Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4585-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4585-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automating tephra fall building damage assessment using deep learning
Earth Observatory of Singapore, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 639798, Singapore
Susanna F. Jenkins
Earth Observatory of Singapore, Asian School of the Environment, Nanyang Technological University, Singapore, 639798, Singapore
Victoria Miller
GNS Science, P.O. Box 30368, 5040 Lower Hutt, Aotearoa / New Zealand
Richard Robertson
The UWI Seismic Research Centre, Saint Augustine, Trinidad and Tobago
Bihan Wen
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
Sang-Ho Yun
Earth Observatory of Singapore, Asian School of the Environment, Nanyang Technological University, Singapore, 639798, Singapore
Benoit Taisne
Earth Observatory of Singapore, Asian School of the Environment, Nanyang Technological University, Singapore, 639798, Singapore
Related authors
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Santiago Arellano, Bo Galle, Fredy Apaza, Geoffroy Avard, Charlotte Barrington, Nicole Bobrowski, Claudia Bucarey, Viviana Burbano, Mike Burton, Zoraida Chacón, Gustavo Chigna, Christian Joseph Clarito, Vladimir Conde, Fidel Costa, Maarten De Moor, Hugo Delgado-Granados, Andrea Di Muro, Deborah Fernandez, Gustavo Garzón, Hendra Gunawan, Nia Haerani, Thor H. Hansteen, Silvana Hidalgo, Salvatore Inguaggiato, Mattias Johansson, Christoph Kern, Manne Kihlman, Philippe Kowalski, Pablo Masias, Francisco Montalvo, Joakim Möller, Ulrich Platt, Claudia Rivera, Armando Saballos, Giuseppe Salerno, Benoit Taisne, Freddy Vásconez, Gabriela Velásquez, Fabio Vita, and Mathieu Yalire
Earth Syst. Sci. Data, 13, 1167–1188, https://doi.org/10.5194/essd-13-1167-2021, https://doi.org/10.5194/essd-13-1167-2021, 2021
Short summary
Short summary
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017. Measurements were obtained by Network for Observation of Volcanic and Atmospheric Change (NOVAC) scanning differential optical absorption spectrometer (ScanDOAS) instruments at 32 volcanoes and processed using a standardized procedure. We show statistics of volcanic gas emissions under a variety of conditions and compare them with averages derived from measurements from space and historical inventories.
Cited articles
Aggarwal, C. C. (Eds.): Neural networks and deep learning, Springer, eBook ISBN 978-3-319-94463-0, 2018.
An, G., Akiba, M., Omodaka, K., Nakazawa, T., and Yokota, H.: Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images, Sci. Rep., 11, 4250, https://doi.org/10.1038/s41598-021-83503-7, 2021.
Andaru, R. and Rau, J. Y.: Lava dome changes detection at Agung Mountain during high level of volcanic activity using UAV photogrammetry, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 173–179, https://doi.org/10.5194/isprs-archives-XLII-2-W13-173-2019, 2019.
Anniballe, R., Noto, F., Scalia, T., Bignami, C., Stramondo, S., Chini, M., and Pierdicca, N.: Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L'Aquila 2009 earthquake, Remote Sens. Environ., 210, 166–178, https://doi.org/10.1016/j.rse.2018.03.004, 2018.
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W.: A theory of learning from different domains, Mach. Learn., 79, 151–175, https://doi.org/10.1007/s10994-009-5152-4, 2010.
Biass, S., Bonadonna, C., and Houghton, B. F.: A step-by-step evaluation of empirical methods to quantify eruption source parameters from tephra-fall deposits, J. Appl. Volcanol., 8, 1–16, https://doi.org/10.1186/s13617-018-0081-1, 2019.
Biass, S., Jenkins, S., Lallemant, D., Lim, T. N., Williams, G., and Yun, S. H.: Remote sensing of volcanic impacts, in: Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, edited by: Papale, P., Elsevier, 473–491, https://doi.org/10.1016/B978-0-12-818082-2.00012-3, 2021.
