material involved (e.g.

Kirschbaum et al., 2010). Therefore, rapid mass movements

represent first-order threats whenever their process domains

intersect with populated areas and infrastructure for trans-

port (streets, railway lines), energy supply (power plants,

pipelines, electricity lines), or tourism (e.g. ski resorts).

While most of the villages prone to rapid mass movements

have already implemented hazard mitigation strategies by

a combination of permanent and temporal preventive mea-

sures, the latter are progressively developed in remote moun-

tainous regions where historical records on rapid mass move-

ments are sparse, so that the level of threat is ambiguous. In

combination with field mapping and remote sensing, numer-

ical models describing the motion of granular material on

general topography are the primary tool to evaluate the po-

tential impact of rapid mass movements on infrastructure in

these remote places. Run-out distance, flow and depositional

depth, velocity, and momentum of a granular flow resulting

from physically based numerical models represent key pa-

rameters to (a) delineate hazard zones on the regional scale,

(b) locate ideal corridors and construction areas for new in-

frastructure, and (c) develop mitigation strategies for protect-

ing planned and already existing infrastructure against these

natural hazards (Hsu et al., 2010; Keiler et al., 2006). To ful-

fill these tasks, codes have to be equipped with advanced nu-

merical techniques to reach the required computational per-

formance (e.g. adaptive mesh refinement), have to provide

an interface to geographic information systems (GIS) and

should be controllable by a scripting language to perform

Monte Carlo simulations and parameter studies for entire val-

leys and hundreds of process domains.

Several state-of-the-art codes describe granular flow on

general topography but are either not open source (e.g.

FLATModel, Medina et al., 2008) or restricted to simple

Coulomb-type rheology (e.g. Titan2D, Sheridan et al., 2005).
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The implementation of a new rheology model even in open-

source scientific codes by the user is in general not practica-

ble, because a deep knowledge on the specific code and fluid

dynamics is required. Other recent codes such as Flow-R

(Horton et al., 2013) replace the equations of continuum me-

chanics by more empirical, grid-based algorithms and thus

require a higher degree of calibration.

The Voellmy rheology (Voellmy, 1955) is frequently used

to describe debris flows and dense snow avalanches and

is implemented in proprietary software products such as

RAMMS (Christen et al., 2010), SAMOS-AT (Sampl and

Zwinger, 2004; Sailer et al., 2008; Granig and Jörg, 2012),

and ELBA+. The latter has been extensively used by the

Austrian avalanche and torrent control, but peer-reviewed

publications on technical details are still missing. Aston-

ishingly, there are no open-source codes that fulfill all re-

quirements mentioned above to describe granular flow with

a Voellmy rheological model on complex topography. How-

ever, there are several open-source packages for a wide

range of fluid dynamical problems that provide state-of-

the-art flow solvers and a variety of numerical accessories

like automatic meshing routines or adaptive mesh refine-

ment, such as OPENFOAM (Weller and Weller, 2008, http:

//www.openfoam.com), CLAWPACK (LeVeque et al., 2011;

Berger et al., 2011, http://clawpack.github.io), and GERRIS

(Popinet, 2009, http://gfs.sourceforge.net). Besides many

other applications, these codes are routinely used to predict

the propagation of tsunamis in ocean basins (Popinet, 2012)

or to model the extent of inundation areas during flooding

(An and Yu, 2012) by solving the nonlinear shallow water

equations being the standard approximation for the flow of

water in rivers and shallow lakes. These numerical packages

are operated by highly flexible parameter files that allow the

implementation of new fluid rheology models without writ-

ing additional source code, so that it is tempting to describe

rapid mass movements with one of these fluid dynamics soft-

ware packages.

In this spirit, two-dimensional models for rapid mass

movements on a given topography are similar to the shal-

low water equations. In both concepts, vertically averaged

velocities are considered, and the rheology of the medium

and effects of turbulence are taken into account in form of a

friction term depending on flow depth and velocity. However,

the widely used shallow water equations are only applicable

if the water table is almost horizontal. This condition is in

general not satisfied for mass movements in steep terrain, so

that more elaborate approaches are required here.

These approaches can be subdivided into two major

classes according to the coordinate system used. The differ-

ent coordinate systems are illustrated in Fig. 1a for the ex-

ample of a channel not parallel to any of the Cartesian coor-

dinate axes x, y, and z. The first group of models focuses on

flow in a given channel and uses a curvilinear coordinate sys-

tem with a z axis being always normal to the surface, while

the x coordinate follows the so-called thalweg in downslope
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Figure 1. (a) Different coordinate systems used for modelling mass

movements in a channel not parallel to any of the Cartesian coor-

dinate axes. Green: Cartesian coordinates x, y, and z (this study).

Blue: Coordinates aligned to the surface (x′ and y′ parallel to the

surface, z′ normal to the surface). Red: Coordinates aligned to the

surface (x, y, z) where the x axis follows the thalweg (dashed red

line). (b) Illustration of the slope angle ϕ of the fluid surface (Eq. 7)

and the inclination angle ψ of the velocity (Eq. 8).

direction (red). A formulation for granular flow in general

curved and twisted channels was provided by Pudasaini and

Hutter (2003) and later extended and applied to data (Pu-

dasaini et al., 2005, 2008). Recently, an implementation of

this concept called r.avalanche in the open-source GIS soft-

ware suite GRASS was presented by Mergili et al. (2012).

However, it imposes significant simplifications on the thal-

weg concept, in particular that it is a straight line in map

view, so that it is more suitable for flow on slopes than in pre-

defined channels. The alternative concept also assumes that

one coordinate, z′, is normal to the surface, while the hori-

zontal projections of the x′ and y′ coordinates approximately

follow the original Cartesian axes x and y (blue). The soft-

ware RAMMS (Christen et al., 2010) implements the sim-

plest version of such a local coordinate system by neglect-

ing the surface curvature. Potential limitations arising from

this approximation were discussed by Fischer et al. (2012),

presenting an extension taking the surface curvature into ac-

count for the price of more complicated differential equa-

tions. A general formulation for arbitrary coordinate systems

was provided by Bouchut and Westdickenberg (2004).

In this paper we introduce a different approach based on

the original shallow water equations in Cartesian coordi-

nates. As these equations are only valid for an almost hor-

izontal fluid surface, appropriate corrections must be applied

to both acceleration and friction for large slope gradients. We

express both corrections in terms of a modified friction term.

In the following section, an expression for this friction term is

derived, and in Sect. 4 the approach is validated by compar-

ing several scenarios with the established avalanche model

RAMMS.
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2 Theory

The shallow water equations (e.g. Vreugdenhil, 1994) pro-

vide a two-dimensional approximation for the flow of water

(or any liquid or granular medium). They refer to vertically

averaged horizontal velocities and assume an almost horizon-

tal water table, so that the vertical component of the veloc-

ity can be neglected, and the vertical pressure distribution is

hydrostatic. Under these conditions, the horizontal pressure

gradient and thus the horizontal acceleration is proportional

to the gradient of the water table. In their native form directly

referring to the acceleration, the shallow water equations read

∂

∂t
vh+ (vh · ∇)vh = gs−

τ

ρhv

vh

|vh|
, (1)

with

s =−∇H (2)

and

H = zb+hv. (3)

The model variables are the vertically averaged horizontal

velocity vh (a two-component vector) and the vertical (not

normal to the surface) flow depth hv. Both variables depend

on the spatial coordinates x and y and on time. The symbol∇

denotes the two-dimensional gradient operator, and zb(x,y)

is the topography, so that s is the negative gradient of the

water table H(x,y). The parameters g and ρ are the grav-

itational acceleration and the bulk density respectively. The

second term on the right-hand side is a friction term in direc-

tion opposite to the velocity. Here it is written in terms of a

basal shear stress τ , but this does not imply that friction in

fact only occurs at the bottom of the fluid layer. For turbulent

flow of water, τ is proportional to the square of the velocity,

but arbitrary functions involving velocity and flow depth may

be used.

In the literature, the shallow water equations are often

transformed to the so-called advective form

∂

∂t
(hvvh)+ div

(
hvvhv

T
h

)
= ghvs−

τ

ρ

vh

|vh|
, (4)

where div is the vector divergence operator and vT
h is the

transpose of vh (a row vector instead of a column vector).

The vector hvvh is often termed momentum in this context.

The second term on the left-hand side of Eq. (4) describes the

advective transport of momentum with the transport velocity

vh, while the right-hand side can be interpreted as a source

of momentum.

For theoretical and numerical considerations, a third form

of the shallow water equations is frequently used. It is de-

noted conservative form and reads

∂

∂t
(hvvh)+ div

(
hvvhv

T
h +

1

2
gh2

vI

)
=−ghv∇zb−

τ

ρ

vh

|vh|
, (5)

where I is the identity matrix. However, the native form di-

rectly referring to accelerations (Eq. 1) is more convenient

for our purposes.

In each case (Eqs. 1, 4 or 5), the shallow water equations

must be combined with the equation of continuity,

∂

∂t
hv+ div(hvvh)= 0, (6)

describing the conservation of volume.

If the gradient of the water table is large, the corresponding

acceleration term in Eq. (1) overestimates the real accelera-

tion for two reasons: (i) the real acceleration acts in direction

parallel to the surface, while Eq. (1) involves only its hori-

zontal component; and (ii) the absolute value of the gradient

of the water table, |s|, corresponds to the tangent of the slope

angle ϕ of the fluid surface,

tanϕ = |s|, (7)

while the downslope acceleration on an inclined plane is in

fact proportional to sinϕ. This effect is also taken into ac-

count in all models based on curvilinear coordinate systems

discussed above. Compensation of each of these errors re-

quires a multiplication of the gravitational acceleration by a

factor cosϕ, so that the acceleration term in Eq. (1) has to be

reduced by a factor cos2ϕ in total.

The friction term also requires a correction for large gradi-

ents, namely a multiplication by cosψ , where ψ is the incli-

nation angle of the velocity (Fig. 1b). This angle is in general

smaller than ϕ and only equal to it for flow in downslope

direction. It is given by

tanψ =
vh · s

|vh|
. (8)

Furthermore, the vertical flow depth hv must be replaced by

the flow depth normal to the surface that is by a factor cosϕ

smaller. Returning to the vertical flow depth hv requires the

division of the friction term by cosϕ.