Blong, R.: Building damage in Rabaul, Papua New Guinea, 1994, Bull. Volcanol., 65, 43–54, https://doi.org/10.1007/s00445-002-0238-x, 2003a.
Blong, R.: A Review of Damage Intensity Scales, Nat. Hazards, 29, 57–76, https://doi.org/10.1023/A:1022960414329, 2003b.
Bouchard, I., Rancourt, M. È., Aloise, D., and Kalaitzis, F.: On Transfer Learning for Building Damage Assessment from Satellite Imagery in Emergency Contexts, Remote Sens., 14, 1–29, https://doi.org/10.3390/rs14112532, 2022.
Bruzzone, L. and Fernàndez Prieto, D.: Automatic Analysis of the Difference Image for Unsupervised Change Detection, IEEE T. Geosci. Remote, 38, 1171–1181, https://doi.org/10.1109/36.843009, 2000.
Cheng, C. S., Behzadan, A. H., and Noshadravan, A.: Deep learning for post-hurricane aerial damage assessment of buildings, Comput.-Aided Civ. Inf., 36, 695–710, https://doi.org/10.1111/mice.12658, 2021.
Cole, P. D., Barclay, J., Robertson, R. E. A., Mitchell, S., Davies, B. V., Constantinescu, R., Sparks, R. S. J., Aspinall, W., and Stinton, A.: Explosive sequence of La Soufrière, St Vincent, April 2021: insights into drivers and consequences via eruptive products, Geol. Soc. Spec. Publ., 539, 81–106, https://doi.org/10.6084/m9.figshare.c.6474317, 2023.
Cotrufo, S., Sandu, C., Tonolo, F. G., and Boccardo, P.: Building damage assessment scale tailored to remote sensing vertical imagery, Eur. J. Remote Sens., 51, 991–1005, https://doi.org/10.1080/22797254.2018.1527662, 2018.
Cusicanqui, J., Kerle, N., and Nex, F.: Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment, Nat. Hazards Earth Syst. Sci.,18, 1583–1598, https://doi.org/10.5194/nhess-18-1583-2018, 2018.
Deligne, N. I., Jenkins, S. F., Meredith, E. S., Williams, G. T., Leonard, G. S., Stewart, C., Wilson, T. M., Biass, S., Blake, D. M., Blong, R. J., and Bonadonna, C.: From anecdotes to quantification: advances in characterizing volcanic eruption impacts on the built environment, Bull. Volcanol., 84, 7, https://doi.org/10.1007/s00445-021-01506-8, 2022.
Deng, J., Dong, R., Socher, L., Li, L-J., Li, K., and Fei-Fei, L.: Imagenet: A large-scale hierarchical image database, in: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 20–25 June 2009, Miami, USA, 248–255, https://doi.org/10.1109/CVPR.2009.5206848, 2009.
Duarte, D., Nex, F., Kerle, N., and Vosselman, G.: Satellite Image Classification of Building Damages Using Airborne and Satellite Image Samples in a Deep Learning Approach, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 89–96, https://doi.org/10.5194/isprs-annals-IV-2-89-2018, 2018.
Cao, Q. D. and Choe, Y.: Building Damage Annotation on Post-Hurricane Satellite Imagery Based on Convolutional Neural Networks, Nat. Hazards, 103, 3357–3376, https://doi.org/10.1007/s11069-020-04133-2, 2020.
Gailler, L., Labazuy, P., Régis, E., Bontemps, M., Souriot, T., Bacques, G., and Carton, B.: Validation of a new UAV magnetic prospecting tool for volcano monitoring and geohazard assessment, Remote Sens., 13, 1–10, https://doi.org/10.3390/rs13050894, 2021.
Galanis, M., Rao, K., Yao, X., Tsai, Y. L., Ventura, J., and Fricker, G. A.: DamageMap: A post-wildfire damaged buildings classifier, Int. J. Disast. Risk Reduct., 65, 102540, https://doi.org/10.1016/j.ijdrr.2021.102540, 2021.