With these three modifications to the right-hand side, the

shallow water equations turn into

∂

∂t
vh+ (vh · ∇)vh = gcos2ϕs−

τ

ρhv

cosψ

cosϕ

vh

|vh|
. (9)

As our approach shall be compatible with the original shal-

low water equations, the acceleration term shall remain lin-

ear, so that the reduction of the acceleration must be mim-

icked by an additional friction term:

a = g cos2ϕ s− gs (10)

= −g sin2ϕ s. (11)
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However, the original shallow water equations only allow a

friction term in direction of the velocity. Therefore we only

consider the projection of the friction term on the velocity:

a = −g sin2ϕ s ·
vh

|vh|

vh

|vh|
(12)

= −g sin2ϕ tanψ
vh

|vh|
, (13)

while the component normal to the flow direction is ne-

glected. With this approximation, Eq. (9) turns into

∂

∂t
vh+ (vh · ∇)vh

= gs−

(
gsin2ϕ tanψ +

τ

ρhv

cosψ

cosϕ

)
vh

|vh|
. (14)

In the context of dense snow avalanches, the Voellmy rheol-

ogy (Voellmy, 1955) is the most frequently used constitutive

law for the friction term. It combines a velocity-independent

Coulomb friction term with a term proportional to the square

of the velocity as it is mostly used for turbulent flow:

τ = µσ +
ρgv2

ξ
. (15)

Here, σ denotes the normal stress at the bottom of the fluid

layer. Assuming that the flow bed is parallel to the fluid sur-

face, it is given by

σ = ρghcosϕ (16)

= ρghvcos2ϕ. (17)

Otherwise, ϕ in Eq. 16 and thus one of the factors cosϕ in

Eq. 17 should refer to the flow bed instead of the fluid sur-

face. We will come back to this aspect in Sect. 3. The second

term on the right-hand side of Eq. (15) is independent of the

direction of the velocity, so that we obtain

τ = µρghvcos2ϕ+
ρg|vh|

2

ξcos2ψ
. (18)

Inserting this expression in Eq. (14) finally yields

∂

∂t
vh+ (vh · ∇)= gs− f (hv,vh,ϕ,ψ)vh, (19)

with

f (hv,vh,ϕ,ψ)

=

g
(

sin2ϕ tanψ +µcosϕ cosψ +
|vh|

2

ξhv cosϕ cosψ

)
|vh|

. (20)

This set of equations differs from the original shallow water

equations (Eq. 1) only by the more complicated friction term.

For considerations based on the conservative form (Eq. 5) it

is readily transformed to

∂

∂t
(hvvh)+ div

(
hvvhv

T
h +

1

2
gh2

vI

)
=−ghv∇zb− f (hv,vh,ϕ,ψ)hvvh, (21)

with the same function f (hv,vh,ϕ,ψ).

3 Implementation

Our approximation can easily be implemented in any contin-

uum fluid dynamics software which is able to solve the shal-

low water equations for a given bed topography and allows

the implementation of arbitrary friction terms. We use the

software package GERRIS (http://gfs.sourceforge.net) which

is freely available and has been in development for more than

10 years. It provides highly developed numerics, and appli-

cations of GERRIS have been presented in numerous publi-

cations.

GERRIS uses the conservative form of the shallow wa-

ter equations where hv and the momentum q = hvvh are the

variables. Arbitrary friction terms such as the one in Eq. (21)

can be implemented by operator splitting. The time step from

t to t + δt is split up into two half steps. In the first half step,

an interim solution q̃ is computed by solving the shallow wa-

ter equations without friction. In the second half step, the

“real” momentum at the time t + δt is computed from q̃ by

applying the friction term only, i.e. by solving the differential

equation

∂

∂t
q =−f (hv,vh,ϕ,ψ)q, (22)

where the solution at the time t is the interim momentum q̃.

As this equation does not contain any spatial derivatives of

the momentum, it is degenerated to a set of ordinary differ-

ential equations. Furthermore it does not alter the direction

of q, so that it is in principle even scalar. Applying a mixed

Euler scheme with an explicit discretization of the arguments

of f and an implicit discretization to the remaining term q,

i.e.

q(t + δt)− q̃

δt
=−f (hv,vh,ϕ,ψ)q(t + δt), (23)

yields the solution

q =
q̃

1+ δtf (hv,vh,ϕ,ψ)
. (24)

The angles ϕ and ψ should be computed from the gradi-

ent of the surface of the flowing medium (Eq. 2) according to

Eqs. (7) and (8) in each time step. Strictly speaking, the angle

ϕ occurring in the term µcosϕ cosψ in Eq. (20) should refer

to the flow bed as discussed in Sect. 2. However, the shallow

water equations are in principle only valid as long as the gra-

dient of the flow depth is small, i.e. as long as the flow surface

is almost parallel to the bed topography. We therefore sug-

gest an implementation where all angles are computed from

the fluid surface H , denoted GERRISH in the following.

However, computing all angles from the bed topography

zb should not make a fundamental difference. The respec-

tive implementation is denoted GERRISZb in the following.

In this context it should be kept in mind that the difference

between both variants only concerns the corrections for large
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gradients. In both implementations as well as in the origi-

nal shallow water equations and in the general formulation

of Bouchut and Westdickenberg (2004), the acceleration due

to gravity being the driving force depends on the gradient of

the fluid surface, ensuring that the fluid table of a lake is hor-

izontal. So the difference should become significant only for

large gradients of the fluid table in combination with large

variations in flow depth. As illustrated in Sect. 4.1, using

GERRISH may even generate artefacts when this gradient

is not computed from the same discretization scheme that

is used internally for solving the shallow water equations,

which will likely occur when staggered grids or finite vol-

ume discretizations are used. Due to this aspect it may be

even advisable to use the implementation GERRISZb.

4 Validation

In this section we compare our approximation to the estab-

lished model RAMMS (version 1.5.01). We use the simplest

version based on Voellmy’s rheology, neglecting entrainment

(Christen et al., 2010) and do not use the recently introduced

features of extending Voellmy’s rheology by cohesion and

taking into account the effect of surface curvature on the fric-

tional force considered by Fischer et al. (2012). However, all

these extensions can in principle be adjusted to our formula-

tion based on the shallow water equations in Cartesian coor-

dinates.

Compared to the reference model RAMMS as defined

above, our approach introduces two approximations. The

most serious one consists of considering only the horizontal

component of the velocity. While the accelerations due to the

slope gradient and due to friction are corrected accordingly,

the horizontal velocity would remain constant in absence of

gravity or friction. As a consequence, the total velocity in-

creases artificially on a convex slope and decreases on a con-

cave slope even without gravitational acceleration. The other

simplification concerns the projection of the correction terms

on the velocity vector (Eq. 12). This means that the longitu-

dinal acceleration (i.e. in flow direction) is corrected appro-

priately for large slope gradients, while the transversal accel-

eration is directly adopted from the original shallow water

equations.

In the following we investigate three scenarios defined

with regard to these approximations. In the first example,

flow down a planar slope is considered. This scenario should

be described well by both RAMMS and by our approach. The

second set of tests refers to slopes with a strongly curved part

in order to examine whether the first approximation has a se-

rious effect. Finally, we consider a more complex topography

as an example closer to real-world applications.

4.1 Constant flow depth on a planar slope

The movement of an avalanche with a constant flow depth on

a planar slope in one dimension can be described by an an-

alytical solution (e.g. Pudasaini and Hutter, 2007). For this

purpose we use the velocity, v, parallel to the slope and La-

grangian coordinates, which means that v is the velocity of a

given particle and not at a given position. Then the equation

of motion is the same as for a rigid body:

dv

dt
= g sinϕ−

τ

ρh
, (25)

where τ is the frictional shear stress. According to the ar-

guments leading from Eq. (15) to Eq. (18), this shear stress

amounts to

τ = µρghcosϕ+
ρgv2

ξ
, (26)

so that

dv

dt
= g

(
sinϕ−µcosϕ−

v2

ξh

)
. (27)

The steady-state solution of this equation (i.e. the asymptotic

velocity v∞) is readily obtained by setting the left-hand side

to zero:

v∞ =
√
ξh(sinϕ−µcosϕ). (28)

With this, Eq. (27) turns into

dv

dt
=
g

ξh

(
v2
∞− v

2
)
. (29)

The time-dependent solution of this equation is

v = v∞tanh

(
t

T

)
, (30)

with the characteristic time

T =
ξh

gv∞
(31)

describing how slowly the velocity approaches v∞.

To test whether our approach reproduces this behaviour

correctly, we consider a planar ramp with ϕ = 30◦ inclina-

tion in x direction with Voellmy parameters µ= 0.2 and

ξ = 1000 m s−2. The release zone is defined by a rectangular

area of 350 m× 400 m (in horizontal projection) at the upper

edge of the ramp with a release height of h= 1 m measured

normal to the topography. Figure 2a shows the topography

and the flow depth after 20 s, obtained from the simulation

with GERRISH where the frictional terms (i.e. ψ in Eq. 21)

are computed from the surface of the flowing mass.

Figure 2b compares the longitudinal avalanche profiles of

flow depth and flow velocity obtained from three different

www.nat-hazards-earth-syst-sci.net/15/671/2015/ Nat. Hazards Earth Syst. Sci., 15, 671–685, 2015
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Figure 2. Comparison of two different numerical solutions of

GERRIS with RAMMS for granular flow over a 30◦ dipping ramp

for Voellmy parameters µ= 0.2 and ξ = 1000 m s−2 and an ini-

tial flow depth h= 1 m . (a) Two-dimensional representation of the

ramp geometry and the flow depth of the fluid layer measured nor-

mal to the surface after 20 s. The white dashed-dotted line indicates

the position of the longitudinal profiles shown in (b). (b) Longi-

tudinal profiles of three different numerical models showing flow

velocity (solid lines) and flow depth (dashed-dotted lines). The gray

dashed line indicates the theoretical terminal velocity according to

Eq. (28). GERRIS-based models (blue and green lines) apply gra-

dients of fluid surface (GERRISH) and gradients of the topography

(GERRISZb) respectively, and black lines are results RAMMS as

reference.

numerical experiments: the realization GERRISH discussed

above, the alternative approach GERRISZb where the bed

surface is used to compute the friction term, and the reference

model RAMMS. Only minor differences among the three

models are encountered. The avalanche develops a character-

istic tail with a rapidly declining flow depth in upslope direc-

tion, while the initial flow depth of h= 1 m is still preserved

in the main body. The avalanche has already reached the

steady-state velocity of about 18 m s−1 in the main body pre-

dicted by Eq. (28), while the velocities in the tail are lower as

a consequence of the reduced flow depth. The avalanche front

of all three experiments is characterized by a slight increase

of flow depth and flow velocity relative to the main avalanche

body. This artefact is in general small, but most pronounced

for GERRISH, while RAMMS and GERRISZb show nearly

identical profiles at the avalanche front. The slightly stronger

artefact occurring in GERRISH presumably arises from our

simple implementation of the gradient of the fluid surface re-

quired for computing the angles ϕ andψ required in Eq. (24).