Ghosh, S., Huyck, C. K., Greene, M., Gill, S. P., Bevington, J., Svekla, W., DesRoches, R., and Eguchi, R. T.: Crowdsourcing for rapid damage assessment: The global earth observation catastrophe assessment network (GEO-CAN), Earthq. Spectra, 27, 179–198, https://doi.org/10.1193/1.3636416, 2011.
Gonzalez, D., Rueda-Plata, D., Acevedo, A. B., Duque, J. C., Ramos-Pollán, R., Betancourt, A., and García, S.: Automatic detection of building typology using deep learning methods on street level images, Build. Environ., 177, 106805, https://doi.org/10.1016/j.buildenv.2020.106805, 2020.
Gupta, R. and Shah, M.: RescueNet: Joint building segmentation and damage assessment from satellite imagery, in: Proceedings of the International Conference on Pattern Recognition, Institute of Electrical and Electronics Engineers Inc., 10–15 January 2020, Milan, Italy, 4405–4411, https://doi.org/10.1109/ICPR48806.2021.9412295, 2020.
Hayes, J., Wilson, T. M., Deligne, N. I., Cole, J., and Hughes, M.: A model to assess tephra clean-up requirements in urban environments, J. Appl. Volcanol., 6, 1–9, https://doi.org/10.1186/s13617-016-0052-3, 2017.
Hayes, J. L.; Calderón B, R.; Deligne, N. I.; Jenkins, S. F.; Leonard, G. S.; McSporran, A. M.; Williams, G. T.; Wilson, T. M. Timber-Framed Building Damage from Tephra Fall and Lahar: 2015 Calbuco Eruption, Chile. J. Volcanol. Geoth. Res., 374, 142–159, https://doi.org/10.1016/j.jvolgeores.2019.02.017, 2019.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, arXiv [preprint], arXiv:1512.03385, https://doi.org/10.48550/arXiv.1512.03385, 2015.
Iannelli, G. and Dell'Acqua, F.: Extensive Exposure Mapping in Urban Areas through Deep Analysis of Street-Level Pictures for Floor Count Determination, Urban Sci., 1, 16, https://doi.org/10.3390/urbansci1020016, 2017.
Ishii, M., Goto, T., Sugiyama, T., Saji, H., and Abe, K.: Detection of earthquake damaged areas from aerial photographs by using colour and edge information, in: Proceedings of the 5th Asian Conference on Computer Vision, 23–25 January 2002, Melbourne, Australia, 27–32, http://aprs.dictaconference.org/accv2002/accv2002_proceedings/Ishii27.pdf (last access: 11 December 2024), 2002.
Jenkins, S., Komorowski, J. C., Baxter, P. J., Spence, R., Picquout, A., Lavigne, F., and Surono: The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics, J. Volcanol. Geoth. Res., 261, 316–329, https://doi.org/10.1016/j.jvolgeores.2013.02.012, 2013.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and Wilson, T. M.: Volcanic risk assessment: Quantifying physical vulnerability in the built environment, J. Volcanol. Geoth. Res., 276, 105–120, https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Phillips, J. C., Price, R., Feloy, K., Baxter, P. J., Hadmoko, D. S., and de Bélizal, E.: Developing building-damage scales for lahars: Application to Merapi volcano, Indonesia, Bull. Volcanol., 77, 75, https://doi.org/10.1007/s00445-015-0961-8, 2015.
Jenkins, S. F., McSporran, A., Wilson, T. M., Stewart, C., Leonard, G., Cevuard, S., and Garaebiti, E.: Tephra fall impacts to buildings: The 2017–2018 Manaro Voui eruption, Vanuatu, Front. Earth Sci., 12, 1–19, https://doi.org/10.3389/feart.2024.1392098, 2024.