Here we use the standard gradient of the fluid surface pro-

vided by GERRIS that is computed from simple symmetri-

cal difference quotients. The sophisticated numerics imple-

mented in GERRIS itself used for maintaining a sharp front

is not incorporated here, so that finally the driving term of the

shallow water equations and the friction term use different

schemes of discretization, causing artefacts at the avalanche

front where the fluid surface is strongly curved. However, we

found in all considered examples that these small artefacts

are stable and do not grow over time, so that they are not a

serious problem at all.

As a second test, we consider the velocity of the acceler-

ating fluid layer against the time-dependent analytical solu-

tion (Eq. 30) for different initial flow depths (h), turbulence

(ξ ) and dry friction (µ) parameters of the Voellmy rheology,

and hillslope angles (ϕ) (Fig. 3). Similarly to the results on

the avalanche profiles, the almost perfect agreement between

the velocity predicted by Eq. (30) and all sets of numeri-

cal experiments verifies the ability of our approach at least

for planar slopes. Small deviations occur shortly after the re-

lease scale with the time step size of the numerical model and

could be reduced by forcing the flow solver towards smaller

time increments. However, these initial small deviations dis-

appear rapidly when approaching the terminal velocity, so

that a higher temporal resolution at the expense of increasing

computational time does not justify this insignificant benefit

in practical applications.

4.2 The effect of profile curvature

While the tests performed in the previous section only con-

cern the technical correctness of the theory and its imple-

mentation, the following numerical experiments address the

validity and the limitations of the approximations made.

In order to explore the effects of profile curvature on

our approach considering only the horizontal components of

the velocity vector (and calculating the total velocity from

those), we have performed a series of numerical experiments

on curved synthetic topographies and compare the results of

our approach with those of RAMMS. The first experiment

describes an avalanche on a concave flow path defined by

a 30◦ dipping ramp and a 5◦ inclined run-out zone with a

smooth (parabolic) transition between both (Fig. 4). Here and

in the following, the curvature of the smooth transition zone

is defined in such a way that an avalanche entering from the

upper ramp with the terminal velocity according to Eq. (28)

is exposed to an centrifugal acceleration of about 1 m s−2

(which is neglected in both RAMMS and our approach but

considered in detail by Fischer et al., 2012).

The behaviour when travelling along the upper ramp is

the same as in the example considered in Fig. 2. At t = 40 s,

the avalanche is characterized by a long tail, while the bulk
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Figure 3. Test of the numerical results of GERRISZb (symbols) against the one-dimensional analytical time-dependent solution for a Voellmy

fluid flowing on a flow path with a constant slope (Eq. 30, solid lines) for several parameter sets for (a) flow depth h, (b) turbulence parameter

ξ , (c) dry friction parameter µ, and (d) slope angle ϕ.

mass of the avalanche remains undeformed and has reached

the steady-state velocity of about 18 m s−1 (Fig. 4c, d). At

this time the avalanche front approaches the curved transition

zone to the gently dipping run-out zone leading to a strong

deceleration and thickening. At t = 60 s, the frontal part of

the fluid layer is more than 3 times thicker than it initially

was. The flow velocity has decreased below 10 m s−1 every-

where (Fig. 4e, f). At t = 80 s, the avalanche thickens further

in the run-out zone and grows laterally normal to the flow

path and in upslope direction as additional mass from the

slower avalanche tail becomes incorporated in the deposit

(fluid without significant motion). At this stage, significant

flow velocities are confined to the steep flow path section

where the avalanche tail is still in motion (Fig. 4g, h).

While Fig. 4 shows that the avalanche behaves as expected

qualitatively, Fig. 5 provides a quantitative comparison with

the reference model RAMMS. The flow depths (Fig. 5a–c)

and the velocities (Fig. 5d–f) predicted by both models agree

almost perfectly in the domain interesting for hazard assess-

ment, i.e. where the avalanche moves at a significant velocity.

The same applies to the run-out distance when the avalanche

front finally comes to rest.

Noticeable differences between the results of GERRIS-

based models and RAMMS only occur in the final phase of

the avalanche when the front has almost come to rest. While

the main body of the avalanche is characterized by a single

maximum in the thickness in the GERRIS-based simulations,

RAMMS predicts a bimodal avalanche profile. This differ-

ence is also reflected in the shape of the final deposits at least

when the RAMMS simulation is stopped automatically using

the default settings (i.e. when the momentum has decreased

to 5 % of its maximum value). However, the difference arises

in a phase where only the long tail of the avalanche moves at

a considerable velocity, so that material is pushed from be-

hind on the main avalanche body that it already almost rest-

ing. So this difference is probably not related to the different

way of treating velocities but rather to the different numeri-

cal schemes used in RAMMS and GERRIS; apart from this,

it is unimportant for practical purposes.

In Fig. 6, the opposite situation involving a convex topog-

raphy is considered. Again the release zone is located on a

30◦ steep slope, but in contrast to the previous experiment

the slope steepens in a smooth transition to 45◦. The tran-

sition from ϕ1 = 30◦ to ϕ2 = 45◦ causes the fluid layer to

accelerate rapidly from 18 m s−1 to the new terminal veloc-

ity of 21.7 m s−1 at a reduced flow depth of 0.83 m. As an

effect of our approximation considering only the horizontal

components of the velocity vector, the new terminal veloc-

ity is reached slightly earlier by GERRIS than by RAMMS.

This effect becomes more pronounced by sharp terrain transi-

tions (Fig. 7). In this example, the fluid moves at the terminal

velocity of v∞ = 18 m s−1 in the upper region, correspond-

ing to a horizontal velocity vh = v∞ cosϕ1 = 15.6 m s−1. As

the horizontal velocity persists at the transition in our ap-
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(h) Flow Velocity at t = 80 s
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Figure 4. Two-dimensional representation of numerical solutions of GERRISZb for flow depth and flow velocity partly concave slope at four

different time steps. The fluid layer accelerates at an inclined ramp (ϕ1 = 30◦) and runs out in a gently dipping surface (ϕ2 = 5◦) with a

smooth (parabolic) transition starting at x = 0. A topographic profile of the geometry is shown in the inset of (a). The white dashed-dotted

line indicates the position of the longitudinal profiles shown in Figs. 5 and 6.

proach, the velocity immediately after the transition amounts

to v = vh

cosϕ2
= 22 m s−1, which is even slightly above the

new terminal velocity. However, the avalanche of RAMMS

also reaches the terminal velocity rapidly after entering the

steeper region for both the smooth and the sharp transition.

A quantitative estimate on the range where our approxi-

mation affects the flow velocity after the slope has changed
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Figure 5. Time series of longitudinal profiles plotted every 5 s for flow depth and flow velocity of the scenario shown in Fig. 4. Profiles are

based on numerical solutions of (a, d) GERRISZb (b, e) GERRISH, and (c, f) RAMMS. The insets show the topographic profile.
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Figure 6. Time series of longitudinal profiles plotted every 5 s for flow depth and flow velocity of a granular fluid on a convex slope with

ϕ = 30◦, ϕ = 45◦, and a smooth transition between the two segments. Profiles are obtained from numerical solutions of (a, d) GERRISZb,

(b, e) GERRISH, and (c, f) RAMMS. The insets show the topographic profile.

can be derived from the theoretical considerations made in

Sect. 4.1. Instead of the velocity as a function of time, we

now consider the velocity as a function of the travelled dis-

tance. Using Eq. (29) we obtain

dv

dx
=

dv
dt
dx
dt

=

g
ξh

(
v2
∞− v

2
)

v
(32)

≈
2g

ξh
(v∞− v) for v ≈ v∞. (33)

Equation (33) implies that v approaches the terminal velocity

v∞ exponentially with decay length

L=
ξh

2g
. (34)

In the example considered above, L amounts to about 42 m,

so that the avalanche indeed needs a very short travelling

distance to approach the terminal velocity. Considering the

more realistic situation of an steady-state avalanche with a
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constant influx instead of a constant flow depth, i.e. hv =

const, leads to basically the same result where only the factor

2 in the denominator turns into a factor 3. Thus, the avalanche

should practically approach the terminal velocity even more

rapidly than stated above.

Returning to Fig. 6, the only significant difference between

the results of the two GERRIS-based models and RAMMS

occur at a late stage (t > 80 s) where the direct effect of

our approximation should have almost vanished. As the

avalanche becomes more and more stretched at the backward

side, the region with a constant thickness becomes shorter

until it finally vanishes. In the simulation with GERRISZb,

this leads to a rapid decrease in flow depth and consequently

in velocity, so that the avalanche decays rapidly. In contrast,

RAMMS keeps a sharper distinction between the region of

constant flow depth and consequently maintains the original

flow depth and velocity for a longer time. In return, rather

strong waves occur at the transition to the tail being visible

in both flow depth and flow velocity. Such waves are in prin-

ciple generated by GERRISZb, too, but with a significantly

smaller amplitude than in RAMMS. In return, GERRISH

generates even stronger oscillations than RAMMS.

Similarly to the differences among the models found for

the concave topography, the differences found here are pre-

sumably not related to our approximation of considering only

the horizontal velocity and computing the total velocity after-

wards but rather to the different discretization schemes used

in RAMMS and GERRIS. GERRIS itself obviously uses a

numerical scheme that is well suited for reducing oscilla-

tions at the transition to the avalanche tail, but our simple

implementation of the gradient of the fluid surface used in

GERRISH cannot compete with this scheme.

In summary, the numerical experiments with GERRIS and

the comparison with the leading avalanche model RAMMS

performed in this section demonstrate the ability of our ap-

proach to model avalanches even on curved topography. The

effects of our approximations cause only minor deviations,

and in particular their impact on predictions of run-out dis-

tance, flow depth, and velocity is practically negligible. The

better stability of both the avalanche front and the transition

to the tail provides arguments in favour of GERRISZb com-

pared to GERRISH.

4.3 Flow over complex topography

The thalweg of rapid mass movements on a real topography

is in general curved and twisted. We therefore challenge our

approach with the complex topography of a typical alpine

avalanche flow path and test the results of our approach

against RAMMS. In contrast to the previous examples that

are in their basic structure one-dimensional, the second ap-

proximation made in our theory also becomes relevant here:

beyond considering only the horizontal component of the ve-

locity in the equations, our approach only applies corrections

for large slopes to the longitudinal component of the acceler-

ation.

The hypothetical avalanche is located in the Felbertal, a

typical glacially shaped alpine valley with large open flanks

between ridges and the tree line representing classic snow

avalanche release zones. Deeply incised, curved and twisted

gullies canalize the avalanche in one or several branches with

locally extreme flow depths. These gullies route the granular

fluid to the nearly flat valley floor, representing the run-out

zone of the avalanche (Fig. 8).