Joseph, E. P., Camejo-Harry, M., Christopher, T., Contreras-Arratia, R., Edwards, S., Graham, O., Johnson, M., Juman, A., Latchman, J. L., Lynch, L., Miller, V. L., Papadopoulos, I., Pascal, K., Robertson, R., Ryan, G. A., Stinton, A., Grandin, R., Hamling, I., Jo, M.-J., Barclay, J., Cole, P., Davies, B. V., and Sparks, R. S. J.: Responding to eruptive transitions during the 2020–2021 eruption of La Soufrière volcano, St. Vincent, Nat. Commun., 13, 4129, https://doi.org/10.1038/s41467-022-31901-4, 2022.
Jung, J., Kim, D. J., Lavalle, M., and Yun, S. H.: Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection, IEEE T. Geosci. Remote, 54, 5765–5775, https://doi.org/10.1109/TGRS.2016.2572166, 2016.
Karnik, V., Schenkov, Z., and Schenk, V.: Vulnerability and the MSK scale, Eng. Geol., 20, 161–168, 1984.
Kerle, N., Nex, F., Gerke, M., Duarte, D., and Vetrivel, A.: UAV-based structural damage mapping: A review, ISPRS Int. J. Geo-Inf., 9, 1–23, https://doi.org/10.3390/ijgi9010014, 2019.
Khajwal, A. B., Cheng, C. S., and Noshadravan, A.: Post-disaster damage classification based on deep multi-view image fusion, Comp.-Aided Civ. Inf., 38, 528–544, https://doi.org/10.1111/mice.12890, 2023.
Lerner, G. A., Jenkins, S. F., Charbonnier, S. J., Komorowski, J., and Baxter, P. J.: The hazards of unconfined pyroclastic density currents: A new synthesis and classification according to their deposits, dynamics, and thermal and impact characteristics, J. Volcanol. Geoth. Res., 421, 107429, https://doi.org/10.1016/j.jvolgeores.2021.107429, 2021.
López-Cifuentes, A., Escudero-Viñolo, M., Bescós, J., and García-Martín, Á.: Semantic-aware scene recognition, Pattern Recognit., 102, 107256, https://doi.org/10.1016/j.patcog.2020.107256, 2019.
Li, S., Tang, H., He, S., Shu, Y., Mao, T., Li, J., and Xu, Z.: Unsupervised detection of earthquake-triggered roof-holes from UAV images using joint colour and shape features, IEEE Geosci. Remote Sens., 12, 1823–1827, https://doi.org/10.1109/LGRS.2015.2429894, 2015.
Li, Y., Hu, W., Dong, H., and Zhang, X.: Building damage detection from post-event aerial imagery using single shot multibox detector, Appl. Sci., 9, 1128, https://doi.org/10.3390/app9061128, 2019.
Li, D., Cong, A., and Guo, S.: Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification, Automat. Constr., 101, 199–208, https://doi.org/10.1016/j.autcon.2019.01.017, 2019.
Lucks, L., Bulatov, D., Thönnessen, U., and Böge, M.: Superpixel-wise assessment of building damage from aerial images, in: VISIGRAPP 2019 – Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, SciTePress, 25–27 February 2019, Prague, Czech Republic, 211–220, https://doi.org/10.5220/0007253802110220, 2019.
Meng, S., Soleimani-Babakamali, M. H., and Taciroglu, E.: Automatic Roof Type Classification Through Machine Learning for Regional Wind Risk Assessment, arXiv [preprint], arXiv:2305.17315, https://doi.org/10.48550/arXiv.2305.17315, 2023.
Meredith, E. S., Jenkins, S. F., Hayes, J. L., Deligne, N. I., Lallemant, D., Patrick, M., and Neal, C.: Damage assessment for the 2018 lower East Rift Zone lava flows of Kīlauea volcano, Hawaii, Bull. Volcanol., 84, 65, https://doi.org/10.1007/s00445-022-01568-2, 2022.
Moradi, M. and Shah-Hosseini, R.: Earthquake Damage Assessment Based on Deep Learning Method Using VHR Images, Environ. Sci. Proc., 5, 16, https://doi.org/10.3390/iecg2020-08545, 2020.
Naito, S., Tomozawa, H., Mori, Y., Nagata, T., Monma, N., Hakamura, H., Fujiwara, H., and Shoji, G.: Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake, Earthq. Spectra, 36, 1166–1187, https://doi.org/10.1177/8755293019901309, 2020.
Nath, N. D. and Behzadan, A. H.: Deep Convolutional Networks for Construction Object Detection Under Different Visual Conditions, Front. Built Environ., 6, 97, 1–22, https://doi.org/10.3389/fbuil.2020.00097, 2020.
Nex, F., Duarte, D., Steenbeek, A., and Kerle, N.: Towards real-time building damage mapping with low-cost UAV solutions, Remote Sens., 11, 287, https://doi.org/10.3390/rs11030287, 2019.
Noh, H. Y., Jaiswal, K. S., Engler, D., and Wald, D. J.: An efficient Bayesian framework for updating PAGER loss estimates, Earthq. Spectra, 36, 1719–1742, https://doi.org/10.1177/8755293020944177, 2020.
Novikov, G., Trekin, A., Potapov, G., Ignatiev, V., and Burnaev, E.: Satellite imagery analysis for operational damage assessment in emergency situations, in: Lecture Notes in Business Information Processing, Springer Verlag, 347–358, https://doi.org/10.1007/978-3-319-93931-5_25, 2018.
PDNA – Post Disaster Needs Assessment: La Soufrière Volcanic Eruption, UNDP – United Nations Development Programme, https://www.undp.org/barbados/publications/post-disaster-needs-assessment-pdna-st-vincent-and-grenadines (last access: 3 October 2022), 2022.
Pi, Y., Nath, N. D., and Behzadan, A. H.: Convolutional neural networks for object detection in aerial imagery for disaster response and recovery, Adv. Eng. Inform., 43, 101009, https://doi.org/10.1016/j.aei.2019.101009, 2020.
Pomonis, A. A., Spence, R., and Baxter, P.: Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, the Azores, J. Volcanol. Geoth. Res., 92, 107–131, 1999.
Ren, S., He, K., Girshick, R., and Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Trans. Pattern Anal. Mach. Intel., 39, 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031, 2017.
Román, A., Tovar-Sánchez, A., Roque-Atienza, D., Huertas, I. E., Caballero, I., Fraile-Nuez, E., and Navarro, G.: Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain), Sci. Total Environ., 843, 157092, https://doi.org/10.1016/j.scitotenv.2022.157092, 2022.
Shen, Y., Zhu, S., Yang, T., Chen, C., Pan, D., Chen, J., Xiao, L., and Du, Q.: BDANet: Multiscale Convolutional Neural Network With Cross-Directional Attention for Building Damage Assessment From Satellite Images, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3080580, 2022.
Singh, D. K. and Hoskere, V.: Post Disaster Damage Assessment Using Ultra-High-Resolution Aerial Imagery with Semi-Supervised Transformers, Sensors, 23, 8235, https://doi.org/10.3390/s23198235, 2023.
Spence, R. J. S., Pomonis, A., Baxter, P. J., Coburn, A. W., White, M., Dayrit, M., and Field Epidemiology Training Program Team: Building Damage Caused by the Mount Pinatubo Eruption of 15 June 1991, in: Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, edited by: Newhall, C. G., and Punongbayan, R. S., University of Washington Press, London, UK, 1055–1061, ISBN 9780295975856, 1996.
Spence, R. J. S., Kelman, I., Baxter, P. J., Zuccaro, G., and Petrazzuoli, S.: Residential building and occupant vulnerability to tephra fall, Nat. Hazards Earth Syst. Sci., 5, 477–494, https://doi.org/10.5194/nhess-5-477-2005, 2005.
SVG population and housing census: SVG population and housing census 2012, https://stats.gov.vc/data/databases/ (last access: 8 December 2023), 2012.