We compare the maximum values (at each point, taken

over the entire simulation) of flow depth, momentum, and

velocity of the modelled avalanche. We set the release height

to h= 1 m and define spatially constant parameters for the

Voellmy flow resistance law (µ= 0.2, ξ = 2000 m s−2). All

simulations are performed on a quadrilateral grid with a spa-

tial resolution of 4 m and terminate when the momentum of

the fluid drops below 5 % of the maximum momentum (de-

fault of RAMMS).

Generally, the deviations among GERRISZb, GERRISH,

and RAMMS are small, and the primary features of the

avalanche agree well between the two GERRIS approaches

and RAMMS. This includes flow depths, run-out distances,

flow velocities, and momentum.

However, a closer examination reveals some deviations be-

tween the different numerical approaches. RAMMS shows

a more pronounced tendency to overflow counter hillsides

and to keep the flow direction even uphill. This is clearly

documented at the lower third of the avalanche track where

the avalanche is split into two branches. Here the orographic

right flow path is characterized by a considerable uphill sec-

tion. In this domain, the results of RAMMS show higher

values in the maximum flow depth compared to the two

GERRIS approaches (Fig. 8a–c). The modelled avalanches

in RAMMS overflow larger areas, causing a wider flow

path than predicted by the GERRIS experiments. This is

recognized most clearly in the s-shaped gully section. The

broader flow path and tendency to flow uphill, observed in

avalanches modelled with RAMMS relative to those mod-

elled with GERRISZb and GERRISH, are caused by larger

values in the momentum (Fig. 8d–f) arising from slightly

higher flow velocities especially in the gully section of the

thalweg (Fig. 8g–i).

In contrast to the small deviations found in the previ-

ous examples, this effect is a direct consequence of apply-

ing only corrections to the longitudinal acceleration. When

an avalanche follows a narrow and strongly curved (in map

view) gully, the transversal (centripetal) acceleration prevent-

ing the fluid from leaving the gully is overestimated by the

shallow water equations, similarly to the longitudinal accel-

eration. However, in contrast to the longitudinal acceleration,

the overestimation of the transversal acceleration is not cor-

rected, so that the tendency of the avalanche to stay within

the gully is stronger than in RAMMS.
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Figure 7. Time series of longitudinal profiles plotted for the scenario considered in Figs. 6 and 7 but with a sharp transition between the

planar slope segments.

A further deviation is observed in the run-out zone where

the shapes of the avalanche deposit of the RAMMS simu-

lations differ considerably from those of the GERRIS sim-

ulations, while the run-out distances and base areas of the

avalanche deposits of the three models agree well. The dis-

crepancy in the geometry of the deposits is similar to that

found when considering the run-out on the simple concave

topography in Sect. 4.2, and it is presumably related to the

different numerical schemes used in RAMMS and GERRIS

rather than to our approximations.

Finally, the differences between the realizations

GERRISH, where the corrections in the friction term

are based on the fluid surface, and GERRISZb, where the

corrections are computed from the original topography,

are very small in this example. So the stronger (although

not serious) artefacts occurring at the avalanche front in

GERRISH (Sect. 4.1) and the higher stability of GERRISZb

at the transition to the tail remain the only noticeable

difference between both GERRIS-based approaches. These

differences suggest that using the version GERRISZb may in

general be preferable to GERRISH.

5 Conclusions

The examples considered in Sect. 4 show that granular

avalanches can be simulated using the shallow water equa-

tions directly in Cartesian coordinates even in steep terrain

when an appropriate additional friction term is included. This

finding allows the utilization of software that was originally

designed for other purposes, namely modelling the flow of

water in rivers, lakes, and oceans.

Compared to software packages explicitly developed for

modelling avalanches, a wealth of state-of-the-art fluid dy-

namics software packages potentially being adjustable for

this purpose is available. Some of them are even freely avail-

able. Therefore, research on avalanches can easily profit from

the enormous effort that has already been spent in develop-

ing numerical codes in fluid dynamics. The implementations

presented in this paper are based on the software GERRIS,

but this should only be seen as an example. Apart from be-

ing freely available and providing state-of-the-art numerics,

GERRIS allows the implementation of our method with a

moderate effort. However, this should not imply that GER-

RIS is the best software for this purpose.

The examples investigated for validation have only

revealed minor deviations from the proprietary model

RAMMS used as a reference, in particular with regard to the

properties of avalanches relevant for hazard assessment. For

the artificial, basically one-dimensional geometries investi-

gated in Sect. 4.1 and 4.2, the agreement between our imple-

mentations based on GERRIS and RAMMS is excellent. The

small differences between the approaches encountered here

are probably not related to the approximations introduced in

our theory but arise from different numerical schemes used

for solving the equations of motion. So the approach pre-

sented in this study can fully compete with proprietary soft-

ware for mass movements flowing on open flanks or if large

volumes and high flow depths occur and small gullies do not

influence the flow characteristics strongly. For such geome-

tries, the deviations between the results of our approach and

those of RAMMS are far off from having any implications

on the mitigation strategy based on predicted properties of

the modelled avalanche.
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Figure 8. Maximum values of the characteristic properties of a hypothetical avalanche flowing along a curved and twisted thalweg on a real

topography (Felbertal, Austria), based on the numerical solutions of GERRISZb, GERRISH, and RAMMS for the same model set-up. Fluid

rheology (µ= 0.2, ξ = 2000 m s−2) and spatial resolution for the three different numerical models are the same. (a–c) maximum flow depth,

(d–f) maximum momentum, (g–i) maximum flow velocity.