Szegedy, C., Vanhoucke, V., Ioffe, S., and Shlens, J.: Rethinking the Inception Architecture for Computer Vision, arXiv [preprint], arXiv:1512.00567, https://doi.org/10.48550/arXiv.1512.00567, 2015.
Tennant, E., Jenkins, S. F., Miller, V., Robertson, R., Wen, B., Yun, S.-H., and Taisne, B.: UAVdamageAssessment_v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.14375616, 2024.
The MathWorks Inc.: MATLAB version: R2023b, Natick, Massachusetts, USA, https://www.mathworks.com/products/matlab.html (last access: 18 June 2024), 2023.
Valentijn, T., Margutti, J., van den Homberg, M., and Laaksonen, J.: Multi-hazard and spatial transferability of a CNN for automated building damage assessment, Remote Sens., 12, 1–29, https://doi.org/10.3390/rs12172839, 2020.
Vetrivel, A., Gerke, M., Kerle, N., Nex, F., and Vosselman, G.: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning, ISPRS J. Photogramm. Remote Sens., 140, 45–59, https://doi.org/10.1016/j.isprsjprs.2017.03.001, 2018.
Wang, Z., Zhang, F., Wu, C., and Xia, J.: Rapid mapping of volcanic eruption building damage: A model based on prior knowledge and few-shot fine-tuning, Int. J. Appl. Earth Obs. Geoinf., 126, 103622, https://doi.org/10.1016/j.jag.2023.103622, 2024.
Weber, E. and Kané, H.: Building Disaster Damage Assessment in Satellite Imagery with Multi-Temporal Fusion, arXiv [preprint], doi10.48550/arXiv.2004.05525, 2020.
Williams, G. T., Jenkins, S. F., Biass, S., Wibowo, H. E., and Harijoko, A.: Remotely assessing tephra fall building damage and vulnerability: Kelud Volcano, Indonesia, J. Appl. Volcanol., 9, 1–18, https://doi.org/10.1186/s13617-020-00100-5, 2020.
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard impacts to critical infrastructure: A review, J. Volcanol. Geoth. Res., 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014.
Xu, J. Z., Lu, W., Li, Z., Khaitan, P., and Zaytseva, V.: Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1910.06444, 2019.
Yi, W., Sun, Y., and He, S.: Data Augmentation Using Conditional GANs for Facial Emotion Recognition, in: Proceedings of Progress in Electromagnetics Research Symposium, 1–4 August 2018, Toyama, Japan, 710–714, https://doi.org/10.23919/PIERS.2018.8598226, 2018.
Yorioka, D., Kang, H., and Iwamura, K.: Data Augmentation for Deep Learning Using Generative Adversarial Networks, in: IEEE 9th Global Conference on Consumer Electronics (GCCE), 13–16 October 2020, Kobe, Japan, 516–518, https://doi.org/10.1109/GCCE50665.2020.9291963, 2020.
Yun, S.-H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Manipon, G., Liang, C., Fielding, E., Milillo, P., Hua, H., and Coletta, A.: Rapid damage mapping for the 2015 Mw 7.8 Gorkha Earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites, Seismol. Res. Lett., 86, 1549–1556, https://doi.org/10.1785/0220150152, 2015.
Zhang, J. F., Xie, L. L., and Tao, X. X.: Change Detection of Earthquake-damaged Buildings on Remote Sensing Image and its Application in Seismic Disaster Assessment, in: Proceedings of EEE International Geoscience and Remote Sensing Symposium, 21–25 July 2003, Toulouse, France, 2436–2438, https://doi.org/10.1109/igarss.2003.1294467, 2003.
Zou, Z., Shi, Z., Guo, Y., and Ye, J.: Object Detection in 20 Years: A Survey, Proc. IEEE, 111, 257–276, https://doi.org/10.1109/JPROC.2023.3238524, 2019.
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
After a volcanic eruption, assessing building damage quickly is important for responding to and...
Altmetrics
Final-revised paper
Preprint