The example based on a complex topography (Sect. 4.3)

reveals still rather small, but perhaps not always negligible,

differences between our approach and RAMMS. RAMMS

solutions show larger flow depths in avalanche tracks with

prominent uphill sections and expanded overflowed areas in

steep, twisted gullies. In contrast to the differences discussed

above, these deviations arise from the approximations dis-

cussed in Sect. 3 and represent a small intrinsic model limita-

tion that is inevitable when using the shallow water equation

in a Cartesian coordinate system with a friction term acting

only in direction opposite to the velocity.

However, when discussing differences between models on

such a small level we should keep in mind that all these mod-

elling approaches involve a considerable inherent uncertainty

compared to other flow processes such as the flow of water

in lakes and oceans. These uncertainties start with the basic

assumption of the granular medium as a single layer con-

tinuum and the rheology (e.g. Voellmy’s friction law). They

continue with the determination of the relevant parameters

for dry snow avalanches and do not stop at the determination

of the release zone in the form of spatial position, extent, and

involved volumes (fracture depth). Even the resolution and

quality of the applied digital elevation model can highly in-

fluence the avalanche path (Bühler et al., 2011), and taking

into account further processes such as entrainment introduces

an additional uncertainty in the parameters. Assessing these

uncertainties quantitatively goes beyond the scope of this pa-

per, but, in summary, they are obviously larger than the small

deviations between the models.

The differences between the two proposed implemen-

tations based on GERRIS are also small. The version

GERRISZb where the correction terms are computed from

the original topography is less prone to artefacts at the

avalanche front and at the transition to the tail than the ver-

sion GERRISH using the fluid surface, without revealing sig-

nificant drawbacks anywhere. We therefore suggest comput-

ing the friction terms from the topographic slope instead of

the fluid surface.

The approach is suitable to describe snow avalanches flow-

ing on general topography but is also applicable to other
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rapid mass movements such as debris flows. Debris flows are

characterized by lower flow velocities and lower flow path

gradients compared to snow avalanches, so that effects of our

approximations become even less significant. Besides model

set-ups with a pre-defined release volume, a huge number of

scenarios involving different release zones characterized by

discharge time series can be easily implemented within the

GERRIS parameter file. In principle the initiation of surface

runoff can be defined at each mesh element, so that flooding

and debris flow simulations based on precipitation time series

for storm events are possible without preceding precipitation

runoff models. Flow resistance laws and their parameteriza-

tions are also defined in the parameter file, so that the imple-

mentation of other rheological models (e.g. Bingham fluid)

is straightforward and requires no specific coding skills.

We propose that our approach based on GERRIS is suit-

able for regional-scale dense snow avalanche studies on com-

plex terrain and probably also for other types of rapid mass

movements. However, dimensioning of permanent protec-

tion measures requires numerical models that have been cali-

brated by the backward analysis of numerous monitored real

world avalanches as, for example, performed by the SLF at

the Vallée de la Sionne. In principle, the parameters of the

Voellmy fluid model calibrated for RAMMS are fully com-

patible with our approach, and spatially variable parameter

values can be easily implemented in the GERRIS parame-

ter file. This also applies to extensions of the flow law such

as the cohesion term implemented in the recent version of

RAMMS. Thus, a more or less complete compatibility with

RAMMS can be achieved. However, as we did not perform

backward analysis calculations to calibrate the fluid model

for our approach and we tested the compatibility only for

a few examples, the modelling results should be taken with

caution when mitigation strategies and protection measures

are developed. For such applications, the compatibility with

established and extensively tested software packages should

be ascertained for the given conditions, or at least a careful

backward analysis of the specific avalanche should be con-

ducted.
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Appendix A: Implementation in GERRIS

The following lines of code show the implementation of our

approach in the GERRIS parameter file. An example of a full

implementation (the concave slope considered in Sect. 4.2) is

provided in the supplement.

# Gradient of the original topography (GERRISZb)

# For version GERRISH replace Zb with H

# Variables: P=hv, (U,V)= q

DX=dx("Zb")

DY=dy("Zb")

# tan2ϕ (Eq. 7)

TAN2PHI=DX ·DX+DY ·DY

# sin2ϕ from basic trigonometric relations

SIN2PHI=TAN2PHI/(1.+TAN2PHI)

# cosϕ from basic trigonometric relations

COSPHI=1./sqrt(1+TAN2PHI)

# tanψ (Eq. 8), directions of q and vh are the same

TANPSI=-(DX ·U+DY ·V)/sqrt(U ·U+V ·V+eps)

# cosψ from basic trigonometric relations

COSPSI=1./SQRT(1+TANPSI ·TANPSI)

# Factor 1
1+δtf

occurring in Eq. (24) with f from Eq. (20)

F=(P > DRY ? Velocity/(Velocity ...

+dt ·GRAV ·(SIN2PHI ·TANPSI ...

+mu ·COSPHI ·COSPSI+Velocity ·Velocity ...

/(P ·Xi ·COSPHI ·COSPSI))) : 0. )

# Multiply both components of the momentum by F (Eq. 24)

U=U ·F

V=V ·F

# Magnitude of the three-dimensional velocity vector

Vtotal=(P > DRY ? Velocity/COSPSI : 0)

# Flow depth normal to the topography

localDepth=P ·COSPHI
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